

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Symbolics in control design: prospects and research issues

Christensen, Anders

Published in:
Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design

Link to article, DOI:
10.1109/CACSD.1994.288942

Publication date:
1994

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Christensen, A. (1994). Symbolics in control design: prospects and research issues. In Proceedings of the
IEEE/IFAC Joint Symposium on Computer-Aided Control System Design (pp. 103-108). IEEE. DOI:
10.1109/CACSD.1994.288942

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CACSD.1994.288942
http://orbit.dtu.dk/en/publications/symbolics-in-control-design-prospects-and-research-issues(880070ea-aba6-46a6-975d-d658854a8f78).html

Symbolics in Control Design:
Prospects and Research Issues

Anders Christensen, h o c . Prof, MScEE, PhD
Institute of Automatic Control Systems,

Technical University of Denmark, DK - 2800 Lyngby, Denmark.
E-mail address ac@sl.dth.dk, FAX 4 5 42 88 12 95.

Abstract
The syinbolic processor is targeted as a novel basic
service in computer aided control system design. Basic
symbolic took are exainplfled A deslgn process model
is formulated for control design, witJi subsets
maniplator, tools, torget and goals. It is argued, tlmt
synibolic processing will give substantial contributions
to future des@ environtiients, as it provides flexibility
of representation not possible wit11 traditional numerics.
Based on the design process, views on research issires
in the incorporation of sytnbolic processing into
traditional numerical design en virontnenls are given.

Keywords: Symbolic control design, Design Process
models, Design State.

1. Introduction
In the control design community. the need for
computational support is widespread, as many design
projects are of great complexity. Methodology for
design of niulfivariable controllers is continuously
updated from mathematics, and models of design is
made an inherent need because of the huge number of
powerful tools solving interrelated or identical
problems.
The history of Computer Aided Control Design dates
back to the FORTRAN numerical matrix computation
subroutine libraries LINPACK / EISPACK, which
together with commercial simulators like SIMNON,
ACSL, CSSL etc. have developed into tlie MATLAB /
MATRIX-X numerical matrix computation
environment, which today provides a widely accepted
standard platform in the control conmiunity for design
and simulation. Tools for control design and simulatiai
are progranmied directly in matrix language and
organized into toolboxes. Since 1985, CACSD has been
an accepted and active community in the control design
field, offering research hi control design and
implementation of computer tools. In commercial
control design products, the recent years have brouglit
no substantial progress since the graphics-based
simulator of MATRIX-X. In the research community
however, prototype design systems have emerged with
interesting new developniaits. After MATLAB became

available, the empiiasis has been concentrated on
object-oriented methods emphasized in OMOLA
(Andersson, 1989), symbolic modelling in DYMOLA
(Elmquist, 1992), database sysiems and definition and
support of iterative control design (ANDECS, Griibel et
al., 1993), all mainly with support from numerical and
graphical basic services. In the theory department, the
main problenis are support tools for iterative controller
design, and abstractions of tools and data needed for
this. The "CACSD Franiework Reference Model"
proposed in (Barker et al. 1993) is under discussion for
referencing software structures, as well as useable
abstraction ai design projects are repor~ed from several
sources, f.ex. tlie inspiring design-support database
considerations in (Taylor & Griibel. 1993).

During the recent years, basic services for handling
symbolic coniputations have matured to become stand-
alone products (MACSYMA, MAPLE V, MATHE-
MATICA, etc.) capable of handling the coniplexity
demanded by control designers. Control designers in
nonlinear systems have developed iniplenientations of
exact linearization-based controllers in practice, which
are of a coniplexity which is not computable by hand
(Halin et al., 1993). In (Christensen, 931, a flexible
modelling tool has been developed and shown to
connect nonlinear dynamical equatims directly to both
implementation and analysis.

This paper provides a formulation of aspects of control
design which can gain substanitially from the
incorporation of symbolic services. In section 2, some
basic mechanisms are described, eniphasizing things not
implementable in numerics. It is argued, that a
structural analysis of the control problem shows
promising prospects of using synibolics in control
design. In seclion 3, a short structural analysis is made
of control design comprising a MacFarlane-like
(MacFarlane at al., 1989) design environnient, methods,
designed "target" data, and a design state. Section 4
provides an analysis of prospects and issues of research,
and section five some views on tlie incorporation of
symbolic processing in colitroi design products.

0-7803- 1800-5/94/$3.00 @ 1994 IEEE
10 3

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 13:59:13 UTC from IEEE Xplore. Restrictions apply.

2. Why Symbolics ?
When implementing design in symbolics, some basic
problems arrive, which propose new questions to be
solved. When moving from a numeric to a symbolic
environment, data structure and typing can be defined
as manipulable variables, and the typing problem thus
raises questions of abstraction in new flexible concepts,
"a model", "a plant", "a signal", etc., instead of well-
defied matrices and vectors. This problem makes
semantics of control design an interesting issue. Further,
programs, actions and functions can be (are) treated as
data items. Hereby, design routines can be flexibly
implemented, and can be manipulated, applied, analyzed
as operators, etc. This in general means that design
systems can be organized with only one implementation
of the data, in contrast to the several ones used today
for analysis, simulation etc.

It has been found (Christensen, 1992,19931, that basic
facilities of the symbolic processors have potential of
enhancing flexibility and power of control design:
Late evaluation enables the designer to program
abstract control loops in a top / down manner. The
control loop can be expressed by an unevaluated
expression tree. Take f.ex. a transfer function,
implemented by the following MATHEMATICA
program (Wolfram, 1991):

cloop := D H I (I+D H);
D := I;
tf:= I 1 (I+al s+a2sA2);
ai :=O.l; a2 :=0.2;

Using the := operator, the left hand side variables are
stored unevaluated as the right-hand side expressions.

Terms for design, analysis and validation can be
implemented in the abstracted control for working on
any specific control loop, as long as the abstraction is
valid. This is done by substitution of the abstracted
terms, which is also a standard facility of symbolic
processors; in the above example we can insert the
plant described by tf as follows:

C ~ O O P I. {H->V)

A root locus equation can be found by varying any
parameter entering a polynomial in a 1 s t order form:

Take a root locus equation for the characteristic

polynomial for the system. This can be obtained by
defining a Root Locus Equation generator:

This construction separates the polynomial into
polynoininl = H,(s) + name HJs). ?he root locus
equation is now computed by the following sequence,
executed in a dynamic scope: A root locus equation for
the closed loop system above is now found by calling

In [5]: = Block[(n2 a2 If }
Rloc~[Denorni~~a~or[cloop~p-3]1 (2)

Out[51:= 1 + a2 S = o
2 + 0.2 s ?

In tlijis example, the dyiamic scope produces the
characteristic polynomial Derromiitator[cloopJ
parametrized in a2 (substituted to "a23, and the RlocEq
routine then reorganizes the polynomial into a root
locus equation for the paranleter ~ 7 . From a symboli-
cally defined model, a root locus equation can be
obtained also "through" linearization, such that dynamic
behavior can be traced to nonlinear model entries
(Christensen. 1993), (Blanke & Christensen, 1993).
A special nicety is the ability to perform conversions
enabling use of the same models in complex plane
analysis as well as algorithmic fomi.

3. Structures in Control Design
As argued above, a main reason for applying symbolics
to control design by computer is the ability to perform
structure computations. The present subsection discusses
this issue and formulates some of the stmctures relevant
for consideration. A control system design environment,
based on the well known approach by (MacFarlane et
al., 1989). is shown in Figure 1 (Christensen, 1992).
This consists of a real world system holding the actual
physical plant and control equipment, a customer
representing the goals and objectives of a design
session, and a designer. "lie designer utilizes the tools
his "engine" provides, and modifies and refiies
implemented standard strategies for design to suit his
preen t needs.
The intemals of the control system design process can
be described as an iteration in the basic activities of
modelling, controller design, validation and iteration.
These skills consist of a high-level generic task and a
set of low-level 'standardized' tools, organized in
toolboxes. The generic tasks work from a problem
formulation and in cooperation produce a control
system. Figure 2 illustrates the situation in form of 3
systems: a manipulator representing the tasks. a goal

104

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 13:59:13 UTC from IEEE Xplore. Restrictions apply.

1; tuatm

1 1
I

Figure I : The control design environment

Taraet SWem
The target system can be seen as a "variable structure
declaration" for the variables generated and used during
design. It can be modelled in five levels, as visualized
in Figure 3.

Control structure (The closed-loop system level):
The control structure is given by the "arrows" in a
conventional block diagram, describing the relations
between Uie main subsystems of plant, environment and
controller. The elements of the control structure are
links and models as input/output descriptions, or merely
identifiers.

Model structure (TI= niodel description level):
The model description level is the specification of
intemal model signals and parameters, and can be
represented in several fomis, choosing nonlinearity
types, operator domains etc.

Plwsicd stmcture (The imDIementation level):
The models of controller and plant are behavioral
descriptions of a "physical" implementation and can
thus be specified for the controller into algorithms of
implementation, or for the plant and environment as
physical components. The structure of these physical
entities can be described in a physical "implenientation"
level.

Objective h Constraint structure: The validation of a
caitrol design utilizes indicators, which are designed as
"measuring devices" on the closed-loop system. ?hey
are directly related to the produced control system
result and are formulated from entities in the three
levels below. Having the objectives described and
modelled as indicators, constraints and preferences can
be represented in a Constraint level referring to the
objectives.

kmZ/- OUeJiiy commint. on oMiecrivea

i n c o m O l u l w n r r ~

Figrre 3: Illustration of the tmget system. Tlte
design process itas a procedural inrerpretu-tion,
producing datu as indiuited by the arrow.

Dessipn State
The design state can be written, specifying from system
description of die target to structure of the variables,
parantetem to insert into the structure, and values for
replacing the parameters in numerical computation. All
the concepts are chosen and designed by metliods and
their inputs. Tlie state is shown in Figure 4, comprising
methods, structure and parameters.

4. Key Issues for Incorporating Symbolics
in CACSD

4.1: Model Representation
The typical representations of models incontrol design
can be fomiulated in short by (3).

entities > lows > equations
> operators > algorithms

(3)

Due to the numerical nature of the existing standard

10 5

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 13:59:13 UTC from IEEE Xplore. Restrictions apply.

Method

System modal
Environment model

F!!??l Driver modei

Parameters

I CG&X &e params.
Stepresponse params. I Frequency resp. params.

Figure I: TIte design state, comprising niethoh
chosen, structure, and parameters. Numerical values
are hserled for paraineters (Not sliown).

design tools, this production sequence above is done by
hand, as it involves the manipulation of symbols. Next,
a model-generating tool is implemented, which is
capable of producing numerics in a prestructured fomi.
Conversions are provided between numerical
representations between its linear instances, but it
necessitates the premises of the model to be values. The
user must again provide the structure information by
himself. Thus, original premises are not, as in the
symbolics example above, reproducible from the
resulting model representations.
Basic modelling category theory has been provided by
b i tch (bitch, 1992). A modelling tcol representing the
link between entities (called phenomena), laws and
equations is derived in the Hybrid Phenomena Theory
(Woods,1993) and implemented HI Conmion LISP.
Object-orientation has been used in OMOLA
(Andersson.89) in the sanie context with reuseability as
the main goal. A IO-year old niodelling language
DYMOLA has reappeared (Elniqvist, 1992). This is a
symbolic model formulation tool capable of producing
model equations and simulator code progranis for
standard commercially available simulators. The
DYMOLA tool provides solutions and inspiration to
development of synibolic tools for control designs.
Specifying equations and data, it has been shown
possible, by using a standard symbolic processor, to
implement in some 300 lines of code a model generator
capable of linearization and conversion between
equations, algorithms and operators (Figure 5). thus
forming a sound conmion basis for analysis and
simulation (Christensen, 1993). The model stmcture
level and the implementation level of the target systeni
has been slio\wi directly connectable in ternis of a

flexible adaptive control iniplenientatioii (Torp et al.,
1993).

I mpicrri 'facl- I
. +..$ fa ten.!!?*!!..^

ConhDl6 mcdd
sbucfun, k w b E]

Dbcrae tine
E + t,:, Cmtinvous tine

lUplPCaIq=F=I?Idaa.ql
Functions

.......
1: l

Implementafion 44

Figitre 5: Model donuins used in control design.
Transfonlrntions are 1:1 (no error); or E (errors
nmde)

4.2: Iterntion and nccountinn s u ~ r w r t
In ternis of validation (or analysis), the interesting
feature of the symbolic processor is the ability to
represent a system with its design model. such that all
indicators are traceable backwards to their physical
coefficients. Take the design diagram of Figure 6 and
denote the indicator (or design nieiliod "driver") J.
Then, given real plant behavior P and controller
structure C, we are seeking a sei of values to C
designating an optimal solution to J:

C, = arg{mid(P,C,)l = DJ(P,C,)

where a design method D is abbreviated to include a
design driver J, and indices v and s denote values and
structure, respectively. As we do not have the "real"
model of P, some designed model is used:

The "real" obtained quality of the design is then

J P h = J(P ,DJ@, t))

Now, replacing the "real" model by a "master" for the
design models, designated Ptilde, we can rewrite the
solution as

into which we can insert several structurally different
designs.
The validation problem can be programmed very
flexibly by adopting this scheme to a general validation

106

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 13:59:13 UTC from IEEE Xplore. Restrictions apply.

problem (Christensen, 1992), also expressing the
dependency on design driver parameters 8:

From this abstract type of formulation, perfonname
indices, sensitivity functions, root locus derivations and
robustness measures can be implemented symbolically
as shown in the root locus example above. The
"physical" parameters of the the plant can be used in
the validation, and if it is possible to formulate the
design routine as an operator, it is possible to evaluate
all "premises" to the design problem in the closed-loop
result. For several known design synthesis methods this
scheme is indeed possible, but some effort is needed to
describe the applicability of design methods based on
numerical optimization, as it may not be possible to
arrive at a symbolical solution.

4.3: Derivation of a trietn - control deskn theory
There is widespread activity in research concentrating
on building models of the design process in itself,
enabling the formulation of generic tasks capable of
administrating the actions of a designer (Mostow, 1985;
Brown & Chandrasekaran, 1989). These models have
central concepts as
e Definitions of design projectdproblems
0 De/Recomposition of design projects
e Description of abstractiai in design
e Emphasis on design decisions, rationales and

control of iteration
construction of design history databases and 0

learning niectianisms

Figure 6: Design decisions during tnodeiling, design
and validation. Design produces a closed loop system
and an indicator set.

Assuming conventional design, the design actions can
be sketched as seen in Figure 6. The diagram shows the
premises P of design (Axioms, phenomena, decisions
and quality asessment), the methods/tasks M involved

~

10 7

(dashed boxes), and the result R in form of model,
controller and indicators.
From P, M and R, basic logic can be used to define
generic problems in design (Coyne at al., 1990). The
conventional controller design process referring to the
design process description above can be seen as
producing output following a path emerging from the
physical level of the plant upwards through the top
level of the hierarchy and down again through the
controller "branch", as indicated by the arrow in
Figure 3. Alternatively. Integrated Design, defined by
simultaneous design of control and plant, can be
pictured in the target system by specifying indicators
and quality constraints first, thereafter emerging from
top to bottom down through control structure level and
model structure level to the specification of
implementation in both plant physics and control
software. In this case the generic design tasks will have
a much differelit content (Christensen & Lind, 1993).
and only few of these models have been published yet.

Again referring to Figure 6, the formulation of abstract
models of total design supports the iteration by making
design decisions and tuning parameters accesible froni
the end result, thereby increasing the ability to criticise
the solution and identifying critical input parameters to
the design. As a numerical processor like MATLAB
manipulates values for parameters and does not keep
track of the identifiers for the input eiitities, this is not
possible at the present state of the art. The cooperation
of accounting and iterative design and the focus on
indicators has been covered in an inspiring manner by
the development of the ANDECS design system,
(Griibel et al.. 1993). ANDECS provides a numerical
design environment with macro facilities for design and
validation specification, and automatic design iterations
by optimization of user-chosen validation indicators,
and design history databases. In ANDECS, design steps
are implemented with a coordinate triple increnienting
coordinates by the steps a) modification of models, b)
modification of design parameters and c) modification
of indicators.
7lie "statidard problem" of robust control design, see
e.g. (Francis, 1987). is an example of a flexible basis
for this kind of considerations. It is important to notice,
though, that design methods are not only synthesis-
based optimization, but also comprise trial-and-,
loop shaping etc., as well as a consisitent theory must
be abIe to deal will control structure changes.

5. CACSD Environments with Symbolics
In the MATLAB family, all design routines are
implemented hi macro facilities based on a numerical
matrix computation facility with a command interpreter.
These tools demand the structure of the inputs to be

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 13:59:13 UTC from IEEE Xplore. Restrictions apply.

known implicitly. Thus, compound-type variables from
complex design methodologies become difficult to
comprehend. The tendency of the recent years has been
developnient of graphical interfaces, such that the block
diagram-like notatim is used as basis for the control
design. As argued above, representation by symbolics
is much closer to theory, textbooks and the designer's
way of thinking. as it manipulates structure.
Incorporation of symbolics into control design
environments as f.ex. MATLAB should be done by
extending tlie numeric routines with the basic services
(see CACSD framework reference model, Barker et al.
1993) of a looselv tyue d svmbolic processor: The
flexibility is retained, and strong typing can be
implemented by tlie user himself to suit his own needs.
The compound system could operate either as one
product, or by a operating system level object-sharing
workspace with access from otherwise independent
numeric and a symbolic processing tools, as outlined in
(Ravn & Szymkat, 1992). Very recently, both symbolics
products MATHEMATICA and MAPLE have been
provided with mex-based data aid conunand links to
MATLAB, which hopefully will make further
investigations straightforward.

6. Conclusion
In investigation of symbolics for control system design,
the main interest is features provided by symbolics as
opposed to numeric/graphical environments like
MATLAB. It is the experience of die investigation
work presented here, that symbolics can provide much
new insight into "old" design routines, which especially
validation for physically based models can profit from.
Symbolics, graphics and numerics handle different
aspects of system and design definition, and are all
needed b control design tools today. It is believed that
symbolics will offer basic services for structuring the
design and excution problems to be solved by both
graphical and tiumerical environments.

References:
[l l BARKER, H.A.; JOBLING, C.P.; SZYMKAT, M.;
RAVN, 0. (1993): " A requirements analysis of future
environments for computer-aided control engineering,
Preprints I2tlt IFAC World Congress 1993, Sydney.
Australia
[Z] BLANKE, M., CHRISTENSEN, A. (1993): "Rudder-
Roll Damping Autopilot Robustness to Sway-Yaw-Roll
Couplings", Proceedings loth Ship Control System
Synposium, Ottawa, Canada
[31 BROWN, D.C.; B. CHANDRASEKARAN (1989):
Design PrObletn Solving - Knowledge Siruchcres nnrl
Control Strategies, Research Notes in Artificial
Intelligence, Pitman Publishers, London 1989.
[41 CHRISENSEN, A. (1992): Models of Control Desien

- Modelling and VaMntion in Sit@ Control, Ph.D.
Thesis, Institute of Automatic Control Systems,
Technical University of Denmark.
[5] CHRISTENSEN, A., LIND, M. (1993): "A modelling
Framework for Integrated Design of AGV systems".
Proceedings Ist IFAC Syttnposium on Intelligent
Autonomous Vehicles, Southampton, UK.
[6] CHRISTENS", A. (1993): Prospects in Symbolic
Processing for Modelling in Control System Design,
Proceedings I2tli IFAC World Congress I993, Sydney,
Australia
[7] COYNE, R.D.; M.A. ROSENMAN; A.D. UDFORD; M.
BALCHANDRAN; J.S. GERO (1990): Knowledge-Based
Design Sjstertzs. Addison-Wesley Publishing Co.
[8] ELMQUIST, H. (1992): DYMOLA - Modelling
software documentation, DynaSini Corp, Lund, Sweden
1992
[9] FRANCIS, B. (1987): A Course in H, Control
Theory, Lecture notes in conlrol and infortnation
sciences vol 187, Springer-Verlag, G m a n y

OTTER (1993): The ANDECS Design Environ-ment for
Control Engineering, Preprints IZtlt IFAC World
Congress 1993, Sydney
[l l] HAHN, H.; K.-D. LEIMBACH; x. ZHANG (1993):
Nonlinear Control of a Spatial Multi-Axis Servo-
Hydraulic Test Facility Test Facility, Proceedings IZth
IFAC World Congress 1993, Sydney, Australia
[I21 LEITCH, R. (1992): Artificial Intelligence in
Contro1;some myths, some fears but plenty prospects,
Cotnputing & Control Engineering Joumal
[13] MOSTOW, J. (1985): Towards Better Models of the
Design Process, AI Mngniine, spring 1985.
[141 MACFARLANE, A.G J.. G. GRUBEL, J. ACKERMANN
(1989): Future Design Environments for Control En-
gineering, Autotnnticn, vol. 25, no.2, pp 165-176, March
1989
[151 RAvN, 0.; M. S Z Y M U T (1992): l'he evolution of
CACSD Tools - A Software Enginnering Perspective,
Proc. IEEE Symposium on CACSD, Napa. California
[161 TAYLOR, J.H.; G. GRUBEL (1993): Data-base
management guidelines for computer-aided control
engineering, Proceedings IZth IFAC World Congress,
Sydney, Australia 1993
[171 TORP, S.; P.M. NBRGARD; A. CHRISTENSEN, 0.
RAvN (1993): Iniplenietitatioti Issues in CACSD,
Preprinw 1st IEEEIIFAC Sytinposiutn on CACSD,
Arizona, USA
[181 WOLFRAM, S. (1991): Mi/tlietnnticn - A System for
Doing Mntltenlntics bji Cotnputer. 2nd Edition, Addison-
Wesley 1991.
1191 WOOOS, E. (1993):77ie Hybrid Plienotnena Theory,
PhD thesis, Techn. University of Norway, Trondheim,
Norway.

[lo] GRUBEL, G.; H-D.JWS; R. FEINSTERWALDER; M.

108

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 13:59:13 UTC from IEEE Xplore. Restrictions apply.

