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Symbolics in Control Design: 
Prospects and Research Issues 
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Technical University of Denmark, DK - 2800 Lyngby, Denmark. 
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Abstract 
The syinbolic processor is targeted as a novel basic 
service in computer aided control system design. Basic 
symbolic took are exainplfled A deslgn process model 
is formulated for control design, witJi subsets 
maniplator, tools, torget and goals. It is argued, tlmt 
synibolic processing will give substantial contributions 
to future des@ environtiients, as it provides flexibility 
of representation not possible wit11 traditional numerics. 
Based on the design process, views on research issires 
in the incorporation of sytnbolic processing into 
traditional numerical design en virontnenls are given. 

Keywords: Symbolic control design, Design Process 
models, Design State. 

1. Introduction 
In the control design community. the need for 
computational support is widespread, as many design 
projects are of great complexity. Methodology for 
design of niulfivariable controllers is continuously 
updated from mathematics, and models of design is 
made an inherent need because of the huge number of 
powerful tools solving interrelated or identical 
problems. 
The history of Computer Aided Control Design dates 
back to the FORTRAN numerical matrix computation 
subroutine libraries LINPACK / EISPACK, which 
together with commercial simulators like SIMNON, 
ACSL, CSSL etc. have developed into tlie MATLAB / 
MATRIX-X numerical matrix computation 
environment, which today provides a widely accepted 
standard platform in the control conmiunity for design 
and simulation. Tools for control design and simulatiai 
are progranmied directly in matrix language and 
organized into toolboxes. Since 1985, CACSD has been 
an accepted and active community in the control design 
field, offering research hi control design and 
implementation of computer tools. In commercial 
control design products, the recent years have brouglit 
no substantial progress since the graphics-based 
simulator of MATRIX-X. In the research community 
however, prototype design systems have emerged with 
interesting new developniaits. After MATLAB became 

available, the empiiasis has been concentrated on 
object-oriented methods emphasized in OMOLA 
(Andersson, 1989), symbolic modelling in DYMOLA 
(Elmquist, 1992), database sysiems and definition and 
support of iterative control design (ANDECS, Griibel et 
al., 1993), all mainly with support from numerical and 
graphical basic services. In the theory department, the 
main problenis are support tools for iterative controller 
design, and abstractions of tools and data needed for 
this. The "CACSD Franiework Reference Model" 
proposed in (Barker et al. 1993) is under discussion for 
referencing software structures, as well as useable 
abstraction ai design projects are repor~ed from several 
sources, f.ex. tlie inspiring design-support database 
considerations in (Taylor & Griibel. 1993). 

During the recent years, basic services for handling 
symbolic coniputations have matured to become stand- 
alone products (MACSYMA, MAPLE V, MATHE- 
MATICA, etc.) capable of handling the coniplexity 
demanded by control designers. Control designers in 
nonlinear systems have developed iniplenientations of 
exact linearization-based controllers in practice, which 
are of a coniplexity which is not computable by hand 
(Halin et al., 1993). In (Christensen, 931, a flexible 
modelling tool has been developed and shown to 
connect nonlinear dynamical equatims directly to both 
implementation and analysis. 

This paper provides a formulation of aspects of control 
design which can gain substanitially from the 
incorporation of symbolic services. In section 2, some 
basic mechanisms are described, eniphasizing things not 
implementable in numerics. It is argued, that a 
structural analysis of the control problem shows 
promising prospects of using synibolics in control 
design. In seclion 3, a short structural analysis is made 
of control design comprising a MacFarlane-like 
(MacFarlane at al., 1989) design environnient, methods, 
designed "target" data, and a design state. Section 4 
provides an analysis of prospects and issues of research, 
and section five some views on tlie incorporation of 
symbolic processing in colitroi design products. 
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2. Why Symbolics ? 
When implementing design in symbolics, some basic 
problems arrive, which propose new questions to be 
solved. When moving from a numeric to a symbolic 
environment, data structure and typing can be defined 
as manipulable variables, and the typing problem thus 
raises questions of abstraction in new flexible concepts, 
"a model", "a plant", "a signal", etc., instead of well- 
defied matrices and vectors. This problem makes 
semantics of control design an interesting issue. Further, 
programs, actions and functions can be (are) treated as 
data items. Hereby, design routines can be flexibly 
implemented, and can be manipulated, applied, analyzed 
as operators, etc. This in general means that design 
systems can be organized with only one implementation 
of the data, in contrast to the several ones used today 
for analysis, simulation etc. 

It has been found (Christensen, 1992,19931, that basic 
facilities of the symbolic processors have potential of 
enhancing flexibility and power of control design: 
Late evaluation enables the designer to program 
abstract control loops in a top / down manner. The 
control loop can be expressed by an unevaluated 
expression tree. Take f.ex. a transfer function, 
implemented by the following MATHEMATICA 
program (Wolfram, 1991): 

cloop := D H I  (I+D H); 
D := I; 
tf:= I 1  (I+al s+a2sA2); 
ai :=O.l;  a2 :=0.2; 

Using the := operator, the left hand side variables are 
stored unevaluated as the right-hand side expressions. 

Terms for design, analysis and validation can be 
implemented in the abstracted control for working on 
any specific control loop, as long as the abstraction is 
valid. This is done by substitution of the abstracted 
terms, which is also a standard facility of symbolic 
processors; in the above example we can insert the 
plant described by tf as follows: 

C ~ O O P  I. {H->V) 

A root locus equation can be found by varying any 
parameter entering a polynomial in a 1 s t  order form: 

Take a root locus equation for the characteristic 

polynomial for the system. This can be obtained by 
defining a Root Locus Equation generator: 

This construction separates the polynomial into 
polynoininl = H,(s) + name HJs). ?he root locus 
equation is now computed by the following sequence, 
executed in a dynamic scope: A root locus equation for 
the closed loop system above is now found by calling 

In [5]: = Block[ (n2 a2 If } 
Rloc~[Denorni~~a~or[cloop~p-3]1 (2) 

Out[51:= 1 + a2 S = o  
2 + 0.2 s ?  

In tlijis example, the dyiamic scope produces the 
characteristic polynomial Derromiitator[cloopJ 
parametrized in a2 (substituted to "a23, and the RlocEq 
routine then reorganizes the polynomial into a root 
locus equation for the paranleter ~ 7 .  From a symboli- 
cally defined model, a root locus equation can be 
obtained also "through" linearization, such that dynamic 
behavior can be traced to nonlinear model entries 
(Christensen. 1993), (Blanke & Christensen, 1993). 
A special nicety is the ability to perform conversions 
enabling use of the same models in complex plane 
analysis as well as algorithmic fomi. 

3. Structures in Control Design 
As argued above, a main reason for applying symbolics 
to control design by computer is the ability to perform 
structure computations. The present subsection discusses 
this issue and formulates some of the stmctures relevant 
for consideration. A control system design environment, 
based on the well known approach by (MacFarlane et 
al., 1989). is shown in Figure 1 (Christensen, 1992). 
This consists of a real world system holding the actual 
physical plant and control equipment, a customer 
representing the goals and objectives of a design 
session, and a designer. "lie designer utilizes the tools 
his "engine" provides, and modifies and refiies 
implemented standard strategies for design to suit his 
preen t needs. 
The intemals of the control system design process can 
be described as an iteration in the basic activities of 
modelling, controller design, validation and iteration. 
These skills consist of a high-level generic task and a 
set of low-level 'standardized' tools, organized in 
toolboxes. The generic tasks work from a problem 
formulation and in cooperation produce a control 
system. Figure 2 illustrates the situation in form of 3 
systems: a manipulator representing the tasks. a goal 
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1; tuatm 

1 1 
I 

Figure I :  The control design environment 

Taraet SWem 
The target system can be seen as a "variable structure 
declaration" for the variables generated and used during 
design. It can be modelled in five levels, as visualized 
in Figure 3. 

Control structure (The closed-loop system level): 
The control structure is given by the "arrows" in a 
conventional block diagram, describing the relations 
between Uie main subsystems of plant, environment and 
controller. The elements of the control structure are 
links and models as input/output descriptions, or merely 
identifiers. 

Model structure (TI= niodel description level): 
The model description level is the specification of 
intemal model signals and parameters, and can be 
represented in several fomis, choosing nonlinearity 
types, operator domains etc. 

Plwsicd stmcture (The imDIementation level): 
The models of controller and plant are behavioral 
descriptions of a "physical" implementation and can 
thus be specified for the controller into algorithms of 
implementation, or for the plant and environment as 
physical components. The structure of these physical 
entities can be described in a physical "implenientation" 
level. 

Objective h Constraint structure: The validation of a 
caitrol design utilizes indicators, which are designed as 
"measuring devices" on the closed-loop system. ?hey 
are directly related to the produced control system 
result and are formulated from entities in the three 
levels below. Having the objectives described and 
modelled as indicators, constraints and preferences can 
be represented in a Constraint level referring to the 
objectives. 

kmZ/- OUeJiiy commint. on oMiecrivea 

i n c o m O l u l w n r r ~  

Figrre 3: Illustration of the tmget system. Tlte 
design process itas a procedural inrerpretu-tion, 
producing datu as indiuited by the arrow. 

Dessipn State 
The design state can be written, specifying from system 
description of die target to structure of the variables, 
parantetem to insert into the structure, and values for 
replacing the parameters in numerical computation. All 
the concepts are chosen and designed by metliods and 
their inputs. Tlie state is shown in Figure 4, comprising 
methods, structure and parameters. 

4. Key Issues for Incorporating Symbolics 
in CACSD 

4.1: Model Representation 
The typical representations of models incontrol design 
can be fomiulated in short by (3). 

entities > lows > equations 
> operators > algorithms 

(3) 

Due to the numerical nature of the existing standard 
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Method 

System modal 
Environment model 

F!!??l Driver modei 

Parameters 

I CG&X &e params. 
Stepresponse params. I Frequency resp. params. 

Figure I: TIte design state, comprising niethoh 
chosen, structure, and parameters. Numerical values 
are hserled for paraineters (Not sliown). 

design tools, this production sequence above is done by 
hand, as it involves the manipulation of symbols. Next, 
a model-generating tool is implemented, which is 
capable of producing numerics in a prestructured fomi. 
Conversions are provided between numerical 
representations between its linear instances, but it 
necessitates the premises of the model to be values. The 
user must again provide the structure information by 
himself. Thus, original premises are not, as in the 
symbolics example above, reproducible from the 
resulting model representations. 
Basic modelling category theory has been provided by 
b i tch  (bitch, 1992). A modelling tcol representing the 
link between entities (called phenomena), laws and 
equations is derived in the Hybrid Phenomena Theory 
(Woods,1993) and implemented HI Conmion LISP. 
Object-orientation has been used in OMOLA 
(Andersson.89) in the sanie context with reuseability as 
the main goal. A IO-year old niodelling language 
DYMOLA has reappeared (Elniqvist, 1992). This is a 
symbolic model formulation tool capable of producing 
model equations and simulator code progranis for 
standard commercially available simulators. The 
DYMOLA tool provides solutions and inspiration to 
development of synibolic tools for control designs. 
Specifying equations and data, it has been shown 
possible, by using a standard symbolic processor, to 
implement in some 300 lines of code a model generator 
capable of linearization and conversion between 
equations, algorithms and operators (Figure 5). thus 
forming a sound conmion basis for analysis and 
simulation (Christensen, 1993). The model stmcture 
level and the implementation level of the target systeni 
has been slio\wi directly connectable in ternis of a 

flexible adaptive control iniplenientatioii (Torp et al., 
1993). 

I mpicrri 'facl- I 
. +..$ ..................................  fa ten.!!?*!!..^ 

ConhDl6 mcdd 
sbucfun, k w b  E] 

Dbcrae tine 
E + t,:, Cmtinvous tine 

lUplPCaIq=F=I?Idaa.ql 
Functions 

....... ................................................................................... ........... 
1: l  

Implementafion 44 

Figitre 5: Model donuins used in control design. 
Transfonlrntions are 1:1 (no error); or E (errors 
nmde) 

4.2: Iterntion and nccountinn s u ~ r w r t  
In ternis of validation (or analysis), the interesting 
feature of the symbolic processor is the ability to 
represent a system with its design model. such that all 
indicators are traceable backwards to their physical 
coefficients. Take the design diagram of Figure 6 and 
denote the indicator (or design nieiliod "driver") J. 
Then, given real plant behavior P and controller 
structure C, we are seeking a sei of values to C 
designating an optimal solution to J: 

C, = arg{mid(P,C,)l = DJ(P,C,) 

where a design method D is abbreviated to include a 
design driver J, and indices v and s denote values and 
structure, respectively. As we do not have the "real" 
model of P, some designed model is used: 

The "real" obtained quality of the design is then 

J P h  = J(P ,DJ@, t ) )  

Now, replacing the "real" model by a "master" for the 
design models, designated Ptilde, we can rewrite the 
solution as 

into which we can insert several structurally different 
designs. 
The validation problem can be programmed very 
flexibly by adopting this scheme to a general validation 
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problem (Christensen, 1992), also expressing the 
dependency on design driver parameters 8: 

From this abstract type of formulation, perfonname 
indices, sensitivity functions, root locus derivations and 
robustness measures can be implemented symbolically 
as shown in the root locus example above. The 
"physical" parameters of the the plant can be used in 
the validation, and if it is possible to formulate the 
design routine as an operator, it is possible to evaluate 
all "premises" to the design problem in the closed-loop 
result. For several known design synthesis methods this 
scheme is indeed possible, but some effort is needed to 
describe the applicability of design methods based on 
numerical optimization, as it may not be possible to 
arrive at a symbolical solution. 

4.3: Derivation of a trietn - control deskn theory 
There is widespread activity in research concentrating 
on building models of the design process in itself, 
enabling the formulation of generic tasks capable of 
administrating the actions of a designer (Mostow, 1985; 
Brown & Chandrasekaran, 1989). These models have 
central concepts as 
e Definitions of design projectdproblems 
0 De/Recomposition of design projects 
e Description of abstractiai in design 
e Emphasis on design decisions, rationales and 

control of iteration 
construction of design history databases and 0 

learning niectianisms 

Figure 6: Design decisions during tnodeiling, design 
and validation. Design produces a closed loop system 
and an indicator set. 

Assuming conventional design, the design actions can 
be sketched as seen in Figure 6. The diagram shows the 
premises P of design (Axioms, phenomena, decisions 
and quality asessment), the methods/tasks M involved 

~ 
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(dashed boxes), and the result R in form of model, 
controller and indicators. 
From P, M and R, basic logic can be used to define 
generic problems in design (Coyne at al., 1990). The 
conventional controller design process referring to the 
design process description above can be seen as 
producing output following a path emerging from the 
physical level of the plant upwards through the top 
level of the hierarchy and down again through the 
controller "branch", as indicated by the arrow in 
Figure 3. Alternatively. Integrated Design, defined by 
simultaneous design of control and plant, can be 
pictured in the target system by specifying indicators 
and quality constraints first, thereafter emerging from 
top to bottom down through control structure level and 
model structure level to the specification of 
implementation in both plant physics and control 
software. In this case the generic design tasks will have 
a much differelit content (Christensen & Lind, 1993). 
and only few of these models have been published yet. 

Again referring to Figure 6, the formulation of abstract 
models of total design supports the iteration by making 
design decisions and tuning parameters accesible froni 
the end result, thereby increasing the ability to criticise 
the solution and identifying critical input parameters to 
the design. As a numerical processor like MATLAB 
manipulates values for parameters and does not keep 
track of the identifiers for the input eiitities, this is not 
possible at the present state of the art. The cooperation 
of accounting and iterative design and the focus on 
indicators has been covered in an inspiring manner by 
the development of the ANDECS design system, 
(Griibel et al.. 1993). ANDECS provides a numerical 
design environment with macro facilities for design and 
validation specification, and automatic design iterations 
by optimization of user-chosen validation indicators, 
and design history databases. In ANDECS, design steps 
are implemented with a coordinate triple increnienting 
coordinates by the steps a) modification of models, b) 
modification of design parameters and c) modification 
of indicators. 
7lie "statidard problem" of robust control design, see 
e.g. (Francis, 1987). is an example of a flexible basis 
for this kind of considerations. It is important to notice, 
though, that design methods are not only synthesis- 
based optimization, but also comprise trial-and-, 
loop shaping etc., as well as a consisitent theory must 
be abIe to deal will control structure changes. 

5. CACSD Environments with Symbolics 
In the MATLAB family, all design routines are 
implemented hi macro facilities based on a numerical 
matrix computation facility with a command interpreter. 
These tools demand the structure of the inputs to be 
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known implicitly. Thus, compound-type variables from 
complex design methodologies become difficult to 
comprehend. The tendency of the recent years has been 
developnient of graphical interfaces, such that the block 
diagram-like notatim is used as basis for the control 
design. As argued above, representation by symbolics 
is much closer to theory, textbooks and the designer's 
way of thinking. as it manipulates structure. 
Incorporation of symbolics into control design 
environments as f.ex. MATLAB should be done by 
extending tlie numeric routines with the basic services 
(see CACSD framework reference model, Barker et al. 
1993) of a looselv tyue d svmbolic processor: The 
flexibility is retained, and strong typing can be 
implemented by tlie user himself to suit his own needs. 
The compound system could operate either as one 
product, or by a operating system level object-sharing 
workspace with access from otherwise independent 
numeric and a symbolic processing tools, as outlined in 
(Ravn & Szymkat, 1992). Very recently, both symbolics 
products MATHEMATICA and MAPLE have been 
provided with mex-based data aid conunand links to 
MATLAB, which hopefully will make further 
investigations straightforward. 

6. Conclusion 
In investigation of symbolics for control system design, 
the main interest is features provided by symbolics as 
opposed to numeric/graphical environments like 
MATLAB. It is the experience of die investigation 
work presented here, that symbolics can provide much 
new insight into "old" design routines, which especially 
validation for physically based models can profit from. 
Symbolics, graphics and numerics handle different 
aspects of system and design definition, and are all 
needed b control design tools today. It is believed that 
symbolics will offer basic services for structuring the 
design and excution problems to be solved by both 
graphical and tiumerical environments. 
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