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Abstract 
W e  present a proof system for  determining 

satisfaction between processes an a fairly general 
process algebra and assertions of the modal p- 
calculus. The proof system is compositional in 
the structure of processes. I t  extends earlier work 
on compositional reasoning within the modal p- 
calculus and combines it with techniques from 
work on local model checking. The proof system 
is sound for all processes and complete for a class 
of finite-state processes. 

1 Introduction 
The propositional p-calculus of Kozen [lo] which 
was introduced as a powerful extension of propo- 
sitional dynamic logic, has received growing in- 
terest as a logic for concurrent systems. This 
is mainly due to the expressiveness of the logic, 
which is known to subsume many modal and tem- 
poral logics, and the fact that very few opera- 
tors are needed in achieving this: The logic is 
an extension of relativized, minimal modal logic 
K - also known as Hennessy-Milner logic in the 
process algebra community - with minimum and 
maximum fixed points. It is due to this connec- 
tion (explained in Stirling [17]) that we use the 
name the modal p-calculus. 

It is customary to consider Kripke models or, 
equivalently, labelled transition systems as mod- 
els for interpretation of the logic. Since labelled 
transition systems are used in giving operational 
semantics of process languages, it is straightfor- 
ward to view the modal p-calculus as a language 
for expressing properties of processes. Despite the 
expressiveness, it turns out that validity is de- 
cidable for the modal p-calculus, and for finite- 
state processes the problem of deciding satisfac- 
tion between a process and an assertion is decid- 
able too. A range of algorithms and proof systems 
for this problem has been given in the literature, 
e.g. [9, 4, 11, 18, 6, 25, 8, 2, 21, 12, 7, 11. They 
mostly rely on globally or locally computing the 
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underlying transition system. However, what we 
seek here is a method that is compositional in the 
structure of processes, and which does not rely on 
computing the underlying transition system. 

Compositionality is important for at  least the 
following reasons. Firstly, it makes the verifica- 
tion modular, so that when changing part of a sys- 
tem only the verification concerning that particu- 
lar part must be redone. Secondly, when designing 
a system or synthesising a process the composi- 
tionality makes it possible to have undefined parts 
of a process and still be able to reason about it. 
For instance, it might be possible to reveal incon- 
sistencies in the specification or prove that with 
the choices already taken in the design no com- 
ponent supplied for the missing parts will ever be 
able to make the overall system satisfy the orig- 
inal specification. Thirdly, it makes it possible 
to decompose the verification task into potentially 
simpler tasks. Finally, it can make possible the 
reuse of verified components; their previous veri- 
fication can be used to show that they meet the 
requirements on the components of a larger sys- 
tem. 

Our method will be a compositional proof sys- 
tem, sound for arbitrary processes and complete 
for a class of finite-state processes. Earlier work on 
compositional proof systems related to the modal 
p-calculus includes work by Stirling [15, 14, 1 6 ,  
Winskel [23, 24, 26, 27 ,  Larsen and Xinxin ~131, 
Andersen and Winskell31. The proof system pre- 
sented here is along the lines of the work by Stir- 
ling and Winskel, but it extends their early work 
for Hennessy-Milner logic to a proper treatment of 
recursive processes and the full modal p-calculus. 
It also gives new rules for parallel composition 
and the other static operators. Actually, to a cer- 
tain extent, the system can be seen as a result of 
turning the operational reductions of Larsen and 
Xinxin and the syntactic reductions of Andersen 
and Winskel into proof rules. But the match is not 
exact; apart from the new static rules the treat- 
ment of fixed points is closer to the work on local 
model checking [ll, 18, 6 ,  251. 
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t[rec z . t / x ]  3 t’ 
a # *  p i p  a . p % p  P S P ’  a # *  4 - h ‘  a # *  

P + Q % P ’  P + Q % ’  rec x.t 3 t’ 

Figure 1:  Operational rules. 

2 Languages 
The process language has a general parallel com- 
position operator called a product, to x t l ,  that 
allows the components to proceed both syn- 
chronously and asynchronously. Synchronization 
can then be enforced - or disallowed - through a 
restriction operator and synchronized actions can 
be given proper names through a relabelling oper- 
ator. We refrain from giving details of how this 
allows a wide range of parallel operators to be en- 
coded (see for example [22] or [ l ] ) ,  and we stick 
to introducing the language. 

Let Act be a set of basic actions not containing 
the idling action *. The set of composite actions 
Act, is the free *, x-algebra over Act U {*} such 
that * x * = *. We let a,b , .  .. range over ba- 
sic actions, a ,  p, . . . over composite actions, and K 
over sets of composite actions. The set of process 
terms are generated from the grammar: 

t ::= 0 I a.t 1 to + t l  1 to x t l  1 t { E }  1 t [ A  1 
x 1 rec x.t 

The term constructors are called: nil, prefix, sum, 
product, relabelling, restriction, process variable, 
and recursion. The restricting set A is any sub- 
set of Act, containing {*}; the relabelling func- 
tion Z : Act, -+ Act, must be strict on idling 
actions, i.e. 5(*) = *. The operational semantics 
of this process language is given as a labelled tran- 
sition system 7 = ( P ,  Act,, +), where P is the set 
of closed process terms (the notions of open and 
closed terms are as usual) and +c P x Act, x P 
is given as the least relation satisfying the rules of 
figure 1. We shall refer to elements of P simply 
as processes. 

The assertions of the modal p-calculus will be 
given in a negation-free version and we use the 
construction from Winskel [25] of tagging fixed 
points with sets of processes. Thus the assertions 
are constructed from the following grammar: 

A ::= A0 V Ai I A0 A A1 I ( K ) A  I [KIA I 
x I P X { U ) A  I V X W A  

where U P is a set of tags and X ranges over 
a set of assertion variables. The usual tag-free 
fixed points p X . A  and v X . A  are special cases with 
empty tag sets. 

The semantics of assertions [Alp C P is given 
by induction on the structure of A ;  the map p is 
an environment taking all free variables of A to 
subsets of P. For the fixed points we observe that 

the bodies, when considered as functions of X ,  are 
monotonic on the complete lattice (Pow(P),  C )  
and then appeal to the Knaster-Tarski fixed-point 
theorem 191 for supplying a minimum fixed point, 

noted by v: 
denoted b y p, and a maximum fixed point, de- 

P o  v AllP = P o I P  U [AllP 
IIAo A AllP = [Aolp n [AllP 

[(K)A]p = { P E P  13a E K 

[[lc]A]p = { P E P  I V a €  K 

3p’. p % p’ & p’ E [Alp)  

Qp‘. p 3 p’ p’ E [Alp}  
[XIP = P ( X )  

I ~ X W A D ~  = ~ V . ( B A I ~ [ V / X I  \ U )  
[ v X W A l p  = ~ V . ( [ A D P [ V / X ]  U U )  

Satisfaction between a process p and a closed as- 
sertion A is now defined by, p + A ,  iff, p E [Alp  
for all p .  For future reference we define: 

Definition 1 Let S, be the set of sub-term reach- 
able states of the process p .  I.e. the least set of 
states closed under 

( 2 )  P E S P l  

( i i )  if q E S, and q 4 q’ then q’ E S,, 
( i i i )  if q E S, and q’ is a closed subterm of q 

then q’ E S,. 

Let R,, the reachable states of p ,  be the least sub- 
set of S, closed under ( i )  and ( i i ) .  0 

It is not hard to prove that if all recursive terms 
in a process p are regular (i.e. the body is built 
entirely from 0 ,  +, a., x ,  and rec) then S is finite. 
A recursion rec x.t is said to be guar&d if any 
occurrence of x in t is inside a prefix. 

3 The proof system 
The proof system will be presented as “goal- 
oriented” proof rules defining inductively the rela- 
tion kS P x ClAssn between processes and closed 
assertions. The rules naturally fall into three 
classes: Rules that do not involve the process op- 
erators, rules for the dynamic process operators, 
and finally rules for the static process operators. 
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Figure 2: Rules for the boolean connectives, idling 
modalities and fixed points. 

3.1 Rules for the fixed points, boolean 
connectives and idling modalities 

The first class of rules, given in figure 2, only de- 
pend on the structure of assertions. They encom- 
pass rules for the boolean connectives, modalities 
with the idling action and for the fixed points. 
These are straightforward rules that need little 
comment, except for the fixed-point rules. They 
are based on the following observation, originally 
uue LO nuieii, itliu ia~ei- useu as ~ i i e  K ~ Y  s ~ e p  III a 
local model checker by Winskel: 

Lemma 1 Reduction lemma) (Kozen [lo],  
Winskel [25\) For + a monotonic function on a 
powerset Pow(D) with p E D ,  we have 

P E PV.+(V) * P E +(PV.(+(V) \ {PI)), 

P E vV.+(V) * P E +(vV.(+(V) U {PI)). 
(The last holds for an arbitrary set P and inclu- 
sion instead of just for  a singleton; the first not.) 
The right-hand sides of the bi-implications in- 
volve a slightly modified unfolding of the fixed 
points. For the minimum fixed point a single 
element, p ,  is removed in the unfolding; for the 
maximum it is added. The tagged fixed-point as- 
sertions were introduced to make this unfolding 
expressible directly in the logic. Thus the first bi- 
implication shows that p b p X { U } A ,  if and only 
if, p b A [ p X { U , p } A / X ] ,  which shows soundness 
of the rule ( p ) .  Similarly, for the maximum fixed 
point. 

Remark We shall refer to  the rules in the se- 
quel by names constructed from the operators of 

‘An alternative to the tags is to change the proof system 
into a tableau system where a similar effect is achieved by 
giving global success/failure criteria on the proof tree. See 
for example Stirling and Walker [18] for an explanation of 
the relationship between the two approaches. 

a.t I- (a ,  K ) A  
t t - A  0 I- [KIA 

a.t l - p i ~ ] A  a e 

I , rec x.; t-, 
t rec x.t x t- K 

, rec x.; t-] 
t rec x.t x t- K A 

Figure 3: Dynamic process operators. All rules 
assume * K .  

the term and assertion that is involved in the 
rule. When this does not give a unique name we 
add numbers starting from 0. Using this nam- 
ing scheme the rules of fi ure 2 are named (A), 

nally ( v l ) .  0 
3.2 
What is missing now are rules for assertions where 
the top-level operator is a modality which do not 
involve an idling action. These remaining rules 
will depend on the structure of the process term, 
in different ways for the dynamic and the static 
operators. For the dynamic process operators 
they are rather direct consequences of the oper- 
ational semantics, see figure 3, once the following 
is observed for the recursion operator: 

Proposition 1 Assume rec x.t is a closed pro- 
cess term, A a closed assertion, and K a set of 
composite actions not containing *. Then 

(VO), ( V I ) ,  (U*), (O*O),  (?)*1)> (P I ,  (4 and fi- 

Rules for the dynamic operators 

rec x.t + [KIA e t[rec x . t / x ]  + [KIA, 

rec x.t b ( & ) A  U t[rec x . t /x]  b ( K ) A .  

It is important that the top-level assertion is a 
modality: The successor states of rec x.t and its 
unfolded version are syntactically identical (since 
unfolding is the only operational rule for recur- 
sion), and thus satisfies the same set of assertions. 
But rec x.t satisfies v X {  rec x . t }A  whereas this is 
not necessarily the case for t[rec x . t / x] .  

Again we shall refer to  the rules by names con- 
structed from the process operators and assertion 
operators involved. Thus the names for the rules 

3.3 Rules for the static operators 
In order to give rules for the static operators we 
shall extend the assertions with operators express- 
ing the “preimages” of the corresponding process 
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t{z} t [%]A 
t t [ ~ - ‘ ( K ) ] ( A { E } )  

t{z} I- ( % ) A  
t t- (E-l(tc))(A{Z}) 

trh t ( K ) A  
t t ( h n % ) ( A t A )  

Figure 4: Rules for eliminating relabelling and 
restriction from the process, and the three shift 
rules. The rules assume * $ n. 

operators. For relabelling, this mean that we al- 
low assertions like A{=} with the semantic inter- 
pretation 

IIA{=:)DP = {P I P F }  E I[ADd. 

Thus t /= A{=}, if and only if, t{E} + A. Hence, 
we include in the syntax these extended assertions: 

A ::= . . .  1 A{Z}  1 A t h  1 A / t  

The semantic interpretations of the last two oper- 
ators, restriction and quotienting, are: 

I[A t h l P  = {P I P tn E I[ADP} 
IIAltDP = { P  I P x t E IIADP} 

The new assertion operators will be used in giving 
rules for the modalities. For instance, one of the 
rules for relabelling will be 

t{E} t- [%]A 
t t- [E-l(%)](A{E})  

Notice, that  the operator {E} is applied to  an as- 
sertion “guarded” by a box-modality. This box- 
modality can be removed by further application 
of the rules. At some point we might end up with 
{E} being applied at the top-level, and the rule 
we choose to  give for such an assertion is a shift 
rule that shifts the operator back to the process, 
see figure 4. 

Various versions of parallel composition has 
traditionally posed the greatest difficulties in giv- 
ing compositional rules. To get an idea of the 
difficulties, suppose we are confronted with the 
satisfaction problem t o  x tl l- A and we want to 
decompose this to  satisfaction problems for t o  and 
tl without inspecting the structure of to  and t l .  
If we think of t o  x tl as an element of the two- 
dimensional “plane”, P x ’P, the assertion A will 
be some two-dimensional “shape” in this plane. A 
decomposition of A could now be constructed by 
taking fragments A0 and A1 of the two axes, such 
that t o  should satisfy A0 and tl should satisfy Al.  
However, for this to be a complete decomposition, 
valid for all to  and t l ,  we would need to have A 
equal to the product of A0 and Al.  This product 

would always be a “rectangle” - something which 
is certainly not true for arbitrary A. One way to 
get around this problem is to approximate A from 
the inside by a set of pairs of assertions (Ak ,A j )  
forming rectangles, the union of which forms ex- 
actly A. However, as Winskel argues in [27] the 
presence of fixed points can force this to be an 
infinite set; resulting in a poor decomposition.2 

Fortunately, if we are slightly less ambitious 
and allow ourselves to  inspect the structure of 
one of the two components, we can do better. In 
the suggested picture, this corresponds to  the fact 
that if we fix a point on one of the axes, we can 
project to  the other and get a subset of ‘P. The 
task of decomposition is now to find the asser- 
tion expressing this projection. As we shall see 
in section 5, if the component is finite-state, it is 
possible to  directly compute the projected asser- 
tion. But in the rules we will be more general and 
impose no restrictions on finiteness; in fact, the 
rules will be local and for the dynamic operators 
follow very closely the rules of figure 3. The main 
difference is that we are now considering a process 
t’ in a ‘context’ t x - which, however, play no active 
role in the rules; all the rules are guided solely by 
the structure oft‘. 

As before with the idling modalities, we shall 
need some rules that allow actions idling in the 
right component to be taken outside of the modal- 
ities. In order to state these rules we use the auxil- 
iary operation &/(U of quotienting a set of actions 
with respect to  a particular action. This opera- 
tion is defined by %/a  = { p  I p x cx E %}. We 
also use IE \ - x * for the set of actions (Y x p E IC. 

for which p is not *. These rules are given as the 
first three rules of figure 5 .  They are easily seen 
to be sound. The next eight rules of figure 5 are 
the rules for the dynamic operators. 

When the right component t’ is headed by a 
static operator, we simplify the right component 
at the expense of the left. Let the operation l (A)  
reassociate every modality and every tag of the 
form - x  (-x-) in A to the left. Then, we change the 
product t x ( t o  x t l )  to  (t x t o )  x tl and perform the 
corresponding rearrangement on A by replacing 
it by 1(A). Analogously, when t’ is a relabelling 
we will exploit that t x (t’{E}) is equivalent to 
( t  x t’){Id x Z}, where Id is the identity relabelling 
and the product of relabellings Eo x Zl is defined 
by 

The corresponding change on an assertion A is to  
replace every tag of the form - x (-{z}) by a tag 

’An example of a difficult assertion is the assertion B 
from [l] expressing bisimilarity: p x q B, iff, p and g 
are strongly bisimilar. Hence, B forms a diagonal in the 
“plane”. A decomposition would include a rectangle for 
each equivalence class. 
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t x t’ I- [KIA 
t I- [&/*] (A/ t ’ )  t x t’ I- [K \ - x * ] A  

The rules below all assume K / *  = 0 

t x 0 I- [KIA 

t x ( t o  + t i )  I- [KIA 
t x to  I- [KIA t x ti I- [KIA 

t x rec x.t’ I- [ & ] A  
t x t’[rec x.t’/x] I- [KIA 

t x rec x.t’ I- ( n ) A  
t x t’[rec z . t ’ / z ]  I- ( K ) A  

t x (t’{z}) I- A 
( t  x t’){Id x E} I- l p } ( A )  

t x (t’ rA) I- A 
(t x t’) 1 (Act, x A) I- 1 ~ A ( A )  

Figure 5 :  Product rules. We use the abbreviations 
~ / , = { p I p x a E ~ } a n d ~ \ _ x * = { a x p I  
P # *I. 

(-x-){S}. Let l { z } ( A )  be the result of performing 
this operation on A .  

Finally, for restriction we exploit the equiva- 
lence between to  x (tl rA) and ( t o  x t l )  [ (Act ,  x A) 
using the operation 11~(A) to change the tags of A 
from - x (- A) to  (- x -) t (Act, x A).  This gives 
rise to  the last three rules of figure 5 for the static 
operators. 

4 Soundness and completeness 
The rules are sound for arbitrary processes and 
complete for a set of finite-state processes, i.e. pro- 
cesses with only guarded regular recursions. 

Theorem 1 (Soundness) Assume a process t 
and a closed assertion A.  If t I- A can be proven 
using the rules of figure 2, 9, 4 and 5 then t A.  

Central in our proof of completeness will be a 
well-founded relation on assertions: 

Lemma 2 The relation 4 defined on closed as- 
sertions with tags from a finite set S by  

A 4 A’ iff A is a proper subassertion of A’, o r  
A’ a X { U } B  and 
A B [ a X { U , t } B / X ]  for some t U ,  

where U is one of p and U, is well-founded. 

The relation 4 embodies the fact that  the small 
modifications to  the tags when unfolding the fixed 
points is enough to ensure that the fixed-point 
rules can only be applied a finite number of times 
before t E U .  It  captures in a very precise manner 
the reason for termination of model checking al- 
gorithms based on the fixed-point rules ( p ) ,  (v0) 
and ( v l )  as in the works of Stirlin and Walker 
[18], Cleaveland [6] and Winskel [25f 

The proof strategy in proving completeness is 
as follows. Assume a process p with a finite set 
of sub-term reachable states S,. By well-founded 
induction using 4 we show that for all t E S,, if 
t b A then t I- A. When A is of the form [K]B 
or ( K ) B  this will involve inspecting the structure 
of the term t .  Thus we shall show by another 
induction, this time on t ,  how to construct from 
proofs of some tl t- B, .  . . , t ,  I- B where ti is 
less than t and ti b B,  a proof of t I- A. The 
“less than” ordering we use on terms is based on a 
measure w(t) that is roughly “the maximal depth 
to  a prefix, nil or variable in t,” which, however, 
gives more weight to the second component of a 
product than to the first. Hence, simplifying the 
second component a t  the expense of the first, as 
it is done in the static rules, is still considered a 
way of making progress. 

Theorem 2 (Completeness for finite-state 
processes) If p is a process with guarded regular 
recursions then, for all closed assertions A with 
tags in S,, if p b A then p I- A .  

Proofs of this theorem and lemma 2 can be found 
in the appendix. 

To show an example of the usage of the rules, 
we will consider the CCS parallel composition I 
as an abbreviation for (- x -) iA{e}  where A and 
E are as follows. First, the actions Act are sup- 
posed to include a distinguished internal action r 
and the remaining actions are called names. As- 
sociated with each name a is a co-name si; such 
that - forms a bijection on Act \ r. Then, take 
A = { a x s i , a ’ x * , * x a ’ ~ a ~ A c t \ r , a ’ ~ A c t } ,  
and let =(a x si) = r,E(a’ x *) = E(* x a’) = a’ 
and on other actions a ,  E(,) = a. It  is not hard 
to see that ( p  x q)  rA{E} will behave exactly as 
Plq. 

Example This example illustrates how the com- 
positionality facilitates proving a property about 
a process that contain infinite-state components 
- when the infinite-state behaviour is irrelevant 
for the property: Assume p and q rec 2.7.12: + t 
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Figure 6: A proof tree for the example. 

are infinite-state processes (x might be free in t ) .  
We shall consider the process p ( q  and prove that it 
has an infinite r-loop as expressed by the assertion 

Let K. = A n S- ' ( r )  = { U  x a 1 a E Act \ T} U 
{T  x *, * x T } .  The proof tree is given in figure 6. 
Note that in the application of rule ( x  .()), we are 
using ( K .  \ - x *) / r  = {*}. 

5 Reductions 
There is an alternative approach to  composition- 
ality, followed in [3] and to  some extent in [13], 
based on the idea of reductions. A reduction trans- 
forms a satisfaction problem for a composite pro- 
cess op(t1,. . . , t,) I- A into a boolean expression 
over satisfaction problems tl t- A i , .  . . , t ,  t- A, 
for the subterms of the process - independent of 
the structure of these. Simple examples of reduc- 
tions can be derived from: 

v x  { 1 ( T ) X .  

t o  + tl I= [KIA ( t o  I= [KIA) and (tl I= [ + 4 ) ,  
to  + t i  t= (K.)A @ ( t o  t= (&)A)  or (ti t= (K.)A). 

In general, the reductions will be more involved. 
However, for the relabelling and restriction it is 
possible to give quite concise reductions. They 
simply change the modalities (and the tags) of the 
assertion and leave everything else unchanged. In 
the context of our proof rules such a reduction can 
be seen as a means for eliminating the extended 
assertions. I.e. for any assertion A, equivalent as- 
sertions e(A{E})  and e (A  / A )  with { S }  and r A  
removed, can be found. Figure 7 shows these re- 
ductions. An alternative to  the rules ({=}[]) and 
({E}()) could now be 

$g&& 
Thus, no extended assertion will be introduced by 
this new rule. 

If t is a finite-state process, also the quotienting 
A/ t  can be removed by a reduction. To give this 

e ( X { E } )  = X 
e(A0 A Al{E})  = e(Ao a}) A e (A l {E} )  
e(A0 V Al{E}) = e(Ao{a}) V e(Al{E})  

e ( [ ~ . ] A { z } )  = [ Z - l ( ~ . ) ] e ( A { z } )  
e((r;)A E}) = ( Z i ( ~ F ( A { S } )  

e (vX{U}A[E})  = v X {  U {  a}}e (A{E} )  
e (pX{U}A{Z} )  = pX{U{S}}e (A{E} )  

e ( X / A )  = X 
~ ( A o  A Ai / A )  = ~ ( A o  FA) A e(Ai FA) 
e(Ao V Ai t A) = 4Ao t A) V e(Ai t A) 

e([rc]A / A )  = [An &]e(A rA) 
e((K)A IA) = (An K)e(A IA) 

e (vX{U}A rA) = vX{U rA}e(A TA) 
e(l-IX{U)A t A )  = p X { U  tA}e(A FA) 

Figure 7: Reductions for relabellin and restric- 
tion. Recall, U { Z }  = { p  1 p{ET E U }  and 
u t A = { P l P t A E q .  

reduction we need to introduce tagged simultane- 
ous fixed points. Let o be any one of p and v. 
Then the syntax is: 

~xl{~l}...X,{U,}(Al,...,A,) $ X i ,  

abbreviated as o - f { c } A  J, X i .  The semantics 
should be clear. The reduction is given in figure 
8. An alternative rule for product could now be 

t o  x t i  k A 
t o  t- e ( A / t l )  

which, again, does not introduce any extended as- 
sertion. The price is, that the new rule is only 
applicable for finite-state processes, and we must 
now consider simultaneous fixed points. The si- 
multaneous fixed points can be converted into sim- 
ple fixed points using the Scott-BekiE principle [5] ,  
thereby potentially increasing the size of the as- 
sertion considerably. A more appealing approach 
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Figure 8: Reduction for quotienting. Recall, U / p  = { t  I t x p E U } .  

would be to extend the fixed-point rules to  si- 
multaneous fixed points. Then, for example, ( p )  
should be replaced by 

where 6 = ( U l , .  . . , Ui-1, U U { t } ,  Ui+l, .  . . , Un) 
and the substitution [ p 2 { 6 ’ } L / d ]  is an abbre- 
viation for [ p r ? { C ’ ) i  -1 X1/X1,.  . . , p2{6j’}A -1 
Xn(!kting the above reductions correct is an easy 
generalisation to  tagged fixed points of the proofs 
in [3] and [l] . )  

6 Conclusion 
The idea of compositionality being “not looking 
into the structure of subprocesses” could be for- 
malised using a set of “meta-variables” ?, $, . . . 
distinct from the recursion variables. We should 
think of a variable 2 as being a yet undefined pro- 
cess - a “hole” in the term. Any proof carried out 
with such variables appearing in the terms, would 
then be valid for all instantiations of the variable 
- capturing the reusability of proofs. However, 
in defining the substitution on terms with meta- 
variables, a little care must be taken. In, for ex- 
ample, rec x.a.6 we have the undefined process 
$, which we might a t  some point decide to in- 
stantiate to the term x.  Thus we would require 
(rec x.u.$)[x/$] = rec x.a.x. (Also, a substitution 
like $[rec x.a.$/x] cannot be reduced.) 

It is interesting that the rules for recursion 
in combination with the tagging could actually 
help us in finding appropriate instantiations of 
meta-variables. Consider as an example the term 
rec z.a.6 and the assertion vX{}(a)X expressing 
the existence of an infinite a-path. Using, in se- 
quence, the rules (vl),(rec()),(.()) we will end up 
with 

$[rec x.a.$/x] I- vX{rec x.a.$}(a)X. 

Suppose we would try to  apply rule (v0) in prov- 
ing this valid. Then we would have to solve the 
equation $[rec x.a.$/x] = rec x.a.6. A solution 
is to substitute x for 9, arriving at  rec x.a.x I- 

vX{rec x.a.x}(a)X, which by rule (v0) is valid.3 
Returning to the proof system, we notice that 

compared to the earlier work of Stirling, Winskel, 
and Andersen and Winskel, the rules are few and 
quite simple. In particular, only three simple rules 
are needed to  deal with fixed-point assertions, two 
to deal with recursive processes. 

A useful amendment to  the system is the pos- 
sibility of relaxing the condition in (v0) that t 
should be an element of the tags of the maximum 
fixed-point to  simply be strongly bisimilar to  one 
of the tags. This amendment is straightforward 
since satisfaction in the modal p-calculus is invari- 
ant under strong bisimulation, provided the tags 
are interpreted as equivalences classes. Another 
useful amendment would then be to  combine the 
proof system with a proof system for bisimulation 
equivalence on processes. 

Appendix. Proofs 
This appendix contains proofs of lemma 2 and the- 
orem 2. 

Lemma 2 The relation + defined on closed as- 
sertions with tags from a finite set S by  

A 4 A‘ if A is a proper subassertion of A’, or 
A’ E a X { U } B  and 
A E B[aX{U, t } B / X ]  for some t 

where 0 is one of p and v, is well-founded. 
Proof: Take the predicate Q(A)  on closed asser- 
tions A with tags in S to  be defined by 

Q(A)  all +-decreasing sequences 

U ,  

from A are finite. 

Extend this to open terms by 

&+(A) edef 
VO : F V ( A )  -+ ClAssn. 
(VX E Fv(A) .Q(O(x) ) )  * Q(A[ol). 

3The reduction for recursion given in [3] would, using 
some simplification steps, transform the satisfaction prob- 
lem rec x.a.6 t v X . ( a ) X  into the problem 6 t- v X . ( ( a ) X  V 
{x}), where {x} is an assertion true at the variable x ~ 

called a state identifier there. Thus it can immediately 
be seen that substituting I for 6 yields a solution. That 
reduction, however, is rather more involved and does not 
seem to give rise easily to a corresponding proof rule. 
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Observe that if A is closed Q+(A) is simply 
Q(A).  The proof is by well-founded induction on 
a slightly different relation +’ defined by 

A’ +’ A iff A‘ is a proper subassertion of A,  or 
A a X { U } B  and 
A’ = a X { U ,  t }B  for some t @ U .  

Since tags belong to  the finite set S this rela- 
tion is easily seen to be well-founded. Thus as- 
sume for all A’ +’ A,  Q+(A) holds and VX E 
FV(A).Q(O(X)) .  We consider the possible first 
successor A’ in a +-decreasing sequence A[O] + A’ 
and argue that any continuation of the sequence 
must be finite. We consider the two possible rea- 
sons for A[8] % A’. 

Case 1. A’ is a proper subassertion of A[@]. Then 
either there exists a subassertion A’‘ of A such 
that A”[O] A’, or A‘ is a subassertion of some 
O(X). In the first case the result follows from the 
induction hwothesis since A” 4 A: in the sec- 
ond it follows immediately from the’ assumption 
Q (e(x)). 
Case 2. In this case, A’ G B[oX{U, t } B / X ]  and 
A[O] = a X { U } B .  Either A Y and O(Y) = 
a X { U } B  or A oX{U}(B’[O]) for some B’. In 
the first case the result follows from the assump- 
tion of Q(O(Y)); in the second it can be shown 
from the induction hypothesis as follows. Since 
B 

B’[O][aX{U,t}(B’[8])/X] z B’[aX{U,t}B’/X][B] 

B’[O] and X @ F V ( A ) ,  we can write A’ as 

Hence, since aX{U,t}B’ +I aX{U}B’ it 
follows from the induction hypothesis that 
Q+(aX{U, t}B’) holds. 
Take O’(Y) = O(Y) for Y # X and O’(X) = 
oX{U,t}(B’[O]).  Thus we have just argued 
Q(O’(X)) and surely Q(O’(Y)) for all Y # X .  
Since B’ is a subassertion of A and therefore 
B’ 4 A we can a ain use the induction hypothesis 
to  conclude Q(Ab] ) .  

0 
Let the measure w ( t )  be defined by structural in- 
duction on terms t by 

w(0) = W(.) = 0 
w(a.t) = 0 

4 t o  + t l )  = 1 + max{w(to),w(t1)} 

w(t0 x t l )  = 1 + w(t0) + 2W(tl). 

w(rec x. t)  = 1 + w(t)  
w(t{Z}) = w(t  [A)  = 1 + w(t) 

We can now prove the following lemma: 
Lemma 3 Assume a closed assertion B and a 
closed term t with guarded, regular recursions. 
If t + [n]B ( t  + (n)B) then there exists some 

t l , .  . . , t ,  with t ,  b B and from tl t- B , .  . . , t ,  t- B 
there is a proof oft I- [n]B ( t  t- ( IE)B) .  
Proof: We prove the claim by showing Vt.P(t) us- 
ing well-founded induction on t with the ordering 
induced by w ( t )  where 

P ( t )  edef for all closed, extended assertions A,  
if t + [KIA then 

3t1,. . . , t,. t ,  + A,  and 
t t- [KIA can be proven from {t ,  t- A}%.  

We shall only consider the case for the box- 
modality, the case of diamond-modality is similar. 
Thus assume for all t’ with w(t’) < w t )  that P(t’) 
holds and assume further that t + [IE\A. We shall 
establish P(t )  on these assumptions by consider- 
ing the possible forms of t .  

However, consider first the case where * E n. 
Then from the semantics we observe that t + A 
and t + [n \ *]A.  The first is already on the re- 
quired form hence take t l  = t ;  for t + [n \ *]A  the 
steps below assuming * # K provides the required 
remaining tz ,  . . . , t ,  to establish P(t )  using rule 
(I*). Thus assume in the sequel * # IE.  

t 0 .  Immediate from rule ( O [ ] ) .  
t at’ .  If a E n then t’ b A and rule (.IO) gives 
a proof of a.t’ t- [KIA from a proof oft’  t- A. This 
shows P ( t )  in this case. 
If a @ n then rule ( . [ ]1 )  immediately gives a proof 
of at’ I- [KIA showing P ( t )  in this case. 
t to  + tl . It follows from the semantics of asser- 
tions that t o  [KIA and tl [KIA, hence since 
w(t0) < w ( t )  and w(t1) < w(trif follows by induc- 
tion that there exists t:, . . . , t;;“ and t:, . . . , t; with 
ti  + A and ti b A such that proofs of t o  t- A and 
tl t- A can be constructed from proofs of ti  t- A 
and ti t- A. Thus using rule (+U) we can get a 
proof of t o  + tl I- A completing this case. 
t E rec s.t’. It  follows from proposition 1 that 
t‘[rec x.t’/x] + [KIA. Now, since all recur- 
sions are guarded and regular w(t’[rec x.t’/x]) < 
w(rec x.t’) hence by the induction hypothesis 
there exists tl + A, .  . . , t ,  b A such that a proof 
of t’[rec x.t’/s] t- [KIA can be constructed from 
proofs of t ,  t- A. Applying rule (reco) to  such a 
proof we have shown P ( t )  in this case. 
t G t’{E}. It follows from downwards soundness 
of rule ({E}[]) that t’ + [E-’(tc)](A{E}). Since 
w(t’)  < w ( t )  it follows by induction that there ex- 
ists t i , .  . . , tk  such that t’, + A{E} and that from 
proofs of t’, t- A{E} we can construct a proof of 
t’ I- [E-’(n)](A{E}).  Now, to  extend this to a 
proof of t’{E} I- [KIA first take t ,  t : {E} .  Hence 
from proofs oft, t- A, i.e. t:{E} I- A,  we get proofs 
of t’, t- A{=} using rule ( { E } ) .  Finally, using rule 
( { E } [ ] )  we get a proof of t’{E} t- [KIA from a proof 
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of t’ t [Z-l(~)](A{E}) which as we have just ar- 
gued can be proven from t~ t A, .  . . , t ,  t A. 
t = t’ r A. As above but using rules ( r  A) and 
( t  An). 
t to  x t l .  

If K / *  # 8 we can remove the set ( K / * )  x 
{*} by applying rule (xu*) and proceed 
as below - exactly like in the case of 
* E K considered in the beginning of 
the proof. Hence, in the sequel assume 
K / *  = 8 and consider the possible forms 
of t l .  
tl 
rec s.t’. Analogous to the cases above. 
See the discussion in section 3.3 about 
the relationship between the product 
dynamic rules and the dynamic rules. 
tl = ti x ty. A little bit of arithmetic 

0 ,  tl 3 at’, tl = t; + ty, tl 

shows w((to x t i )  x ty) < w(t ) :  
w((t0 x t i )  x ty) 

= 
= 
= 

1 + w(t0 x t i )  + 2w(t:’) 
1 + (1 + w(t0) + 2w(t’,)) + 2w(tY) 
1 + w(t0) + 1 + 2w(t;) + 2w(ty) 
1 + w(t0) + 2(1 + w(ti)  + 2w(t“)) 
w(t0 x (ti x t y ) )  = w(t) 

< 
= 

Thus P( t )  follows from the induction 
hypothesis and rule ( x  x). 

tl = ti{=}. As above we compute: 

w((t0 x tl){E}) 
= 
= 

1 + w(t0 x t l )  
1 + (1 + w(t0) + 2w(t1)) 
1 + w(t0)  + 2(1 + w(t1)) < 

= w(to x ( t l { Z } ) )  
Thus P(t)  follows from the induction 
hypothesis and rule (x  {E}). 

tl ti rA. As above. 

0 
The proof of completeness now follows by well- 
founded induction on the relation +: 
Theorem 2 (Completeness for finite-state 
processes) If p is a process with guarded regu- 
lar recursions then for all closed assertions A with 
tags in S,, 

p k A  3 p t A .  

Proof: Let Q(A) be defined on closed asseri 
with tags in S, by 

Q(A) ede, V t  E S,. t b A + t t A. 

We prove Q(A) for all closed assertions with 
in S, by induction on +. Hence assume Q(A’ 
all A’ + A. 

We consider the potential forms of A. 

ons 

ags 
for 

A = X .  Impossible since A is assumed to be 
closed. 
A A0 A AI .  Since t + A0 A A1 implies t + A0 
and t AI,  and, moreover, A0 + A, and A1 + A 
the result follows from the induction hypothesis 
applying rule (A). 

A f A0 V A l .  Since t + A0 V A1 implies t + A0 
or t + AI,  and, moreover, A0 + A, and A1 + A 
the result follows from the induction hypothesis 
applying either rule (VO) or (Vl). 
A pX{U}B. From lemma 1 it follows that if 
t k pX{U}B then t k B [ p X { U ,  t}B/X] and as 
it can easily be seen from the semantics of tagged 
minimum fixed points, t # U .  Thus rule p) 
can be applied to yield a proof of t I- p X { U ( ) B  
from a proof of t t B[pX{U,t}B/X]. Since 
B [ p X { U ,  t}B/X] + p X { U } B  we have by the in- 
duction hypothesis a proof of B [ p X { U ,  t } B / X ]  
completing this case. 
A = v X  U}B. If t E U ,  rule (v0) immedi- 
ately yiel 6 s a proof of t I- vX{U}B. If t 
U but t + v X { U } B  if follows from lemma 
1 that t k B[vX{U,t}B/X] thus rule (vl) 
gives a proof of t I- v X { U } B  from a proof of 
t t B[vX{U, t}B/X]. Since B[vX{U, t}B/X] + 
uX{U}B we have by the induction hypothesis a 
proof of B[pX{U, t}B/X] completing this case. 
A E [ K B ,  A = ( K ) B .  Assuming t + [K]B it 

such that ti + B and t [K]B can be proven 
from proofs of ti I- B .  However, since B + [K]B 
it follows from the induction hypothesis that such 
proofs do indeed exist, completing the case for the 
box-modality. The case for the diamond-modality 
is similar. 

0 
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