

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

A compositional proof system for the modal -calculus

Andersen, Henrik Reif; Stirling, C.; Winskel,, G.

Published in:
Proceedings of the symposium of Logic in Computer Science

Link to article, DOI:
10.1109/LICS.1994.316076

Publication date:
1994

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Andersen, H. R., Stirling, C., & Winskel, G. (1994). A compositional proof system for the modal -calculus. In
Proceedings of the symposium of Logic in Computer Science (pp. 144-153). IEEE. DOI:
10.1109/LICS.1994.316076

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/LICS.1994.316076
http://orbit.dtu.dk/en/publications/a-compositional-proof-system-for-the-modal-calculus(a01e5c08-0575-4644-bd03-636b1a6c7349).html

A Compositional Proof System for the
Modal p-Calculus

Henrik Reif Andersen* Colin Stirling Glynn Winskel

Department of Computer Science
Technical University of Denmark University of Edinburgh Aarhus University

DK-2800 Lyngby, Denmark

Lab. for Foundations of Comp. Sc.

Edinburgh EH9 352, UK

BRICS! Comp. Sc. Dept.

DK-8000 Aarhus C, Denmark
Emai l : hra@id.dtu.dk E-mail: cpsQdcs.edinburgh.ac.uk E-mail: gwinskelQdaimi.aau.dk

Abstract
W e present a proof system for determining

satisfaction between processes an a fairly general
process algebra and assertions of the modal p-
calculus. The proof system is compositional in
the structure of processes. I t extends earlier work
on compositional reasoning within the modal p-
calculus and combines it with techniques from
work on local model checking. The proof system
is sound for all processes and complete for a class
of finite-state processes.

1 Introduction
The propositional p-calculus of Kozen [lo] which
was introduced as a powerful extension of propo-
sitional dynamic logic, has received growing in-
terest as a logic for concurrent systems. This
is mainly due to the expressiveness of the logic,
which is known to subsume many modal and tem-
poral logics, and the fact that very few opera-
tors are needed in achieving this: The logic is
an extension of relativized, minimal modal logic
K - also known as Hennessy-Milner logic in the
process algebra community - with minimum and
maximum fixed points. It is due to this connec-
tion (explained in Stirling [17]) that we use the
name the modal p-calculus.

It is customary to consider Kripke models or,
equivalently, labelled transition systems as mod-
els for interpretation of the logic. Since labelled
transition systems are used in giving operational
semantics of process languages, it is straightfor-
ward to view the modal p-calculus as a language
for expressing properties of processes. Despite the
expressiveness, it turns out that validity is de-
cidable for the modal p-calculus, and for finite-
state processes the problem of deciding satisfac-
tion between a process and an assertion is decid-
able too. A range of algorithms and proof systems
for this problem has been given in the literature,
e.g. [9, 4, 11, 18, 6, 25, 8, 2, 21, 12, 7, 11. They
mostly rely on globally or locally computing the

*Supported by the Danish Technical Research Council.
tBasic Research in Computer Science, Centre of the

Danish National Research Foundation.

underlying transition system. However, what we
seek here is a method that is compositional in the
structure of processes, and which does not rely on
computing the underlying transition system.

Compositionality is important for at least the
following reasons. Firstly, it makes the verifica-
tion modular, so that when changing part of a sys-
tem only the verification concerning that particu-
lar part must be redone. Secondly, when designing
a system or synthesising a process the composi-
tionality makes it possible to have undefined parts
of a process and still be able to reason about it.
For instance, it might be possible to reveal incon-
sistencies in the specification or prove that with
the choices already taken in the design no com-
ponent supplied for the missing parts will ever be
able to make the overall system satisfy the orig-
inal specification. Thirdly, it makes it possible
to decompose the verification task into potentially
simpler tasks. Finally, it can make possible the
reuse of verified components; their previous veri-
fication can be used to show that they meet the
requirements on the components of a larger sys-
tem.

Our method will be a compositional proof sys-
tem, sound for arbitrary processes and complete
for a class of finite-state processes. Earlier work on
compositional proof systems related to the modal
p-calculus includes work by Stirling [15, 14, 1 6 ,
Winskel [23, 24, 26, 27 , Larsen and Xinxin ~131,
Andersen and Winskell31. The proof system pre-
sented here is along the lines of the work by Stir-
ling and Winskel, but it extends their early work
for Hennessy-Milner logic to a proper treatment of
recursive processes and the full modal p-calculus.
It also gives new rules for parallel composition
and the other static operators. Actually, to a cer-
tain extent, the system can be seen as a result of
turning the operational reductions of Larsen and
Xinxin and the syntactic reductions of Andersen
and Winskel into proof rules. But the match is not
exact; apart from the new static rules the treat-
ment of fixed points is closer to the work on local
model checking [ll, 18, 6 , 251.

1043-687V94 $3.00 0 1994 IEEE
144

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:51:26 UTC from IEEE Xplore. Restrictions apply.

http://cpsQdcs.edinburgh.ac.uk

t[rec z . t / x] 3 t’
a # * p i p a . p % p P S P ’ a # * 4 - h ‘ a # *

P + Q % P ’ P + Q % ’ rec x.t 3 t’

Figure 1: Operational rules.

2 Languages
The process language has a general parallel com-
position operator called a product, to x t l , that
allows the components to proceed both syn-
chronously and asynchronously. Synchronization
can then be enforced - or disallowed - through a
restriction operator and synchronized actions can
be given proper names through a relabelling oper-
ator. We refrain from giving details of how this
allows a wide range of parallel operators to be en-
coded (see for example [22] or [l]) , and we stick
to introducing the language.

Let Act be a set of basic actions not containing
the idling action *. The set of composite actions
Act, is the free *, x-algebra over Act U {*} such
that * x * = *. We let a,b , . .. range over ba-
sic actions, a , p, . . . over composite actions, and K
over sets of composite actions. The set of process
terms are generated from the grammar:

t ::= 0 I a.t 1 to + t l 1 to x t l 1 t { E } 1 t [A 1
x 1 rec x.t

The term constructors are called: nil, prefix, sum,
product, relabelling, restriction, process variable,
and recursion. The restricting set A is any sub-
set of Act, containing {*}; the relabelling func-
tion Z : Act, -+ Act, must be strict on idling
actions, i.e. 5(*) = *. The operational semantics
of this process language is given as a labelled tran-
sition system 7 = (P , Act,, +), where P is the set
of closed process terms (the notions of open and
closed terms are as usual) and +c P x Act, x P
is given as the least relation satisfying the rules of
figure 1. We shall refer to elements of P simply
as processes.

The assertions of the modal p-calculus will be
given in a negation-free version and we use the
construction from Winskel [25] of tagging fixed
points with sets of processes. Thus the assertions
are constructed from the following grammar:

A ::= A0 V Ai I A0 A A1 I (K) A I [KIA I
x I P X { U) A I V X W A

where U P is a set of tags and X ranges over
a set of assertion variables. The usual tag-free
fixed points p X . A and v X . A are special cases with
empty tag sets.

The semantics of assertions [Alp C P is given
by induction on the structure of A ; the map p is
an environment taking all free variables of A to
subsets of P. For the fixed points we observe that

the bodies, when considered as functions of X , are
monotonic on the complete lattice (Pow(P), C)
and then appeal to the Knaster-Tarski fixed-point
theorem 191 for supplying a minimum fixed point,

noted by v:
denoted b y p, and a maximum fixed point, de-

P o v AllP = P o I P U [AllP
IIAo A AllP = [Aolp n [AllP

[(K)A]p = { P E P 13a E K

[[lc]A]p = { P E P I V a € K

3p’. p % p’ & p’ E [Alp)

Qp‘. p 3 p’ p’ E [Alp}
[XIP = P (X)

I ~ X W A D ~ = ~ V . (B A I ~ [V / X I \ U)
[v X W A l p = ~ V . ([A D P [V / X] U U)

Satisfaction between a process p and a closed as-
sertion A is now defined by, p + A , iff, p E [Alp
for all p . For future reference we define:

Definition 1 Let S, be the set of sub-term reach-
able states of the process p . I.e. the least set of
states closed under

(2) P E S P l

(i i) if q E S, and q 4 q’ then q’ E S,,
(i i i) if q E S, and q’ is a closed subterm of q

then q’ E S,.

Let R,, the reachable states of p , be the least sub-
set of S, closed under (i) and (i i) . 0

It is not hard to prove that if all recursive terms
in a process p are regular (i.e. the body is built
entirely from 0 , +, a., x , and rec) then S is finite.
A recursion rec x.t is said to be guar&d if any
occurrence of x in t is inside a prefix.

3 The proof system
The proof system will be presented as “goal-
oriented” proof rules defining inductively the rela-
tion kS P x ClAssn between processes and closed
assertions. The rules naturally fall into three
classes: Rules that do not involve the process op-
erators, rules for the dynamic process operators,
and finally rules for the static process operators.

145

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:51:26 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Rules for the boolean connectives, idling
modalities and fixed points.

3.1 Rules for the fixed points, boolean
connectives and idling modalities

The first class of rules, given in figure 2, only de-
pend on the structure of assertions. They encom-
pass rules for the boolean connectives, modalities
with the idling action and for the fixed points.
These are straightforward rules that need little
comment, except for the fixed-point rules. They
are based on the following observation, originally
uue LO nuieii, itliu ia~ei- useu as ~ i i e K ~ Y s ~ e p III a
local model checker by Winskel:

Lemma 1 Reduction lemma) (Kozen [lo],
Winskel [25\) For + a monotonic function on a
powerset Pow(D) with p E D , we have

P E PV.+(V) * P E +(PV.(+(V) \ {PI)),

P E vV.+(V) * P E +(vV.(+(V) U {PI)).
(The last holds for an arbitrary set P and inclu-
sion instead of just for a singleton; the first not.)
The right-hand sides of the bi-implications in-
volve a slightly modified unfolding of the fixed
points. For the minimum fixed point a single
element, p , is removed in the unfolding; for the
maximum it is added. The tagged fixed-point as-
sertions were introduced to make this unfolding
expressible directly in the logic. Thus the first bi-
implication shows that p b p X { U } A , if and only
if, p b A [p X { U , p } A / X] , which shows soundness
of the rule (p) . Similarly, for the maximum fixed
point.

Remark We shall refer to the rules in the se-
quel by names constructed from the operators of

‘An alternative to the tags is to change the proof system
into a tableau system where a similar effect is achieved by
giving global success/failure criteria on the proof tree. See
for example Stirling and Walker [18] for an explanation of
the relationship between the two approaches.

a.t I- (a , K) A
t t - A 0 I- [KIA

a.t l - p i ~] A a e

I , rec x.; t-,
t rec x.t x t- K

, rec x.; t-]
t rec x.t x t- K A

Figure 3: Dynamic process operators. All rules
assume * K .

the term and assertion that is involved in the
rule. When this does not give a unique name we
add numbers starting from 0. Using this nam-
ing scheme the rules of fi ure 2 are named (A),

nally (v l) . 0
3.2
What is missing now are rules for assertions where
the top-level operator is a modality which do not
involve an idling action. These remaining rules
will depend on the structure of the process term,
in different ways for the dynamic and the static
operators. For the dynamic process operators
they are rather direct consequences of the oper-
ational semantics, see figure 3, once the following
is observed for the recursion operator:

Proposition 1 Assume rec x.t is a closed pro-
cess term, A a closed assertion, and K a set of
composite actions not containing *. Then

(VO), (V I) , (U*), (O*O), (?)*1)> (P I , (4 and fi-

Rules for the dynamic operators

rec x.t + [KIA e t[rec x . t / x] + [KIA,

rec x.t b (&) A U t[rec x . t /x] b (K) A .

It is important that the top-level assertion is a
modality: The successor states of rec x.t and its
unfolded version are syntactically identical (since
unfolding is the only operational rule for recur-
sion), and thus satisfies the same set of assertions.
But rec x.t satisfies v X { rec x . t }A whereas this is
not necessarily the case for t[rec x . t / x] .

Again we shall refer to the rules by names con-
structed from the process operators and assertion
operators involved. Thus the names for the rules

3.3 Rules for the static operators
In order to give rules for the static operators we
shall extend the assertions with operators express-
ing the “preimages” of the corresponding process

146

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:51:26 UTC from IEEE Xplore. Restrictions apply.

t{z} t [%]A
t t [~ - ‘ (K)] (A { E })

t{z} I- (%) A
t t- (E-l(tc))(A{Z})

trh t (K) A
t t (h n %) (A t A)

Figure 4: Rules for eliminating relabelling and
restriction from the process, and the three shift
rules. The rules assume * $ n.

operators. For relabelling, this mean that we al-
low assertions like A{=} with the semantic inter-
pretation

IIA{=:)DP = {P I P F } E I[ADd.

Thus t /= A{=}, if and only if, t{E} + A. Hence,
we include in the syntax these extended assertions:

A ::= . . . 1 A{Z} 1 A t h 1 A / t

The semantic interpretations of the last two oper-
ators, restriction and quotienting, are:

I[A t h l P = {P I P tn E I[ADP}
IIAltDP = { P I P x t E IIADP}

The new assertion operators will be used in giving
rules for the modalities. For instance, one of the
rules for relabelling will be

t{E} t- [%]A
t t- [E-l(%)](A{E})

Notice, that the operator {E} is applied to an as-
sertion “guarded” by a box-modality. This box-
modality can be removed by further application
of the rules. At some point we might end up with
{E} being applied at the top-level, and the rule
we choose to give for such an assertion is a shift
rule that shifts the operator back to the process,
see figure 4.

Various versions of parallel composition has
traditionally posed the greatest difficulties in giv-
ing compositional rules. To get an idea of the
difficulties, suppose we are confronted with the
satisfaction problem t o x tl l- A and we want to
decompose this to satisfaction problems for t o and
tl without inspecting the structure of to and t l .
If we think of t o x tl as an element of the two-
dimensional “plane”, P x ’P, the assertion A will
be some two-dimensional “shape” in this plane. A
decomposition of A could now be constructed by
taking fragments A0 and A1 of the two axes, such
that t o should satisfy A0 and tl should satisfy Al.
However, for this to be a complete decomposition,
valid for all to and t l , we would need to have A
equal to the product of A0 and Al. This product

would always be a “rectangle” - something which
is certainly not true for arbitrary A. One way to
get around this problem is to approximate A from
the inside by a set of pairs of assertions (Ak ,A j)
forming rectangles, the union of which forms ex-
actly A. However, as Winskel argues in [27] the
presence of fixed points can force this to be an
infinite set; resulting in a poor decomposition.2

Fortunately, if we are slightly less ambitious
and allow ourselves to inspect the structure of
one of the two components, we can do better. In
the suggested picture, this corresponds to the fact
that if we fix a point on one of the axes, we can
project to the other and get a subset of ‘P. The
task of decomposition is now to find the asser-
tion expressing this projection. As we shall see
in section 5, if the component is finite-state, it is
possible to directly compute the projected asser-
tion. But in the rules we will be more general and
impose no restrictions on finiteness; in fact, the
rules will be local and for the dynamic operators
follow very closely the rules of figure 3. The main
difference is that we are now considering a process
t’ in a ‘context’ t x - which, however, play no active
role in the rules; all the rules are guided solely by
the structure oft‘.

As before with the idling modalities, we shall
need some rules that allow actions idling in the
right component to be taken outside of the modal-
ities. In order to state these rules we use the auxil-
iary operation &/(U of quotienting a set of actions
with respect to a particular action. This opera-
tion is defined by %/a = { p I p x cx E %}. We
also use IE \ - x * for the set of actions (Y x p E IC.

for which p is not *. These rules are given as the
first three rules of figure 5 . They are easily seen
to be sound. The next eight rules of figure 5 are
the rules for the dynamic operators.

When the right component t’ is headed by a
static operator, we simplify the right component
at the expense of the left. Let the operation l (A)
reassociate every modality and every tag of the
form - x (-x-) in A to the left. Then, we change the
product t x (t o x t l) to (t x t o) x tl and perform the
corresponding rearrangement on A by replacing
it by 1(A). Analogously, when t’ is a relabelling
we will exploit that t x (t’{E}) is equivalent to
(t x t’){Id x Z}, where Id is the identity relabelling
and the product of relabellings Eo x Zl is defined
by

The corresponding change on an assertion A is to
replace every tag of the form - x (-{z}) by a tag

’An example of a difficult assertion is the assertion B
from [l] expressing bisimilarity: p x q B, iff, p and g
are strongly bisimilar. Hence, B forms a diagonal in the
“plane”. A decomposition would include a rectangle for
each equivalence class.

147

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:51:26 UTC from IEEE Xplore. Restrictions apply.

t x t’ I- [KIA
t I- [&/*] (A/ t ’) t x t’ I- [K \ - x *] A

The rules below all assume K / * = 0

t x 0 I- [KIA

t x (t o + t i) I- [KIA
t x to I- [KIA t x ti I- [KIA

t x rec x.t’ I- [&] A
t x t’[rec x.t’/x] I- [KIA

t x rec x.t’ I- (n) A
t x t’[rec z . t ’ / z] I- (K) A

t x (t’{z}) I- A
(t x t’){Id x E} I- l p } (A)

t x (t’ rA) I- A
(t x t’) 1 (Act, x A) I- 1 ~ A (A)

Figure 5 : Product rules. We use the abbreviations
~ / , = { p I p x a E ~ } a n d ~ \ _ x * = { a x p I
P # *I.

(-x-){S}. Let l { z } (A) be the result of performing
this operation on A .

Finally, for restriction we exploit the equiva-
lence between to x (tl rA) and (t o x t l) [(Act , x A)
using the operation 11~(A) to change the tags of A
from - x (- A) to (- x -) t (Act, x A). This gives
rise to the last three rules of figure 5 for the static
operators.

4 Soundness and completeness
The rules are sound for arbitrary processes and
complete for a set of finite-state processes, i.e. pro-
cesses with only guarded regular recursions.

Theorem 1 (Soundness) Assume a process t
and a closed assertion A. If t I- A can be proven
using the rules of figure 2, 9, 4 and 5 then t A.

Central in our proof of completeness will be a
well-founded relation on assertions:

Lemma 2 The relation 4 defined on closed as-
sertions with tags from a finite set S by

A 4 A’ iff A is a proper subassertion of A’, o r
A’ a X { U } B and
A B [a X { U , t } B / X] for some t U ,

where U is one of p and U, is well-founded.

The relation 4 embodies the fact that the small
modifications to the tags when unfolding the fixed
points is enough to ensure that the fixed-point
rules can only be applied a finite number of times
before t E U . It captures in a very precise manner
the reason for termination of model checking al-
gorithms based on the fixed-point rules (p) , (v0)
and (v l) as in the works of Stirlin and Walker
[18], Cleaveland [6] and Winskel [25f

The proof strategy in proving completeness is
as follows. Assume a process p with a finite set
of sub-term reachable states S,. By well-founded
induction using 4 we show that for all t E S,, if
t b A then t I- A. When A is of the form [K]B
or (K) B this will involve inspecting the structure
of the term t . Thus we shall show by another
induction, this time on t , how to construct from
proofs of some tl t- B, . . . , t , I- B where ti is
less than t and ti b B, a proof of t I- A. The
“less than” ordering we use on terms is based on a
measure w(t) that is roughly “the maximal depth
to a prefix, nil or variable in t,” which, however,
gives more weight to the second component of a
product than to the first. Hence, simplifying the
second component a t the expense of the first, as
it is done in the static rules, is still considered a
way of making progress.

Theorem 2 (Completeness for finite-state
processes) If p is a process with guarded regular
recursions then, for all closed assertions A with
tags in S,, if p b A then p I- A .

Proofs of this theorem and lemma 2 can be found
in the appendix.

To show an example of the usage of the rules,
we will consider the CCS parallel composition I
as an abbreviation for (- x -) iA{e} where A and
E are as follows. First, the actions Act are sup-
posed to include a distinguished internal action r
and the remaining actions are called names. As-
sociated with each name a is a co-name si; such
that - forms a bijection on Act \ r. Then, take
A = { a x s i , a ’ x * , * x a ’ ~ a ~ A c t \ r , a ’ ~ A c t } ,
and let =(a x si) = r,E(a’ x *) = E(* x a’) = a’
and on other actions a , E(,) = a. It is not hard
to see that (p x q) rA{E} will behave exactly as
Plq.

Example This example illustrates how the com-
positionality facilitates proving a property about
a process that contain infinite-state components
- when the infinite-state behaviour is irrelevant
for the property: Assume p and q rec 2.7.12: + t

148

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:51:26 UTC from IEEE Xplore. Restrictions apply.

Figure 6: A proof tree for the example.

are infinite-state processes (x might be free in t) .
We shall consider the process p (q and prove that it
has an infinite r-loop as expressed by the assertion

Let K. = A n S- ' (r) = { U x a 1 a E Act \ T} U
{T x *, * x T } . The proof tree is given in figure 6.
Note that in the application of rule (x .()), we are
using (K . \ - x *) / r = {*}.

5 Reductions
There is an alternative approach to composition-
ality, followed in [3] and to some extent in [13],
based on the idea of reductions. A reduction trans-
forms a satisfaction problem for a composite pro-
cess op(t1,. . . , t,) I- A into a boolean expression
over satisfaction problems tl t- A i , . . . , t , t- A,
for the subterms of the process - independent of
the structure of these. Simple examples of reduc-
tions can be derived from:

v x { 1 (T) X .

t o + tl I= [KIA (t o I= [KIA) and (tl I= [+ 4) ,
to + t i t= (K.)A @ (t o t= (&)A) or (ti t= (K.)A).

In general, the reductions will be more involved.
However, for the relabelling and restriction it is
possible to give quite concise reductions. They
simply change the modalities (and the tags) of the
assertion and leave everything else unchanged. In
the context of our proof rules such a reduction can
be seen as a means for eliminating the extended
assertions. I.e. for any assertion A, equivalent as-
sertions e(A{E}) and e (A / A) with { S } and r A
removed, can be found. Figure 7 shows these re-
ductions. An alternative to the rules ({=}[]) and
({E}()) could now be

$g&&
Thus, no extended assertion will be introduced by
this new rule.

If t is a finite-state process, also the quotienting
A/ t can be removed by a reduction. To give this

e (X { E }) = X
e(A0 A Al{E}) = e(Ao a}) A e (A l {E})
e(A0 V Al{E}) = e(Ao{a}) V e(Al{E})

e ([~ .] A { z }) = [Z - l (~ .)] e (A { z })
e((r;)A E}) = (Z i (~ F (A { S })

e (vX{U}A[E}) = v X { U { a}}e (A{E})
e (pX{U}A{Z}) = pX{U{S}}e (A{E})

e (X / A) = X
~ (A o A Ai / A) = ~ (A o FA) A e(Ai FA)
e(Ao V Ai t A) = 4Ao t A) V e(Ai t A)

e([rc]A / A) = [An &]e(A rA)
e((K)A IA) = (An K)e(A IA)

e (vX{U}A rA) = vX{U rA}e(A TA)
e(l-IX{U)A t A) = p X { U tA}e(A FA)

Figure 7: Reductions for relabellin and restric-
tion. Recall, U { Z } = { p 1 p{ET E U } and
u t A = { P l P t A E q .

reduction we need to introduce tagged simultane-
ous fixed points. Let o be any one of p and v.
Then the syntax is:

~xl{~l}...X,{U,}(Al,...,A,) $ X i ,

abbreviated as o - f { c } A J, X i . The semantics
should be clear. The reduction is given in figure
8. An alternative rule for product could now be

t o x t i k A
t o t- e (A / t l)

which, again, does not introduce any extended as-
sertion. The price is, that the new rule is only
applicable for finite-state processes, and we must
now consider simultaneous fixed points. The si-
multaneous fixed points can be converted into sim-
ple fixed points using the Scott-BekiE principle [5] ,
thereby potentially increasing the size of the as-
sertion considerably. A more appealing approach

149

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:51:26 UTC from IEEE Xplore. Restrictions apply.

Figure 8: Reduction for quotienting. Recall, U / p = { t I t x p E U } .

would be to extend the fixed-point rules to si-
multaneous fixed points. Then, for example, (p)
should be replaced by

where 6 = (U l , . . . , Ui-1, U U { t } , Ui+l, . . . , Un)
and the substitution [p 2 { 6 ’ } L / d] is an abbre-
viation for [p r ? { C ’) i -1 X1/X1,. . . , p2{6j’}A -1
Xn(!kting the above reductions correct is an easy
generalisation to tagged fixed points of the proofs
in [3] and [l] .)

6 Conclusion
The idea of compositionality being “not looking
into the structure of subprocesses” could be for-
malised using a set of “meta-variables” ?, $, . . .
distinct from the recursion variables. We should
think of a variable 2 as being a yet undefined pro-
cess - a “hole” in the term. Any proof carried out
with such variables appearing in the terms, would
then be valid for all instantiations of the variable
- capturing the reusability of proofs. However,
in defining the substitution on terms with meta-
variables, a little care must be taken. In, for ex-
ample, rec x.a.6 we have the undefined process
$, which we might a t some point decide to in-
stantiate to the term x. Thus we would require
(rec x.u.$)[x/$] = rec x.a.x. (Also, a substitution
like $[rec x.a.$/x] cannot be reduced.)

It is interesting that the rules for recursion
in combination with the tagging could actually
help us in finding appropriate instantiations of
meta-variables. Consider as an example the term
rec z.a.6 and the assertion vX{}(a)X expressing
the existence of an infinite a-path. Using, in se-
quence, the rules (vl),(rec()),(.()) we will end up
with

$[rec x.a.$/x] I- vX{rec x.a.$}(a)X.

Suppose we would try to apply rule (v0) in prov-
ing this valid. Then we would have to solve the
equation $[rec x.a.$/x] = rec x.a.6. A solution
is to substitute x for 9, arriving at rec x.a.x I-

vX{rec x.a.x}(a)X, which by rule (v0) is valid.3
Returning to the proof system, we notice that

compared to the earlier work of Stirling, Winskel,
and Andersen and Winskel, the rules are few and
quite simple. In particular, only three simple rules
are needed to deal with fixed-point assertions, two
to deal with recursive processes.

A useful amendment to the system is the pos-
sibility of relaxing the condition in (v0) that t
should be an element of the tags of the maximum
fixed-point to simply be strongly bisimilar to one
of the tags. This amendment is straightforward
since satisfaction in the modal p-calculus is invari-
ant under strong bisimulation, provided the tags
are interpreted as equivalences classes. Another
useful amendment would then be to combine the
proof system with a proof system for bisimulation
equivalence on processes.

Appendix. Proofs
This appendix contains proofs of lemma 2 and the-
orem 2.

Lemma 2 The relation + defined on closed as-
sertions with tags from a finite set S by

A 4 A‘ if A is a proper subassertion of A’, or
A’ E a X { U } B and
A E B[aX{U, t } B / X] for some t

where 0 is one of p and v, is well-founded.
Proof: Take the predicate Q(A) on closed asser-
tions A with tags in S to be defined by

Q(A) all +-decreasing sequences

U ,

from A are finite.

Extend this to open terms by

&+(A) edef
VO : F V (A) -+ ClAssn.
(VX E Fv(A) .Q(O(x))) * Q(A[ol).

3The reduction for recursion given in [3] would, using
some simplification steps, transform the satisfaction prob-
lem rec x.a.6 t v X . (a) X into the problem 6 t- v X . ((a) X V
{x}), where {x} is an assertion true at the variable x ~

called a state identifier there. Thus it can immediately
be seen that substituting I for 6 yields a solution. That
reduction, however, is rather more involved and does not
seem to give rise easily to a corresponding proof rule.

150

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:51:26 UTC from IEEE Xplore. Restrictions apply.

Observe that if A is closed Q+(A) is simply
Q(A). The proof is by well-founded induction on
a slightly different relation +’ defined by

A’ +’ A iff A‘ is a proper subassertion of A, or
A a X { U } B and
A’ = a X { U , t }B for some t @ U .

Since tags belong to the finite set S this rela-
tion is easily seen to be well-founded. Thus as-
sume for all A’ +’ A, Q+(A) holds and VX E
FV(A).Q(O(X)) . We consider the possible first
successor A’ in a +-decreasing sequence A[O] + A’
and argue that any continuation of the sequence
must be finite. We consider the two possible rea-
sons for A[8] % A’.

Case 1. A’ is a proper subassertion of A[@]. Then
either there exists a subassertion A’‘ of A such
that A”[O] A’, or A‘ is a subassertion of some
O(X). In the first case the result follows from the
induction hwothesis since A” 4 A: in the sec-
ond it follows immediately from the’ assumption
Q (e(x)).
Case 2. In this case, A’ G B[oX{U, t } B / X] and
A[O] = a X { U } B . Either A Y and O(Y) =
a X { U } B or A oX{U}(B’[O]) for some B’. In
the first case the result follows from the assump-
tion of Q(O(Y)); in the second it can be shown
from the induction hypothesis as follows. Since
B

B’[O][aX{U,t}(B’[8])/X] z B’[aX{U,t}B’/X][B]

B’[O] and X @ F V (A) , we can write A’ as

Hence, since aX{U,t}B’ +I aX{U}B’ it
follows from the induction hypothesis that
Q+(aX{U, t}B’) holds.
Take O’(Y) = O(Y) for Y # X and O’(X) =
oX{U,t}(B’[O]). Thus we have just argued
Q(O’(X)) and surely Q(O’(Y)) for all Y # X .
Since B’ is a subassertion of A and therefore
B’ 4 A we can a ain use the induction hypothesis
to conclude Q(Ab]) .

0
Let the measure w (t) be defined by structural in-
duction on terms t by

w(0) = W(.) = 0
w(a.t) = 0

4 t o + t l) = 1 + max{w(to),w(t1)}

w(t0 x t l) = 1 + w(t0) + 2W(tl).

w(rec x. t) = 1 + w(t)
w(t{Z}) = w(t [A) = 1 + w(t)

We can now prove the following lemma:
Lemma 3 Assume a closed assertion B and a
closed term t with guarded, regular recursions.
If t + [n]B (t + (n)B) then there exists some

t l , . . . , t , with t , b B and from tl t- B , . . . , t , t- B
there is a proof oft I- [n]B (t t- (IE)B) .
Proof: We prove the claim by showing Vt.P(t) us-
ing well-founded induction on t with the ordering
induced by w (t) where

P (t) edef for all closed, extended assertions A,
if t + [KIA then

3t1,. . . , t,. t , + A, and
t t- [KIA can be proven from {t , t- A}%.

We shall only consider the case for the box-
modality, the case of diamond-modality is similar.
Thus assume for all t’ with w(t’) < w t) that P(t’)
holds and assume further that t + [IE\A. We shall
establish P(t) on these assumptions by consider-
ing the possible forms of t .

However, consider first the case where * E n.
Then from the semantics we observe that t + A
and t + [n \ *]A. The first is already on the re-
quired form hence take t l = t ; for t + [n \ *]A the
steps below assuming * # K provides the required
remaining tz , . . . , t , to establish P(t) using rule
(I*). Thus assume in the sequel * # IE.

t 0 . Immediate from rule (O []) .
t at’ . If a E n then t’ b A and rule (.IO) gives
a proof of a.t’ t- [KIA from a proof oft’ t- A. This
shows P (t) in this case.
If a @ n then rule (. []1) immediately gives a proof
of at’ I- [KIA showing P (t) in this case.
t to + tl . It follows from the semantics of asser-
tions that t o [KIA and tl [KIA, hence since
w(t0) < w (t) and w(t1) < w(trif follows by induc-
tion that there exists t:, . . . , t;;“ and t:, . . . , t; with
ti + A and ti b A such that proofs of t o t- A and
tl t- A can be constructed from proofs of ti t- A
and ti t- A. Thus using rule (+U) we can get a
proof of t o + tl I- A completing this case.
t E rec s.t’. It follows from proposition 1 that
t‘[rec x.t’/x] + [KIA. Now, since all recur-
sions are guarded and regular w(t’[rec x.t’/x]) <
w(rec x.t’) hence by the induction hypothesis
there exists tl + A, . . . , t , b A such that a proof
of t’[rec x.t’/s] t- [KIA can be constructed from
proofs of t , t- A. Applying rule (reco) to such a
proof we have shown P (t) in this case.
t G t’{E}. It follows from downwards soundness
of rule ({E}[]) that t’ + [E-’(tc)](A{E}). Since
w(t’) < w (t) it follows by induction that there ex-
ists t i , . . . , tk such that t’, + A{E} and that from
proofs of t’, t- A{E} we can construct a proof of
t’ I- [E-’(n)](A{E}). Now, to extend this to a
proof of t’{E} I- [KIA first take t , t : {E} . Hence
from proofs oft, t- A, i.e. t:{E} I- A, we get proofs
of t’, t- A{=} using rule ({ E }) . Finally, using rule
({ E } []) we get a proof of t’{E} t- [KIA from a proof

151

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:51:26 UTC from IEEE Xplore. Restrictions apply.

of t’ t [Z-l(~)](A{E}) which as we have just ar-
gued can be proven from t~ t A, . . . , t , t A.
t = t’ r A. As above but using rules (r A) and
(t An).
t to x t l .

If K / * # 8 we can remove the set (K / *) x
{*} by applying rule (xu*) and proceed
as below - exactly like in the case of
* E K considered in the beginning of
the proof. Hence, in the sequel assume
K / * = 8 and consider the possible forms
of t l .
tl
rec s.t’. Analogous to the cases above.
See the discussion in section 3.3 about
the relationship between the product
dynamic rules and the dynamic rules.
tl = ti x ty. A little bit of arithmetic

0 , tl 3 at’, tl = t; + ty, tl

shows w((to x t i) x ty) < w(t) :
w((t0 x t i) x ty)

=
=
=

1 + w(t0 x t i) + 2w(t:’)
1 + (1 + w(t0) + 2w(t’,)) + 2w(tY)
1 + w(t0) + 1 + 2w(t;) + 2w(ty)
1 + w(t0) + 2(1 + w(ti) + 2w(t“))
w(t0 x (ti x t y)) = w(t)

<
=

Thus P(t) follows from the induction
hypothesis and rule (x x).

tl = ti{=}. As above we compute:

w((t0 x tl){E})
=
=

1 + w(t0 x t l)
1 + (1 + w(t0) + 2w(t1))
1 + w(t0) + 2(1 + w(t1)) <

= w(to x (t l { Z }))
Thus P(t) follows from the induction
hypothesis and rule (x {E}).

tl ti rA. As above.

0
The proof of completeness now follows by well-
founded induction on the relation +:
Theorem 2 (Completeness for finite-state
processes) If p is a process with guarded regu-
lar recursions then for all closed assertions A with
tags in S,,

p k A 3 p t A .

Proof: Let Q(A) be defined on closed asseri
with tags in S, by

Q(A) ede, V t E S,. t b A + t t A.

We prove Q(A) for all closed assertions with
in S, by induction on +. Hence assume Q(A’
all A’ + A.

We consider the potential forms of A.

ons

ags
for

A = X . Impossible since A is assumed to be
closed.
A A0 A AI . Since t + A0 A A1 implies t + A0
and t AI, and, moreover, A0 + A, and A1 + A
the result follows from the induction hypothesis
applying rule (A).

A f A0 V A l . Since t + A0 V A1 implies t + A0
or t + AI, and, moreover, A0 + A, and A1 + A
the result follows from the induction hypothesis
applying either rule (VO) or (Vl).
A pX{U}B. From lemma 1 it follows that if
t k pX{U}B then t k B [p X { U , t}B/X] and as
it can easily be seen from the semantics of tagged
minimum fixed points, t # U . Thus rule p)
can be applied to yield a proof of t I- p X { U () B
from a proof of t t B[pX{U,t}B/X]. Since
B [p X { U , t}B/X] + p X { U } B we have by the in-
duction hypothesis a proof of B [p X { U , t } B / X]
completing this case.
A = v X U}B. If t E U , rule (v0) immedi-
ately yiel 6 s a proof of t I- vX{U}B. If t
U but t + v X { U } B if follows from lemma
1 that t k B[vX{U,t}B/X] thus rule (vl)
gives a proof of t I- v X { U } B from a proof of
t t B[vX{U, t}B/X]. Since B[vX{U, t}B/X] +
uX{U}B we have by the induction hypothesis a
proof of B[pX{U, t}B/X] completing this case.
A E [K B , A = (K) B . Assuming t + [K]B it

such that ti + B and t [K]B can be proven
from proofs of ti I- B . However, since B + [K]B
it follows from the induction hypothesis that such
proofs do indeed exist, completing the case for the
box-modality. The case for the diamond-modality
is similar.

0

References

follows I rom lemma 3 that there exists t l , . . . , t ,

[l] Henrik Reif Andersen. Verzfication of Tem-
poral Properties of Concurrent Systems. PhD
thesis, Department of Computer Science,
Aarhus University, Denmark, June 1993. PB-
445.

[2] Henrik Reif Andersen. Model checking and
boolean graphs. Theoretical Computer Sci-
ence, 126(1):3-30, April 1994.

[3] Henrik Reif Andersen and Glynn Winskel.
Compositional checking of satisfaction. For-
mal Methods I n System Design, 1(4), Decem-
ber 1992.

[4] Andri! Arnold and Paul Crubille. A linear
algorithm to solve fixed-point equations on
transitions systems. Information Processing
Letters, 29:57-66, 1988.

[5] H. BekiE. Definable operations in general al-
gebras, and the theory of automata and flow
charts. In C.B.Jones, editor, Hans BelciE:

152

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:51:26 UTC from IEEE Xplore. Restrictions apply.

Programming Languages and Their Defini-
tion, volume 177, pages 30-55. Springer-
Verlag, 1984.

[6] Rance Cleaveland. Tableau-based model
checking in the propositional mu-calculus.
Acta Informatica, 27:725-747, 1990.

[7] Rance Cleaveland, Marion Dreimiiller, and
Bernhard Steffen. Faster model checking for
the modal mu-calculus. In v.Bochmann and
Probst [20], pages 383-394.

[8] Rance Cleaveland and Bernhard Steffen.
A linear-time model-checking algorithm for
the alternation-free modal mu-calculus. In
Kim G. Larsen and Arne Skou, editors, Pro-
ceedings of the 3rd Workshop on Computer
Aided Verification, July 1991, Aalborg, vol-
ume 575 of LNCS. Springer-Verlag, 1992.

[9] E. Allen Emerson and Chin-Luang Lei. Ef-
ficient model checking in fragments of the
propositional mu-calculus. In Symposium
on Logic in Computer Science, Proceedings,
pages 267-278. IEEE, 1986.

[lo] Dexter Kozen. Results on the propositional
mu-calculus. Theoretical Computer Science,
27, 1983.

[ll] Kim G. Larsen. Proof systems for Hennessy-
Milner logic with recursion. In M. Dauchet
and M. Nivat, editors, Proceedings of CAAP,
Nancy, Franch, volume 299 of Lecture Notes
in Computer Science, pages 215-230, March
1988.

[12] Kim G. Larsen. Efficient local correctness
checking. In v.Bochmann and Probst [20].

[13] Kim G. Larsen and Liu Xinxin. Composi-
tionality through an operational semantics of
contexts. In M.S. Paterson, editor, Proceed-
ings of ICALP, volume 443 of LNCS, pages
526-539. Springer-Verlag, 1990.

A complete compositional
modal proof system for a subset of CCS. vol-
ume 194 of Lecture Notes in Computer Sci-
ence, pages 475-486. Springer-Verlag, 1985.

[15] Colin Stirling. A complete modal proof sys-
tem for a subset of SCCS. volume 185 of Lec-
ture Notes in Computer Science, pages 253-
266. Springer-Verlag, 1985.

[16] Colin Stirling. Modal logics for communicat-
ing systems. Theoretical Computer Science,

Modal and Temporal Log-
ics. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in
Computer Science, volume 2, pages 477-563.
Oxford University Press, 1992.

[14] Colin Stirling.

49:311-347, 1987.

[17] Colin Stirling.

[18] Colin Stirling and David Walker. Local model
checking in the modal mu-calculus. Theoret-
ical Computer Science, 89(1):161-177, 1991.

[19] A. Tarski. A lattice-theoretical &point the-
orem and its applications. Pacific Journal of
Mathematics, 5:285-309, 1955.

[20] G. v.Bochmann and D. K. Probst, editors.
Proceedings of the 4th Workshop on Com-
puter Aided Verification, CAV’9.2, June 29
- July 1, 1992, Montreal, Quebec, Canada,
volume 663 of LNCS. Springer-Verlag, 1992.

[21] Bart Vergauwen and Johan Lewi. A linear
algorithm for solving fixed-point equations
on transition systems. In J.-C. Raoult, edi-
tor, Proceedings of 17’th Colloquium on Trees
in Algebra and Programming, CAAP’92,
Rennes, France, volume 581 of LNCS, pages
322-341. Springer-Verlag, 1992.

[22] Glynn Winskel. Synchronisation trees. The-
oretical Computer Science, 34:33, 1984.

[23] Glynn Winskel. On the composition and de-
composition of assertions. Technical Report
TR-59, Computer Laboratory, University of
Cambridge, 1985.

[24] Glynn Winskel. A complete proof system for
SCCS with modal assertions. Fundamenta
Informaticae, IX:401-420, 1986.

[25] Glynn Winskel. A note on model checking the
modal v-calculus. In G. Ausiello, M. Dezani-
Ciancaglini, and S. Ronchi Della Rocca, ed-
itors, Proceedings of ICALP, volume 372 of
LNCS, pages 761-772. Springer-Verlag, 1989.

[26] Glynn Winskel. A compositional proof sys-
tem on a category of labelled transition sys-
tems. Information and Computation, 87,
1990.

[27] Glynn Winskel. On the compositional check-
ing of validity. In J.C.M. Baeten and
J.W. Klop, editors, Proceedings of CONCUR
’90, volume 458 of LNCS, pages 481-501.
Springer-Verlag, 1990.

153

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:51:26 UTC from IEEE Xplore. Restrictions apply.

