

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Implementational issues in CACSD

Torp, Steffen; Nørgård, Peter Magnus; Christensen, Anders; Ravn, Ole

Published in:
Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design

Link to article, DOI:
10.1109/CACSD.1994.288882

Publication date:
1994

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Torp, S., Nørgård, P. M., Christensen, A., & Ravn, O. (1994). Implementational issues in CACSD. In
Proceedings of the IEEE/IFAC Joint Symposium on Computer-Aided Control System Design (pp. 527-532).
IEEE. DOI: 10.1109/CACSD.1994.288882

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CACSD.1994.288882
http://orbit.dtu.dk/en/publications/implementational-issues-in-cacsd(ee783a24-6a07-4a3b-9d4b-5e60d5ebf14e).html

Implementational Issues in CACSD

Steffen Torp, Peter Magnus N~rrgaard, Anders Christensen and Ole Ravn

Institute of Automatic Control Systems, Technical University of Denmark,

Building 326, DK-2800 Lyngby, Denmark, E-Mail: or@ s1.dth.a

Abstract
The paper describes design considerations for a program
for real-time testing of control algorithms in a labora-
tory environment. ?he algorithms are developed and
tested using simulation in the MATLAB environment.
'Ihe real-time code is built from the structure of the
MATLAB sa-ipt file using a matrix l i b r i with inter-
face functions to MATLAB data files. Tliree real-time
hardware platforms are analysed with respect to deriv-
kig a device independent program structure, facilitating
portability among die three platfomis and supporting
portability to new platfomis. The tliree platfomis are a
Transputer based system, an ADSP21020 based DSP
system and a MC 68030 based VME-bus system. The
programming language is ANSI C.
Keywords: Real-time systems, iniplenientation,
CACSD algoritlmis, algorithm portabiliv.

1 Introduction
During the last few years, there has bee11 an increased
interest in automating the process of implementing dig-
ital controllers. The driving forces behind this develop-
ment has been the wish to have a better consistency
between the designed and inipleniented controllers also
this pari of the design process has traditionally been
rather work intensive. 'Illis has led to a nuniber of mod-
ules for design software packages. AutoCode for
Matrixx and the C-code generation toolbox for
SIMULINK are examples of such products. Other
attempts has been made to make a MATLAB to C coni-
piler (Tang et al., 1992) and a SIMNON to MODULA 2
compiler Dahl, 1991). Such products face problems
such as code efficiency, problems with debugging and
data logging and a limited number of hardware plat-
fornis.
One of the problems of testing complex controllers in a
laboratory environment is that tlie iterative nature of the
design process makes it necessary to perfomi ad hoc
niodificatiais and experiments in order to arrive at a11

optimal control perfomiance. These experiments and
changes should be possible to make in a structured way
hi tlie real-time code without having to recompile.
Another problem is that the real-time version of a spe-

cific algorithm is hard to port to another platform, lead-
ing to the situation where real-time versions of
algorithms are not reused but rewritten, thus increasing
the possibility of mors.
Much t h e could be saved by using a structured methodl
which enables porting a controller between a siniulation
environment and a real-time program. It is our aim 10

derive such a method and describe the tools needed,
which provided with a MATLAB or SIMULINK
(Matlab, 1992) description of a plant, enables the user
easily to set up the caitrol structure needed and test it by
simulations. A real-time program is witten, realising
any caitrol structure derived in the simulatiais and
saved to a file.
Ai analysis of three different real-time platfonns is the
basis of the design of the portable overall structure of
the real-time program. The developed programs, con-
sists of a MATLAB script, some additional functions for
simulation written in MATLAB, and an ANSI C pro-
gram for real-time control hicluding a library for matrix
calculations, and device support libraries.
Any family of control algorithms could be implemented
using tlie approach presented here. The method, e.g. the
MATLAB script and real-time program has been tested
using a family of implicit parameter adaptive controllers
as an example. However, other controllers with variable
or selectable structure could be implemented using the
same approach.
The benefits of such an analysis, design and testing pro-
cedure eases the design of such caitrollers. llie adap-
tive controller is a good example of the fact hac some
controller algorithms are better described my a sequence
of commands than by a drawing them in a graphical edi-
tor.

2 Analysis of Real-time Platforms
Practical implementation of adaptive control algorithms
often dictates the use of existing process control equip-
ment that is not at all compatible with the system on
which the software was initially developed and tested.
Hence, it is an advantage for tlie engineer iniplenieiitiiig
the software, if die device dependent parts of the code,
such as analog I/O, inter-task communication and real-

0-7803-1800-5/94/$3.00 01994 I E E E

52 7

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:43:57 UTC from IEEE Xplore. Restrictions apply.

time scheduling, is encapsulated in a single software
library. To do so, we need to identify all device depend-
ent d e needed in the program and specify a commoli
interface to the library, which can be used on all relevant
platforms. In this paper, three platforms have been
investigated and their advantages and disadvantages, in
terms of real-time control, have been analysed. The
three platforms are an OS-9 system, a Transputer system
and an ADSP21020 based digital signal processor sys-
tem. None of diese platforms comply with the POSIX
standard, which is a good attempt to deal with portabil-
ity in a very general way. Due to the lack of compliance
with such standards, we will deal with portability on a
lower level, analysing the three platfomis and suggest-
ing a common software structure. Further, we will dis-
cuss how to design a program that is capable of running
on all of die three platforms, only requiring recompila-
tion of the source code, when chaiguig to another plat-
form.

2.1 OS-9 system
OS-9 is a real-time, multitasking operating system from
Microware Inc. (OS-9, 1987). It is available for a range
of different platfomis such as Intel 386/486, Motorola
680x0 and SPARC. In our laboratory OS-9 is running
ai a MVME147 shgle-board computer from Motorola
hosted in a VME bus system. nie computer is based on
a MC68030 integer CPU with a MC68882 floating-
point co-processor and 4 Mb of dynamic RAM. In addi-
tion the board has four RS232 channels for serial coni-
munication with terminals etc., a SCSI interface for
floppy and hardisk and ai Ethernet interface. Mounted
ai the VME bus is an A D and D/A converter board
from Modular computers Inc. for direct connection to
physical processes, figure 1.

< VME-bus <
Figure 1. Structure of the OS-9 system.

The OS-9 system itself is an extensive real-time operat-
ing system with a pre-emptive scheduling multitasking
kernel providing facilities such as semaphores and
pipes. Pipes are a son of RAM files, providing tasks
with extensive but easy to use means of inter task coni-

munication. OS-9 pipes are quite similar to UNIX pipes,
and resembles the so-called channels, which are used in
the Transputer environment.

2.2 ”bansputer system
A network of Transputers is programmed according to
the CSP (Comniunicatuig Sequential Processes) model
(Inmos, 1992). A model, which widely resembles the
way OS-9 systems are progranmed.

IMS BO08 Process interface

Figure 2. Structure of the Transputer system.

The actual Transputer system, figure 2, is a IMSB008
board from Inmos Inc. It is a plug-in board for a conven-
tioiial IBM compatible PC. Via links on the board, it is
connected to an external transputer box with A/D and
D/A converters. The extenial Transputer box is
designed io our laboratory and serves as interface to
physical processes. llie Transputer in the process inter-
face is equipped with 32 kb RAM aparl from the 3 kb
on-chip memory. The IMSB008 board contains a DMA
based interface between the host PC and the so-called
root Transputer on the IMSB008 board. It Serves as a
motherboard for up to 10 TRAM’S (TRAnsputer Mod-
ule). The Transputer in the first slot (slot 0) of the mo-
therboard \vi11 be the root transputer. A TRAM is a small
board equipped with a Transputer, some memory and
maybe mnie additional interfaces etc. We use two
TRAM’S, each having a T805 Transputer and 2 Mb of
dynamic RAM. A progranunable switch on the board
enables the user to setup the netawk topology. We use
this switch to coiiiiect the second Transputer with the
external process interface.

2.3 DSP system
Tlie DSP system, figure 3, is based on an ADSP21020
chip from Analog Devices Inc. It is designed by Lough-
borough Sound Images Ltd. as an expansion board for
an IBM compatible PC’s. llie interface to the PC is real-
ised by a dual-port RAM block, which is divided uito
two blocks of each 160 k words. The nvo blocks are data
and code memory and the wordlengths are 30 and 48

528

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:43:57 UTC from IEEE Xplore. Restrictions apply.

bits. The host PC serves both as a development platform

Memory

and as a front-end processor handling disk VO etc.
Those parts of a program needing access to disk, key-
board and screen must run on the host PC:. The board is
supplied with routines in b l a n d C, which allows
access to the dual-port RAM while the DSP is running.

MC68881 IT801 ADSP21020
4Mb*8bit 2*2Mb*8 160k*40bit

160 k * 48 bit bit

Figure 3. Structure of the DSP system.

~

mchannels
D/A&annels
lnterruw

The ADSP21020 is an extremely fast floating point
processor designed especially for repetitive calculations,
f.ex. matrix operations. Instructions in its instruction set,
including the floating point operations, are executed
within a single clock cycle, in this case SO ns.

16 8 4
4 8 ?

Yes YeS NO

2.4 Comparison

- r

Disk and Terminals
Performance

We will now try to compare tlie three platfomis and their
applicability to advanced control. Such a comparison
can not possibly pose full justice to each individual sys-
tem, since they all have features that are hardly conipa-
rable to the others. Below (Table 1) we give a schematic
TABLE 1. Features of the real time platforms.

Yes
Medium Good

I I I

Operating system 10.59 IHost-PC: DOS IHost-PC: DOS
Real-time kernel 10s-9 I In Hardware I None
Multi-taskhe 10s-9 I In Microcode I None I

DSP: DSP C
(ANSI)

Processor~s)

oveniew of some of the most comparabli: features and
then we will include the individual facilities in a discus-

529

sion of each system and its applicability to adaptive con-
trol.
Notice in particular that the DSP system suffers from a
lack of system software to support real-time programs
and multi-tasking. Timers must be programmed in
assembler using intermpts.
Analysing the platforms the minimum requirements that
must be satisfied was identified. As it was decided to use
C, an ANSI compliant C compiler must be available for
the system. The platform must of course have access to
analog input and output devices and a timer for synchro-
nized execution of real-time programs. Furthermore, an
operating system supporting multitasking and some
basic fomi of inter task communication is necessary.
?he DSP system does not support any multitasking
facilities, but its PC front-end enables us to run two
tasks on the system, one on the PC and one on the DSP.
The task mining on the PC has of course full access to
disk and other I/O. This task must deliver all data from
disk to tlie DSP task in the proper forniat through a sort
of pipe or channel emulated in soft\vare via the dual-
port RAM. The situation is quite sinlilar to the Trans-
puter system, where the tasks needing access to disk and
other I/O must be running on the root Transputer. Apart
from this, the Transputer systems has practically all the
facilities you will find in an advanced real-time operat-
ing system and it is all in hardware or microcode. The
limited aniount of memory in the extemal Transputer
process interface suggests an additional task running in
the interface box, handling sampling of the analog sig-
nals only. On the OS-9 system there is no limitations of
any such kind. Due to the simple single processor struc-
ture and the extensive facilities, any task may gain
access to peripheral devices.

3 Structure of the software system
Tlie sofhvare, which we have developed is mainly
intended as a research tool for investigating adaptive
control systems in practice. The purpose was to ease the
process of porting a control algorithm to a real-time
platfomi and test it on a physical object. As we men-
tioned earlier, the real-time software works in close con-
nection with a simulation environment for MATLAB.
SIMULINK is used for simulation of continuous-time
plant dynamics.
To iniplenicnt this in a software package, we chose the
over-all structure of the simulation and the real-time
program to be identical. This has several additional
advantages, for instance that all data through-out the
program are coniparable, tiliicli can be very useful in a
debugging phase. Funhemiore, the two progranis share
the sanie user interface, which niakes il easier to switch
betweti them.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:43:57 UTC from IEEE Xplore. Restrictions apply.

Software for real-time control must take into account
the computational perfomiance of the code. An issue,
that is not equally impatant in software. which is only
intended fa simulations. In order to ease the process of
moving e.g. a parameter estimation algorithm from
MATLAB to C, a library of matrix functions performing
the simpler MATLAB operations was made. In MAT-
LAB, the programmer has little or no caitrol of memory
allocation. Variables are allocated and deallocated in
each assignment. Performing a simple operat ion such as
A = A + B; implies allocation of memory for a new copy
of A and deallocation of the old one. In algorithms for
real-time execution, the programmer would amt to con-
trol exactly when memory is allocated and deallocated,
since memory allocation is often a quite time-consum-
ing task involving calls to the operating system. Funher-
more the allocation and deallocation at each sampling
hitend can segment memory, making it impossible to
get a contingent block. By providing two simple func-
tiais for allocation and deallocation in the matrix
library, we have enabled a programmer to extract all
allocation of memory to those parts of tlie program,
which are not sensitive to computational delays. Even in
tlie case of local variables in functions this can be done
by allocating the memory during the first run of the
function and thai storing the pointer to the memory
location in a static variable. This just requires, that the
function only can be used once every sample as e.g. in a
parameter estimation algorithm, because local variables
are now fixed to a certain size.
As a bridge between the real-time matrix library and
MATLAB, two functions are included for loadhlg and
saving matrices in files with MATLAB format. These
functions are used hteisively to coiistruct the interface
befiveen the simulation and the real-time environment.
In a laboratory environment, just as in industrial ones,
process control hardware from many different manufac-
turers are often used. Hence the need to bring a MAT-
LAB adaptive controller to several different platforms is
obvious. We have designed our sofhvare to match the
three different platforms previously described ui this
paper.
The obvious modularity of tlie adaptive controller sug-
gests a task structure dividing the code into the tasks
‘Identification’, ‘Control’, ‘Design’, as proposed hi
(Hennhigsen et al., 3991). This issue becomes even
more interesting hi the case where more Transputers are
available, which allows the progranmier to distribute the
different modules of tlie controller on to their owii
Transputer such as proposed by (Fortuna et al., 1989).
Due to the missing niultitaskhig facilities of the DSP
system and a wish to concentrate on the problems of
multi platfmi software development, we chose a sim-

Administrator task

Charac- Low priority
terislics Foreground task

Tasks Allocating resources
User interface

Get data from disk
Download data and
maybe code to rep-
lator
User communication
Activate & start reg-
ulator
Save data on disk

Regulator task

High priority
Background task
System interface
Receive data
Read from ADC
Compute control
action
Write to DAC
Parameter Estimation
Controller design
Data-acquisition

Administrator ,Re ~u lator

Figure 3. Tasks and libraries.

530

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:43:57 UTC from IEEE Xplore. Restrictions apply.

In the regulator task, three other funcfion libraries are
used. They all contain functions used to form the adap-
tive controller. The estim library contains different
pameter estimation algorithms, the design library
contains controller design algorithms and the adap
library contains miscellaneous functions mainly related
to the implementation of continuous time adaptive algo-
rithms.

4 Extending to new algorithms
Using the matrix library, we have made it a far simpler
task to pod an algorithm from MATLAB to C, but we
have lost some of the simplicity. In a C program, varia-
bles still have to be declared, allocated and initialized
b e f m use and deallocated again after use. This requires
four new statements, which was not in the MATLAB
code. Since the structure of our two program are idaiti-
cal, the coding of these statements is trivial, and can be
automated. By stating all MATZAB variables used in
the real-time program in a special file called mat-
lab.var, the statements needed can be generated by
the C preprocessor using file inclusion and macro
expansion.
The described procedure reduces the amount of coding
to one line in one file and to the best of our knowledge
duces the probability of e r r m equally. All variables
stated in the file will now automatically be initialized
with the data from a file called datain.mat, that the
simulation program generates on request.
A quite similar method is used to include new estimator
and controller design algoritlms. When a new algorithm
has been programmed and tested in MATLAB and
should be implemented ai the real-time system, the
algorithm is first coded in ANSI C using the matrix
library, then its name is added to a list in the file
estim.lst. This automatically makes the algorithm
available in both environments and when It is selected
for simulation, it will also be used for real-time control.
As an example of how to add an estimation algorithm to
the program:
void esti(matrix *phi, matrix *theta, double
ey 1 ; 1

static matrix *k;
/ * If first call, allocate memory */
if (first-last == FIRST)

/ * Here is the estimation algorithm * /

if (first-last == LAST) mfree(k);

k = mmake(unknown8,l);

/ * if last call, deallocate * /

1
The new estimation algorithm must be included in the
estim.c file and the function header must comply
with the format shown in the example. Of course other
function identifiers may be chosen as long as they do not
conflict with other identifiers in the program. To limit

the nuniber of memory allocations for local variables,
these are declared as static. During the first run of the
functions the necessary memory is allocated using the
m a k e function from the matrix library. Usually the
size of the local variables will depend on the number of
parameters to be estimated. This number is specified in
the global variable unknowns, which is transferred
form the MATLAB file. The actual algorithm for updat-
ing the paranieter vector is placed in between memory
allocation and deallocation. When the program is clos-
ing down and the function is called for the last time, all
of the memory must be deallocated. If the algorithm
necds variables from the MATLAB file, other than those
already provided, these must be added at the end of the
mat lab. var file:
VAR(New-var, matrix *, Matrix, global 1
At last the new function is made available to the pro-
gran1 by adding its name at the end of the est im. Is t
file:
EstimatorFcn(esti)
Now, the function can be selected in the simulation
environment and used both for simulation and real-time
control.

5 Extending to new platforms.
When porting the software to a new platform, the func-
tions in the sysdep file must be rewritten. The file con-
tains the definition of a general communication channel
and the functions needed to use this chatinel. The func-
tions highly resemble those supported by the Transputer
C compiler, but they can furthermore be used directly
for sending and receiving matrices. The function call is
the same on all the platforms, and the communication
channel is quite general and could be used in other pro-
grams as well as ours. In additiai to the communication
functions, the sysdep library contains some simple
frh.lctions for setting up sampling time and for analog
YO, which are specific to our program. The following
example shows a function for receiving a matrix over a
channel and how the preprocessor can be used to select
what part of the source code is compiled:
matrix *ChanInMatrix(Chan-type in-chan)

int rows, cols, mn;
matrix *ptm;
/ * Read number of rows and columns * /

read(in-chan, (char *)6rows, sizeof(int) 1 ;
read(in-chan, (char *)6cols, sizeof(int) 1 ;

lifdef OS9 / * OS-9 code * /

Uendif

Uifdef IMS / * Transputer code * /
rows = ChanInInt(in-chan) ;

cols - ChanInInt(in-chan) ;

Wendi f

531

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:43:57 UTC from IEEE Xplore. Restrictions apply.

mn - rows*cols; / + Number of matrix ele-

ptm - m a k e (rows, cols 1 ; /+ Memory allo-

/* Recieve data +/

ments + /

cation +/

lifdef OS9

mn+sizeof(doubTe)) ;
lendif

read(in chan, (char +)ptm->mat [OI,

rV i fdef IMS

mn*sizeof (doubla) :
lendif

1

ChanIn(in chan, (void *)ptm->mat[Ol,

return ptm;

The symbols used to select the pper parts of the code
for compilation are defined in the make-file for the dif-
ferent platforms. For each platform, a slightly different
make-file is used, which handles the special compilers
and other tools needed on that specific platform. When
the function above is used in one of the tasks, the func-
tion call is the same, no matter what platform the pro-
gram is running on, but the underlying communication
may take place in very different ways.
So far we have considered code portability only. We
have chosen the conditional compilation approach as a
way of dealing with code portability. This approach is
not applicable for datu portability. In our case, the
MATLAB file used as input to the real-time program
could have been generated on several different plat-
forms. The real-time program must at any platfmi be
ready to accept data from any MATLAB platfomi. Thus,
the program must contain code for hiporting the differ-
ent MATLAB data file fomiats. The difference in data
formats originates in the type of CPU of the workstation
platforms on which MATLAB is running. PC's using
Intel processors are storing the single bytes of double
precision floats in reverse order of Apollo and HP work-
stations using Motorola processors. miis problem has
already been considered in MATLAB, and the data files
contains a type flag, that can be used to detect the type
of platform a file was generated. We use this flag to
detect if any kind of data conversion is needed.

6 Conclusion.
We have successfully developed a real-time adaptive
control program, which is algorithm-portable among
three different hardware p la t fms: a Transputer system,
an OS-9 system and a DSP system. It has all device
dependent code isolated in a single library and has a
simple and general task structure. Hence, it should be
easy to port to other platforms as well. In the paper we
have given examples of how the portability can be
achieved and expanded. It has been denionskated how

some of the flexibility of MATLAB can be brought to a
real-time platform.
'Ihe example used in this paper is an adaptive control
algorithm, however the approach presented should pro-
vide the good features d portability, expandability etc.
when used with other types of control algorithms as
well. 'Lhe flexibility of the system with respect to the
ease of changing features in the algorithm (both struc-
ture and parameters) has proven useful in the experi-
mental verification of adaptive control algorithms in a
laboratoly environment. The software relies completely
on the presence of MATLAB. A command interpreter
allowing on-line changes in controller parameters and
structure has been planned, but not yet iniplementcd.

Dahl,

References
0. (1991). An interactive environment for real
time implemcntation of control systems. In
Barker, H., editor, Preprints of fhe IFAC
Sjvnposhm on CADCS, pages 518-523,
Swansea, UK. IFAC.

Forluna, L., Gallo, A., Muscato, G., and Nunuari, G.
(1989). Implementation of a self-tuning regulator
by using a transputer network. In Proc. IFAC
Syinposiutn on Low Cost Autornation, pages 33-
38, Milan, Italy. IFAC.

Henningsen, A., Laurscn, S., and Ravn, 0. (1991). Real-
time adaptive control using CPAS on a
MC68010-based process computer. In Preprints
of the IEE Intemntional Conference on Control,
pages 370-375, Edinburgh, UK. IFAC.

Iiimos (1992). ANSI C Tool-sel Users Mununl. Inmos
Ltd., Bristol. UK.

Matlab (1992). MATLAB ReJerence Guide. The
Mathworks Inc., Mass. USA.

OS-9 (1987). Using Profissional OS-9. Microware Inc.,
Iowa, USA.

Tang, R., Jalel, N. A., Minai, A. R., and Leigh, J. R.
(1992). Identification and modelling of
fermentation process using matlab A case study.
In Modelling and Control of Biotechnicul
Processes, pages 331-334, Colorado, USA.
IFAC.

532

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 07,2010 at 12:43:57 UTC from IEEE Xplore. Restrictions apply.

