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INTRODUCTION 

The conventional Tapped-Delay Neural Net [14] may be analyzed using sta- 
tistical methods and the results of such analysis can be applied to model 
optimization. In this presentation we review and extend recent efforts to 
demonstrate the power of this strategy within time series processing. We aim 
at designing compact networks using the sixalled Optimal Brain Damage 
(OBD) method of Le Cun et al. [7]. The benefits from compact architectures 
are threefold: Their generalization ability is at least comparable - mostly 
better, they carry less computational burden, and they are faster to adapt 
if the environment changes. Further, we show that the generalization error 
of the network may be estimated, without extensive crowvalidation, using 
a modification of Akaike’s Final Prediction Error (FPE) estimate [l]. The 
minimal FPE constitutes a useful stopping criterion for pruning [12]. 

TIME SERIES PROCESSING 

Time series proceasing is an important application area for neural networks. 
While long time forecasts can be ruled out for chaotic systems, short time 
predictions may still be viable. Recent work by Priestly 1111, and Weigend et 
al. [14] have established the sunspot series as a benchmark for time series pre- 
diction algorithms. Recently we showed how pruning by OBD can produce 
very compact networks for this problem [12]. We obtained networks using 
around one third of the parameters of the network published by Weigend 
et al. while having comparable performance. In this paper we corroborate 
our results on the sunspot series by application to two new fields, identifica- 
tion of chaotic systems (Mackey-Glass) and inverse modeling of transmission 
channels (channel equalization). 

The basic network is characterized by a tapped delay line architecture with 
L input units, nH hidden sigmoid units and a single linear output unit. The 
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initial network is fully connected between layers and implements a non-linear 
mapping from lag space x ( k )  = [z(k), ..., z(k - L + l)], (L is the length of 
the tapped delay line), to the real axis: 

G(k) = FU (x(k)) G E 'R, (1) 
where U = [w, W] is the N-dimensional weight vector and G(k) is the pre- 
diction of the target signal y(k). The non-linear mapping can be written 
as: 

where nH is the number of hidden units, W, are the hidden-teoutput weights 
while wij connect the input and hidden units. 

TRAINING 

The objective of the training procedure is model identification. Hence, the 
network weights, U, are trained to recognize the short time structure of the 
time series. We use the sum of squared errors to measure the performance of 
the current network: 

where p is the number of training examples. 
A simulator has been developed based on batch mode, second order local 

optimization. A direct matrix-inversion method is used for identification of 
the hidden-to-output weights [2], while a pseudo Gauss-Newton method (diag- 
onal approximation) is used for identification of input-tehidden weights, see 
e.g. 151. To ensure numerical stability and for assisting the pruning procedure 
we augment the cost-function with a weight decay term. The cost-function 
can then be written as: 

N, N w  

where N,,  Nw are the numbers of weights and thresholds in hidden and 
output units, respectively. Further, CY,,, , CYW is the weight decay parameters 
of the hidden and output layers, respectively. 

The second order pseudo Gauss-Newton method used for identification of 
input-to-hidden weights can be written as: 
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where the gain parameter r] is used to secure that all weight updates lead 
to a decrease in the cost-function. Before each step r ]  is initialized to 1 and 
iteratively diminished by powers of two until the step leads to a decrease in 
the cost-function. As e.g. in [7] we approximate the second derivative by the 
positive semi-definite expression: 

PRUNING BY OPTIMAL BRAIN DAMAGE 

The OBD method proposed by Le Cun et al. [I was successfully applied to 
reduce large networks for recognition of handwritten digits [8]. The basic idea 
is to estimate the increase in the training error when deleting weights. The 
estimate is formulated in terms of weight saliencies sf :  

where U[ is a component of U and the sum runs over the set of deleted weights 
D. The saliency definition used here takes into account that the weight decay 
terms force the weights to depart from the minimum of the training set error. 

The major assumptions entering the derivation of OBD are: 1) Terms 
of third and higher orders in the deleted weights can be neglected. 2) The 
off-diagonal terms in the Hessian, a2Ethn laulaup , can be neglected. Com- 
putationally, the second order (diagonal) terms are reused from the training 
scheme eq. (6). We refrain from operations involving the full Hessian, which 
scales poorly for large networks. The recipe allows for ranking the weights 
according to saliency. The question of how many weights it may be possible 
to delete was answered in [12]. We applied Akaike's FPE estimate [l, 91 of 
the test error in terms of the training error. In its standard form it reads: 

where p is the number of training samples, and N is the number of parameters 
in the model. The left hand side of eq. (8) is the average generalization 
error, averaged over all possible training sets of size p .  The estimate is based 
on linearization of the networks as regards the fluctuations in the weights 
resulting from different training sets. For a discussion of the approximations 
entering this estimate see [SI. The relation expresses the fact that the training 
and test errors are biased estimates of the noise level because each parameter 
during training has "absorbed" noise from the training samples. 

Since we have regularized the training procedure by weight-decay terms 
a,,,, aw, hence, suppressed the ability of the (otherwise) ill-determined pa- 
rameters to model noise, we need to modify the standard FPE estimate by 
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replacing the total number of parameters with the effective number of param- 
eters see e.g. [6, 10, 121: 

where the A's are the second derivatives already computed in eq. (6)' A i j  G 

With the above tool we can obtain a generalization error estimate for 
each pruned network. By selecting the network with the lowest estimated 
generalization error we have developed the stop criterion sought. 

a2 Etrain 1 Aj 6'Etrain law!. 

EXPERIMENTS 

In [12] we tested the system on the classical sunspot series. In this paper the 
methods are tested on two other typical signal processing problems. The first 
is a standard problem of nonlinear dynamics viz. the Mackey-Glass chaotic 
time series, and the second concerns channel equalization. For both systems 
errors are computed as 

P.e* 

where pet is the number of examples in the data (train or test) set in question, 
and is the total variance of ar(k) on the training and test set. 

Mackey-Glass Chaotic Dynamics 

The Mackey-Glass attractor is a non-linear chaotic system described by the 
following equation: 

t ( t  - ?) 
1 + t ( t  - ?)IO 

- d 4 t )  = -b t ( t )  + a 
dt 

where the constants are a = 0.2, b = 0.1 and r = 17. The series is resampled 
with sampling period 1 according to standard practice. 

We aim at identifying the underlying dynamic model, from this chaotic 
time series. The network configuration is L = 16, nH = 10 and we train 
to implement a six step ahead prediction. That is, x(k)  = [ t ( k  - 6), t ( k  - 

In Fig. 1 the normalized training and test errors cf. eq. (ll), and the FPE 
error are sketched for a training set size of 500 and 1000 examples, the test set 
comprises 8500 examples. Weight decays were set to a, = 0.001, CYW = 0.001. 
With higher weight decays we were unable to train the networks to error 

1 2 ) , * * . , t ( k - 6 L ) J  and ar(k) = ~(k). 
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levels like those reported. On the other hand, with smaller weight decays 
the second order optimization scheme is plagued by numerical problems, also 
leading to higher errors and a lower yield of useful architectures. It is seen 
that the stop criterion is able to select the optimal network for both training 
set sizes. As expected, a small training set can only "justify" a network with 
few parameters. 

Figure l: The evolution of training and test errors during pruning for the Mackey- 
Glass time series (left) training set size 500, (right) training set size 1000. The FPE 
estimate of the test error is based on eq. (9). The vertical line indicates the network 
for which the estimated test error is minimal. The figures show that a small training 
set will favor a simple model with few parameters. 

In Fig. 2 we show the attractors for the original Mackey-Glass series (a), 
and three network architectures whose outputs are fed back as new inputs, 
thus performing iterative predictions. Panel (b) displays the pruned network. 
In (c) the attractor for the fully connected network trained on 1000 examples 
is shown, and finally the attractor of the pruned network trained on 1000 
examples is shown in (d). 

In Table I we compare the performances of pruned networks with those 
of fully connected nets, a linear model, and with a K-nearest-neighbor lin- 
ear model [4]. It is interesting to note that the performance of the networks 
is similar to the nearest neighbor estimate. The latter involves finding the 
neighbors among the 1000 training examples and computing a regularized 
linear estimate of the output. The model has been optimized by leave-one- 
out cross-validation and the computational overhead (time and storage) is 
significant for this model. Also it is noteworthy that the pruned network, re- 
trained without weight decay, is clearly superior. We have found that weight 
decay greatly assist pruning and optimization for the networks with super- 
fluous resources; however, for the optimized pruned architectures we remove 
the weight decay and retrain to fine tune the performance [12]. 

In each case we compute the correlation with the true Mackey-Glass at- 
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Normalized error (mean square) on Mackey-Glass time series 

Train Teat 
5-nearest-neighbors 4.80 x 10-~ 8.37 x 10-~ 
Linear model' 9.70 x lo-' 9.58 x 10" 
Fully connected network' 6.30 x 7.67 x 

No. of par. 

17 
181 

- 

1 

Pruned network' 6.45 x 10-~  7.45 x 10'~ 131 
Pruned network' 3.12 x 10-~ 3.68 x 10'~ 131 

Table 1: 1) Linear model is a single linear unit. 2) The initial pre-pruned networks, 
trained with the same weight decay terms as used during pruning. 3) Pruned 
network. 4) Pruned networks retrained without weight decay. 

tractor, as described in [15]. The attractor is sampled on a grid of 20 x 20 
points for the correlation estimate. The correlation coefficients for two inde 
pendent samples of 8850 points of the true attractor is 0.991. For the fully 
connected network trained on 1000 examples it is 0.922, for the pruned net- 
work trained on 1000 examples 0.948. In order to compare with [15] we also 
completed a pruning seasion based on on 500 examples, and for the pruned 
network we found a correlation coefficient of 0.934 (with weight decay), while 
the coefficient for a feed-forward network with second order couplings were 
found to  be 0.917 in [15]. For networks trained on 500 examples only, it turns 
out that, retraining without weight decay deteriorates the performance, indi- 
cating that pruning has not identified the optimal architecture. 

We conclude that the Designer Networks more accurately identify the 
underlying dynamics, than straight fully connected networks. 

Inverse Modeling: Channel Equalization 

We have also implemented the toy-model studied by Day e2 al. [3], involving a 
non-linear channel sandwiched between low-pass filters with identical transfer 
functions H l ( z )  = 0.2602 - 0.92982-' + 0 . 2 6 0 2 ~ - ~  and the non-linearity of 
the channel is given by the simple map U = 5ulul(l- U') /(1+ u 2 ) .  The 
driving signal is a Gaussian i.i.d. sequence (unit variance, zero mean) filtered 
through a third-order Buftenuorfic low-pass filter with the transfer function 

. (13) 
0.727 + 2.182-' + 2 . 1 8 ~ - ~  + 0 . 7 2 7 ~ - ~  

1.000 - 2.3272-' + 2 . 0 7 2 ~ - ~  - 0 . 6 8 6 ~ ~ ~  H2(2)  = 

The network is trained, using weight decays a, = 0.01, aw = 0.01, to invert 
the channel and reconstruct the input as illustrated in Fig. 3. As input to 
the network we use a tapped delay line with 25 taps (noisy outputs from the 
the channel). The signal to be predicted is delayed 15 samples in order to 
ensure causal filtering. The training set comprises 2000 examples, which is a 
minute fraction of the training set used in [3]. In the left panel of Fig. 4 the 
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Figure 2: Phase-state plot (r(k) versus z(k + 6)) of a) The Mackey-Glass attractor. 
The correlation coefficient for two independent samples of 8850 points is 0.991. b) 
The pruned network obtained with a training set of 10oO examples. c) The estimated 
attractor for fully connected network trained on 1000 examples, having 181 weights 
and thresholds and a correlation coefficient of 0.922. d) The estimated attractor 
for the pruned network trained on 1000 examples (retrained without weight decay) 
having 131 weights and a correlation coefficient of 0.956. 

evolution of the training and test errors during a pruning session are shown, 
and further the FPE estimate of the test error. We note that the minima of 
the estimated test error and the experimental test error (2000 samples) are 
compatible, hence confirming that the statistical approach is viable. In the 
right panel of Fig. 4 we show the pruned network obtained. As expected we 
see that the network make use of the inputa which in lag space are closest (in 
time) to the output to be estimated. 

We present our test errors relative to the performance of a linear model. 
With a linear model with input as the networks obtains a normalized mean- 
square error defined in eq. (11) of 0.130. For the network the test error is 
reduced to 0.039. This is a reduction of the teat error with a factor 0.3. In 
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- 
~(k-15) z-15 

Figure 3: Channel equalization. The non-linear channel is driven by a low-pass 
filtered white noise signa z(k). Output from the channel is denoted z(k). The 
neural network is trained to reproduce the channel input z(k) based on a sample 
of the noisy output z(k). The variance of the channel Gaussian i.i.d. noise ~ ( k )  is 
30dB below the variance of the channel output. 

131 the reduction was from 0.0625 to 0.0256 for the back-prop net’, which 
amounts to a reduction by a factor of 0.41. 

CONCLUSION 

We have corroborated our earlier results for the sunspot series [12] by new 
results for chaotic time series prediction and channel equalization. We sug- 
gested to optimize network architectures using the Optimal Brain Damage 
pruning scheme combined with our new statistical stopping criterion. 

For the Mackey-Glass time series the pruned networks used almost all 
delayed input signals, while the networks for the channel equalizer mainly 
used the delayed inputs which are closest in time to the output signal. This 
shows that the pruning scheme effectively captures the relevant connections 
and removes unimportant hidden units. 

We succeeded in designing compact neural networks which generalized 
better than the unpruned networks. A significant gain in generalization abil- 

‘The errors in [3] are defined as the normalized root-mean-square error. Furthermore, 
it should be noted that the error for the linear network on our data is significantly higher 
than the error of [3]. This is not due to the different training set d5zs used, since the 
linear model of [3] converged very quickly. Rather, the non-linearity in our data set is more 
noticeable. It may therefore be more difficult to invert the channel with the present data 
set. 
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0.1, 1 

Figure 4: The left panel shows the evolution of training and test errors during 
pruning for channel equalization. The FPE estimate of the test error is based on 
eq. (9). The vertical line indicates the network for which the estimated test error is 
minimal. In the right panel we show the resulting, pruned, network. A vertical bar 
through a unit indicates an active threshold, full lines indicate positive connections, 
dash-dotted lines negative connections. 

ity is achieved by retraining the pruned network without weight decay. How- 
ever, note that weight decay is essential for the success of the pruning. Hence, 
we recommend pruning by Optimal Brain Damagesupplemented by our newly 
developed stopping criterion as a tool for adapting “Designer Networks” for 
time series processing. 
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