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Abstract-As a basis for an automated interpretation 
of magnetic resonance images, the paper proposes a 
fuzzy segmentation method. The method uses five 
standard fuzzy membership functions: small, small 
medium, medium, large medium, and large. The method 
fits these to the modes of interest in the image histo- 
gram by means of a piece-wise linear transformation. A 
test example is given concerning a human head image, 
including a sensitivity analysis based on the fuzzy area 
measure. The method provides a rule based interface to 
the physician. 

I. INTRODUCTION 

Physicians at the Hvidovre hospital measure the volume of 
objects inside patients’ heads using magneto-resonance (MR) 
images. The physician gets an MR image on the computer 
screen and draws out regions of interest using mouse and 
cursor. The computer calculates the area which is then used 
to calculate the volume of an object. The irnage in Fig. 1 is 
an example of a slice of the human head. The slice is 4 mil- 
limeters thick and passes through the nose, the eyes, and the 

This task becomes formidable, if the objective is, say, to 
measure the volume of the brain in a hundred patients with 
fifteen slices per patient. An automatic system that fmds the 
regions of interest and measures the area would be a con- 
siderable help. The aim of this paper is to provide a robust 
segmentation method with a rule based interface as a basis for 
such a system. 

An input image is giveri as a matrix of pixel amplitudes. 
The general rule of thumb is that small amplitudes indicate 
fluids, medium amplitudes indicate brain tissue, and large 
amplitudes indicate dense tissue, such as fat and bone 
marrow. Each pixel class occupies a contiguous range in the 
histogram of pixel amplitudes. The histogram contains several 
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peaks (modes), and the distributions overlap indicating that 
class boundaries are fuzzy. The separation of amplitudes is 
clearly an amplitude segmentation problem, and it falls into 
the category of thresholding and pixel classification problems 
(Bezdek & Pal, 1 992). 

There exists a method for obtaining fuzzy and non-fuzzy 
regions in a bimodal image (Pal & Rosenfeld, 1988). The 
method ingeniously optimizes compactness andjkzinessusing 
a single s-shaped membership function to find the minimum 
between the two peaks in the histogram. Compactness is one 
of several useful geometrical measures (Rosenfeld, 1984; Pal 
& Ghosh, 1992), that can help in the segmentation. Some 
generalisation of the method is needed, though, to apply it to 
the multi-modal problem at hand. 

Fig. I Three-level magnetic resonance image of human 
head; roughly speaking. light grey = brain tissue, grey = 
fatty tissue, dark grey = fluids. The background is a mix- 
ture. 
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There also exists a rule-based system for analysis of MR 
images in three dimensions (Raya, 1990). It computes a con- 
fidence function and confidence levels indicating membership 
of voxel classes. A voxel at the center of a class, that is, 
where the histogram has a peak, is assigned the maximum 
confidence of 1 ; monotonically decreasing levels are assigned 
to the voxels on both sides of the peak based on the shape of 
the population distribution. The system uses concepts that are 
similar to fuzzy sets, but it does not apply fuzzy sets explicit- 
lY - 

The problem at hand requires a rough segmentation with 
latitude for small variations, say, f 10% in pixel amplitudes 
as well as object positions and sizes. The method presented 
in the following uses fuzzy membership functions to cope 
with variations. 

11. SEGMENTATION METHOD 

The idea is to fit a fuzzy membership function to each 
amplitude interval of interest in the histogram. Thus fuzzy 
labels, such as small, medium and large, can be associated 
with each interval of interest. The goal is to perform the 
segmentation using rules based on the fuzzy labels. 

There are, as usual, two design questions to consider: How 
does one determine the shape of the fuzzy sets, and how 
many sets are necessary and sufficient? The first question has 
been dealt with in a particular case, namely, the fuzzy con- 
troller for cement kilns (Holmblad & Ostergaard, 1982). The 
trick is to scale the incoming measurements according to 
some piece-wise linear function, before the membership 
values are looked up in standard membership functions 
defined on a standard universe. As a result the controller's 
collection of primary membership functions has not been 
altered during its ten years of existence. 

With regard to the second design question, we have 
defined a family of five standard, or primary, sets on a stan- 

1 . 2  
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Fig. 2 Definition offizzy sets. Solid: small (S), medium 
Fr), large 65). Dotted: small medium (SM) and large 

medium (LM). 

dard universe: small, small medium, medium, large medium 
and large (Fig. 2). They are continuous functions based on 
the cosine function. These sets cover the universe in such a 
way, that any element is a full member of at least one 
primary set. The universe is the closed interval [0, 1001 cor- 
responding to percentages of full range. The width of the flat 
peaks has been designed to accomodate f 10% latitude. The 
reason for choosing cosine, instead of the more usual ex- 
ponential or power functions, is convenience; it can be ap- 
plied as a building-block in all primary sets (see the appendix 
for definitions). 

More sets can be derived in the usual manner from any 
primary sets A and B when needed, e.g., not A (1-A), A 
and B (min(A,B)), A or B (max(A,B)), very A (A'), and 
more or less A (A"). 

Since the fuzzy sets are defined on a standard universe, 
usually different from the universe of image amplitudes, a 
scaling is needed to associate the amplitudes in the image 
with the universe of the fuzzy sets (Fig. 3). We have there- 
fore defined a piece-wise linear function with breakpoints 
corresponding to anchor-points in the fuzzy primary sets. For 
a given image, the scaling function U relates amplitudes A in 
the input image to percentages P on the standard universe, by 

P = o ( A )  (1) 

An expert has to decide on the intervals of interest in the 
histogram, but, if it has a mode within such an interval with 
a valley on each side, the peak and the valleys should be as- 
sociated with a breakpoint each. The scaling function ensures 
that the valleys in the histogram are mapped onto the cross- 
over points between neighbouring membership functions, and 
that the peak is mapped onto the peak of a membership func- 
tion. For example, in Fig. 4, the second mode is mapped 
onto the set medium by associating the left valley at a, with 
the cross-over point between medium and small (at 30% on 
the standard universe cf. Fig. 2), the peak at a, with the 
center of medium (at 50%), and the right valley at a, with the 
cross-over point between medium and large (at 70%). 

Recall that a fuzzy membership function p relates per- 
centages to membership values M, that is, 

M = P ( P )  (2) 

where p is the membership function for small, medium, or 
large, for instance. The composition of (1) and (2) is 

1 0 0  
R i 

a m  plitudss 

Fig. 3 Scaling jhnction for the head image. 
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500 4. create scaling function a; 

200 - 
5 .  scale image using (1); 
6. make rules; 
7. execute rules using scaled image. 

It is important to realize that the method is intended for 
screening of many, more or less similar images, that is, the 
same slice from many patients, and step 3 is performed once 
for the whole sequence by a domain expert. 

The last step is intended to be followed by an object recog- 
nition step, possibly based on non-fuzzy features (centroid, 
area, perimeter, compactness, clustering) or fuzzy geometric 
features (area, compactness, height, width, adjacency, axes, 
density; Pal & Ghosh, 1992) - but that is outside the scope 
of this paper. The following example demonstrates some 
details of the procedure. 

1 0 0  - 
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Ill. TEST EXAMPLE AND DISCUSSION 
5 

The test image (Fig. 1) is a calculated image. For each 
slice the MR scanner produces several images representing 

0 4% 8 3  4 a5 
amplltudas 

Fig. 4 Histogram of eye region with background sup- 
pressed (top), and the result of scaling the sets small, med- 

ium, large (bottom). 

M = P(a(A))  (3) 

Our goal is to find the matrix of membership values M. 
Rather than forming a symbolic expression for the composed 
function p 0 a, which is equivalent to the scaled membership 
function, it is easier in practice to compute a(A) for the 
whole image and insert the result into )r. The computation of 
a(A) can be done in a pre-processing step, in order to bring 
down the response times during run-time. 

Conceptually, segmentation rules are in the familiar IF- 
THEN format, for example, 

IF P is small THEN region is background. 

The actual implementation deviates from this format, partly 
because of the syntax of the computer language used, partly 
because the rules are so simple. The expression for the above 
rule is rather 

background = small(P) 

The example in the next section, will show how two rules 
look in the Matlab language (Mathworks, 1990). 

Summing up, the total segmentation procedure can be 
described in 7 steps: 

1. define primary sets; 
2. compute histogram; 
3. identify anchor-points; 

different features, for example proton density and the 
relaxation times T, and T2 (e.g. Hinshaw & Lent, 1983). The 
test image is the ratio of two socalled spin-echo images 
(repetition time T, = 1.8 secs, and echo times T, = 30 and 
90 secs). The scanner is a Siemens SP63/84, and the mag- 
netic field is 1.5 Tesla. In a prototype of a segmentation 
system, the data files are imported via ascii files into Matlab 
v. 3.5g on a PC1386. The image comes in a 256-by-256 
matrix, but is reduced to 18 1 -by- 18 1 by clipping some of the 
background. 

The pixel amplitudes are positive integers corresponding to 
the damping of the echo over time. Larger numbers indicate 
larger damping, and this in turn indicates denser matter; that 
is why small amplitudes indicate fluids, medium amplitudes 
indicate brain tissue, and large amplitudes indicate dense 
tissue. 

Accordingly, the histogram has three intervals of interest. 
The two lowest intervals are identified in Fig. 4 as two 
distinct modes. The third interval of interest is difficult to see 
because of overlap with the neighbouring interval. In the 
order of increasing amplitudes, we associate the labels small, 
medium, and large with the three interesting intervals. 

The scaling function U in Fig. 3 scales the three correspon- 
ding fuzzy sets, so that they fit the intervals of interest 
(Fig. 4). After scaling the whole image, as in (l), the result 
is a matrix of real numbers between zero and one hundred 
corresponding to the standard universe. Any pixel's member- 
ship of any fuzzy set can now be looked up in the member- 
ship functions. 

Suppose we are searching for the left eye, only a few rules 
are sufficient. The eyes are filled with fluid, so the pixel 
amplitudes are small or, perhaps, small medium due to 
overlap into the next interval of interest. The position in the 
image is upper slightly left as defined in Fig. 5 corresponding 
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Fig. 5 The 2-dimensionulfuzzy set "upper slighdy left". 

to upsleft in the appendix. Assuming the background is deter- 
mined by other means, the following two rules in the Matlab 
language define the region around the eye 

fluid = and( or (siall (P) ,snediw( P) ) ,not( background) ) : 
lefteye and(fluid,upsleft); 

The result lefteye is a 181-by-181 matrix of fuzzy member- 
ship values. Its highest valued pixels have the highest com- 
patibility with the rules. Fig. 6 shows lefteye at different a- 
cuts, that is, each picture shows the pixels with memberships 
M 1 a. 

The figure shows that the set upsleft reduces the region of 
interest to a fuzzy window. It appears that the eye is deter- 
mined completely at a = 1. This is, however, partly a 
coincidence. Generally, the resultant segment may contain the 
object, as well as some other objects. A fuzzy djucency 
measure (Pal & Ghosh, 1992) and connectedness can be 
applied at this stage, in order to distinguish the eye from 
other objects by area and perimeter. 

The critical step in the procedure is the scaling. If the 
breakpoints in the scaling function are misplaced, the region 

l o o t  1 lool 
0- 

0 100 0 100 

( a )  membership = 1 (b) membership >= 0.8 

0- 

0 100 0 100 
0- 

(c) membership >= 0.5 (d) membership >= 0.2 

Fig. 6 Thejiuzy set "lefteyew at diTerent membership 
levels (dpha-cuts). 

of interest may get membership values less than 1 in the final 
fuzzy set. Given the primary sets, the sensitivity depends on 
the widths and the positions of the scaled membership 
functions. Thus, the sensitivity is related to the cross-over 
points and peak points in the scaled membership functions. 
To get a quantitative indication of the robustness, we have 
used the fuzzy area, a b )  = Ep (Rosenfeld, 1984) in two ex- 
periments on the head image data. 

In the first experiment, the cross-over point a, between the 
sets small and medium was moved from al to a, over the 
valley between the neighbouring peak points. As a, moves, 
the area a(smaZ1 and medium) varies (Fig. 7 ,  left). The area 
can be perceived as a measure of ambiguity, in the sense that 
it measures the area of the transition zone between the sets 
small and medium. Ideally, this area should be minimal, 
which is the case when a2 corresponds to the valley in the 
histogram. From the figure, it can be measured that a change 
of +_lo% from the optimum, implies at most 7% change of 
area relative to the maximal range of change. The change is 
less than 5% relative to the absolute area. 

In the second experiment, the peak amplitude a, of the 
scaled set medium was moved from az to a, over the peak in 
the histogram (Fig. 7, right). The area a(medim) can be per- 
ceived as a measure of the goodness of the fit. Ideally, this 
area should be maximal, which is the case when a, corre- 
sponds to the peak in the histogram. From the figure, it can 
be measured that a change of f 10% from the optimum, im- 
plies at most 9% change of area relative to the maximal range 
of change. The change is less than 1 % relative to the absolute 
area. 

This is so far regarded as satisfactory, since the response 
is within the (arbitrary) design margin of f 10%. Both curves 
are remarkably smooth with a distinct optimum. This could 
be utilized to automatically adjust the break-points of the 
scaling function instead of a manual tuning (cf. Pal & 
Rosenfeld, 1988). 

The example went well in the case of the eye, because it 
is a uniform and homogeneous object. It is difficult, 
however, to find the nose and the ears, because the method 
is not suited for line type objects. In the case of the brain, it 
is possible to find a segment containing the whole brain, but 
it contains holes due to objects inside, such as patches of 

800 I S710r  . 

~~~~U S68S 3680 

1.5 2 2.5 s 3.5 

~~~~U S68S 3680 

1.5 2 2.5 s 3.5 

amplitude m"t"da 

Fig. 7 Resultsfrom sensitivity analysis. Area of overlap 
between small and medium (lefl). and area of medium sized 

pixels (right). 
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fluid. Smaller objects, like the cerebellum and the ventricles 
are better targets for the method. 

IV. CONCLUSION 

The proposed segmentation method is designed for grey- 
scale, multi-modal images with overlapping individual distri- 
butions. The method is developed for screening of many 
images that are more or less similar. In comparison with the 
method by Pal & Rosenfeld (1988), the proposed method 
generalises to multi-modal images, and in comparison with 
the rule-based system by Raya (1990) , the proposed method 
is on the more fum foundation of fuzzy sets. Furthermore, 
the method uses essentially the scaling mechanism of Holm- 
blad & Ostergaard (1982) in order to standardize the defm- 
ition of fuzzy membership functions. The method may be 
regarded as a segmentation method which may precede region 
growing and edge detection steps in an object recognition 
system. It is characteristic that this method provides a rule 
based interface. 

The further plans are to extend to three dimensions and 
then analyse pathologies. A perspective is to have the 
physician design and input rules for object extraction, 
independent of the domain expert. 
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APPENDIX: Definitions 

The primary fuzzy sets are defined using a cosine function. 
The s-curve is defined by the equation 

, x<x0- b i" x-xo 
s (x , , b ,x )  A V.2 + l / z ~ ~ ( - z )  , x,-b<xsx, (4) 

b 
I' 

where x, is the coordinate of the peak, x is the independent 
variable (image amplitudes), and b is the width of the 
"proportional" band, i.e., the section with a slope. The 
inverted s-curve is defined 

9 x-0 I' x-xo 
z ( x , , b , x )  P 1h + ~ h c o s ( - - z )  , xosnsxo+b (5) 

b 
, x>xo+ b 10 
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