
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Quantized, piecewise linear filter network

Sørensen, John Aasted

Published in:
Proceedings of the IEEE-SP Workshop Neural Networks for Signal Processing

Link to article, DOI:
10.1109/NNSP.1993.471841

Publication date:
1993

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sørensen, J. A. (1993). Quantized, piecewise linear filter network. In Proceedings of the IEEE-SP Workshop
Neural Networks for Signal Processing (pp. 470-474). IEEE. DOI: 10.1109/NNSP.1993.471841

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/NNSP.1993.471841
http://orbit.dtu.dk/en/publications/quantized-piecewise-linear-filter-network(2a541899-99d4-4f2d-ac6b-86dc780f2dfb).html


Quantized, Piecewise Linear Filter Network. 

John Aasted S~rensen, Electronics Institute, Build 349 
Technical University of Denmark, Lyngby 

DK-2800 Denmark 
email: jaas@dthei.ei.dth.dk; fax: +4542880117 

Abstract A quantization based piecewise linear filter network is defined. 
For stationary signals this filter network is a generalization of the classical 
Wiener filter, with an input signal x ,  and a desired response d,, 
n = 1 ,2 , .  . .. The object of the piecewise linear filter network, is the ap- 
proximation of a possible nonlinear function G ( z )  between x ,  and d,. A 
method for the training of this network based on local approximation in the 
input space is devised. The training is carried out by repeatedly alternating 
between vector quantization of the training set into quantization classes and 
equalization of the quantization classes linear filter mean square training er- 
rors. The equalization of the mean square training errors is carried out by 
adapting the boundaries between neighbor quantization classes such that 
the differences in  mean square training errors are reduced. 

Introduction 
A quantization based, piecewise linear filter network is defined. For sta- 
tionary signals this filter network is a generalization of the classical Wiener 
filter [l], with an input signal z, and a desired response d,, n = 1,2 , .  . .. 
The object of the piecewise linear filter network [2] is the approximation of 
a possible nonlinear function G ( x )  between x ,  and d,, as shown in Fig. 1. 
The training of the filter network is carried out by repeatedly alternating 
between vector quantization of the training set { x , ,  d,, n = 1,. . . , N) into 
quantization classes Qi and equalization of the quantization classes linear 
filters mean square training errors J i ,  by adapting the boundaries between 
neighbor quantization classes, such that the differences in meau square er- 
rors is reduced. 
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The optimization criterium used in the training of the filter network is 

i : quantization classes 

(i, j )  : neighbor quantization classes 

The first sum in J reduces the total training error of the linear filters wi, 

associated the quantization classes and the second sum equalize the training 
errors by controlling the boundaries between neighbor quantization classes. 
Piecewise linear filters are given in [3] ,  [4] and [5] .  In [3]  the local linear fil- 
ters are constructed for each partition resulting from a vector quantization. 
In [4] a piecewise linear filter is devised, based on the "canonical piecewise- 
linear (PWL) structure" and [3] is based on a scalar quantization of the 
filter outputs, where the filters are organized in a tree structure. 

The Constituent Elements of the Training Al- 
gorit hm 
{x,, d,, n = 1 , .  . . , N } :  Training set. 
M : Dimension of input space. 
x i  = (:,, x , - ~ , .  . . , x , - ~ + 1 )  where ' denotes transposed. 
X = [xn] E R(N-M+l )xM 

Xd = [xd,] E R(N-M+')x(M+') 
xd:, = rx; , dn3 

dist(xd,, xd , ) :  Distance between xd, and xd,. 
s : The number of quantization iterations. 
k : The number of equalization iterations at  a given number of quantiza- 
tions. 
Q3: The number of quantization classes after s quantization iterations. 
&i = (xdij E quantization class no. i } ,  j = 1,.  . . , p i ,  i = 1,.  . . , Qs 
q,: The number of training elements in quantization class no. i. 
Jk = [ J f ] ,  i = 1 , .  . . , QS: Mean square error of the linear filter in quantiza- 
tion class no. i at the equalization iteration no. k 
W k  = [w!] E R(M+')XQs : linear filters of the quantization classes. 
Ck = [ c j ]  E R(M+l)XQs : Mean values for quantization classes. 
Q k  = [q f ]  E (0, l}(N-M+')xQa: Partition matrix for Xd. 
qj = [qFj] where q$ = 1 if xdj E quantization class no. j. Otherwise qtj  = 0. 
Pk = [ p $ ]  E ( 0 ,  l } Q s x Q s :  Neighbor matrix for quantization classes. 
p:j = 1 if the quantization classes i and j are neighbors. Otherwise pFj = 0. 
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Training Algorithm Overview. 

The training algorithm shown in the next section, is based on two nested 
operations carried out iteratively. The first operation is vector quantization 
of the training set, represented by the matrix Xd. The result of this is the 
mean values of quantization classes CO, the training set partition matrix 
Qo,  the neighbor matrix Po of the quantization classes and the mean square 
training errors Jo of the quantization classes. 
In the second operation, denoted equalization, the quantization classes are 
adapted through the operation adapt quantization classes according to the 
current training errors of the classes and their neighbor classes training 
errors. The two adaptation rules considered here are: 

Rule 1: Adapt the current quantization class in the direction of the largest 
training error gradient of the neighbors to the current quantization 
class. 

where: i , j  = 1,. . . , Qs, h ( z )  = 0.5(121+ z), pfJT1 : neighbor matrix element 
and pi, is a constant. 

Rule 2: Adapt the current quantization class in the direction of the mean 
training error gradient to the neighbors of the current quantization 
class. 

vi is the number of neighbor quantization classes of class i. 
Both rules leads to the transformation: 

Ck = Ck-lrk-1 where rk-l = [yij] E R Q a x Q =  

Rule 1 leads to these properties of I?: 

7'. . . - 0  
lJY]% - . 

If -yii = 1 then the quantization class no. i has a local (global) maxi- 
mum in the training error, compared to its neighbors. At least one -yii 

will be equal to 1. 

r is a column stochastic matrix. (Each column sums to 1). 
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Rule 2 leads to these properties of I?: 

yij  < 1 

0 If sign(yij) = -1 for i = 1,.  . . , QS, i # j then the quantization class 
j is a local (global) maximum. 

If Sign(yij) = 1 for i = 1 , .  .. , Q s , i  # j then the quantization class j 
is a local (global) minimum. 

0 I? is a column stochastic matrix. 

The adaptation is followed by a minimum distance classification of the train- 
ing set using Ck and finally determination of the local filter matrix wk. 
The results of the training algorithm are the quantization class means C k  
defining the quantization classes and the local linear filters wk. 

The Training Algorithm. 
Initialize: 
s = 0 : The number of quantization iterations. 
k = 0 : The number of equalization iterations. 

Ao : Identity partition for the training set. 
0' : Mean value of the training set. 
while IJ"-' - J3l/J"-'  > QUantiZeth,,,. 

J-' = 00, J O  = 0. 

s = s + l  
(CO, Qo, Po, Jo) = vector quantization ( A k ,  O k , X d )  
k = O  
while max(ij) lJ! - J f I p f j / J j  > Eq~uQli te t~, . , , ,  

k = k + l  

( Q k ,  P') = classify training set(Xd, Ck)  
(W', Jk)  = quantization class filters(Qk,Xd) 

J k  = ~~~, Jf + 0.5C21 

( C k )  = adapt quantization classes(Ck-l, Qk-' 

IJf - J!/p$ 
endwhile equalization 
J s  = J k  

Ok = c k  

Ak = Qk 

endwhile quantization 

Result: 
Wt : Quantization class filters. 
C;: Quantization class means. 
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A Training Example 
A training set is defined as follows: 
2,: White, Gaussian noise, ~2 = 1. 
Prefiltering: y,, = 0.5y,,-1 + x,. 
Scalar, 2-slope nonlinearity: d, = f(y,,) where: 

- f ( - -X) 
f(.) = 2 f o r  0 s x  5 0 . 5  

A training set with N = 200, wdim = 2, pi, = 1.0 leads to the following 
ratio between the mean square training error of the linear system and a 
quantized system with 4 quantization classes: 1.6. 

{ 0.666 - 0.3333: - 0.5 5 x 

References 

1. 

2. 

3. 

4. 

5 .  

S. Maykin, ”Adaptive Filter Theory”, 2. Ed, Prentice-Hall, 1991, 

J .Aa. S~renseii, ” A  Family of Quantization Based Piecewise Linear 
Filter Networks”. IEEE ICASSP-92, March 23-26., San Francisco, 
USA. 

Todd K. Leen, Nandakishore Kambhatla, ”Fast Non-Linear Dimen- 
sion Reduction.” Neural Networks for Computing Conference. 
Snowbird, Utah, USA, April 13-16. 1993. 

Ji-Nan Lin, Rolf Unbehauen, ”Adaptive Nonlinear Digital Filter with 
Canonical Piecewise-Linear Structure”. 
IEEE Trans. CAS-37, March 1990. 

Saul B. Gelfand, C.S. Ravishankar, Edward J .  Delp, ”A Tree-Structured 
Piecewise Linear Adaptive Filter”. IEEE ICASSP-91 pp.2141-2144. 

I 

Figure 1: Adaptive filter modelling a nonlinear functioii G(x) 
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