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We use Bayesian methods to design cellular neural networks for signal processing tasks and the 
Boltzmann Machine learning rule for parameter estimation. The learning rule can be used for 
models with uhidden" units, or for compietely unsupervised learning. The latter is exemplified by 
unsupervised adaptation of an image segmentation cellular network, in particular we apply the 
learning rule to adaptive segmentation of satellite imagery. 

1 Introduction 

The Bayesian or Maximum Posterior approach is a very successful device for signal processing 
[15, 7, 111, a particular attraction is that it leads to algorithms that map well onto networks of 
locally connected, simple processing elements ie. cellular neural networks [4]. With the advent of 
low-cost massively parallel hardware, this virtue may end up being decisive for (near) future real 
life applications. However, while the Bayesian approach allows formulation of collective models 
that solve complex signal processing tasks, general and flexible tools for parameter estimation 
are lacking. Direct maximum-likelihood estimation is hampered by the difficulty of obtaining 
analytical expressions for derivatives of normalization constants [l]. Besag has introduced two 
methods based on approximate maximum-likelihood estimation, the coding method [l], and the 
pseudo-likelihood method [2]. Both methods pose difficulties if the image model includes non- 
observable attributes ie. hidden units. In this contribution we discuss the use of the Boltzmann 
Machine learning rule [lo] for parameter estimation. The learning rule may be applied to general 
situations with hidden units without cotiplication. We address in this presentation Unsupervised 
learning. 

Since the phase-space distribution of a dynamical system in contact with a heat-bath is a Gibbs 
distribution; sampling from such distributions have been central to  simulations of statistical 
physics systems. The standard simulation tool is due to Metropolis et al. [13]. Geman and 
Geman [7] introduced Metropolis sampling from Gibbs distributions as a simulation tool for 
visual reconstruction and showed that a Simulated Annealing strategy [12] could improve the 
speed of the sampling process. The sampling process implements a stochastic neural network 
with symmetric connections. Hinton and Sejnowski [lo] studied supervised learning in such 
networks and introduced the term Boltzmann Machines to emphasize the relation to statistical 
physics. Invoking the Mean Field approximation, Peterson and Anderson derived a deterministic 
selfconsistent set of equations for the time-averages of the dynamical variables. Using these 
averages in the learning rule, they obtained substancial improvements in speed and performance 
1141. 
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In the next section the Bayesian approach to signal processing is outlined, and we discuss the 
design of cellular networks using the Mean Field approach. In section three we show how 
the Boltzmann Machine learning rule may be applied for parameter adaptation. Section four 
contains experiments on image segmentation and concluding remarks. 

2 Bayesian Signal Processing 

The Bayes approach to signal processing has a long tradition, see e.g. [ll, 71, or [5] for a 
recent introduction. The basic idea is to consider both the source (un-degraded) signal and 
the degradation as stochastic processes. The Bayes formula can then be used to construct the 
distribution of the reconstructed signal (z), conditioned on the observed degraded signal (y): 

According to the standard interpretation the conditional distribution is the product of the 
distribution of the degradation process: P(ylz) E P ( z  4 y), and the prior distribution of the 
reconstructed signal P(z). P(z1y) of equation (1) is referred to as the posterior distribution. A 
useful estimate of the recontructed signal is given by the location of the mode of the posterior 
distribution, the socalled Mazimum A Posteori (MAP) estimate. In the following we derive the 
posterior distributions for an image segmentation model. 

2.1 Image Segmentation 

Segmentation is an important step in many computer vision systems, however even in its simplest 
form: binarization of a grey-scale image there exist no established standard solution!. Here we 
use the Bayes scheme to derive a simple cost-function that can be minimized by a cellular neurd 
network. The resulting cost-function is identical to the one used by Carnevali et al. [3]. The 
target signal is a smooth binvization of a grey-scale image d j ,  in terms of two-valued pixels 
Sj E {-l,+l}. The prior distribution is designed to emphasize smoothness: 

M(j,j’)  defines the connectivity, hence the unit cell of the cellular network. Here we just use 
the nearest neighbors. More complex connectivity structures have been designed for modelling 
textural features [SI. 

We assume the signal degradation to consist in addition of white Gaussian noise. This degra- 
dation process leads to the following conditional distribution: 
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We want to approach real data for which the noise variance is unknown, hence this parameter 
has to estimated as part of the learning process. As above we use Bayes to  combine and obtain 
the posterior distribution. Clearly it is of the Gibbs form', with a cost-function given by the 
negative logarithm of the posterior distribution: - logP[Sldl. We note that the state dependent 
part of the cost-function is h e a r  in the parameters M ( j , j ' )  and w d  l/02. 

2.2 Network Design 

The Mean Field annealing method for estimation of averages over Gibbs distributions is well 
documented in the litterature see e.g. Hertz et al. [9]. The cellular neural network is designed 
to minimize the Mean Field free energy F, and this can be done either in analog mode: 

or in discrete time mode: 

where the time-scale A/T  can be used to regularize the stability of the iteration process in 
digital implementation[l4]. Pi is quantify the annealing schedule, in this work we use the simple 
schedule: 0' = p' + (t/tmW)(p2 - PI) .  

In summary, the unit cell of the cellular network contains one unit approximating the local 
thermodynamic average: (Sj), and one input unit dj .  We assume that M ( j , j ' )  connects nearest 
neighbors symmetrically with weight w,, and the weights to the input units are all W d .  

3 Boltzmann Machine Learning 

In order to apply the cellular network above we have to  estimate the parameters (denoted 
w = (wn, W d ) ) .  Since our network is based on the Gibbs distribution we invoke the Boltzmann 
Machine learning rule [lo, 14, 91. The objective of the Boltzmann Machine learning rule is to 
minimize the Kullback information distance between a target distribution Pw.[Sldl, (of which the 
training set is a finite sample), and the distribution Pw[SldJ sampled by the current (stochastic) 
network with parameters w. 

The learning rule is formulated for a general system specified in terms of inputs, hiddens, and 
outputs: (2, h, v) .  Since the states of the hidden units are unknown for the learning examples, we 
compare the marginal distributions, i.e. the distributions integrated over the hidden variables: 

'A distribution of the form P(z) = Z-'ezp(-E(z)/T), where E(%) is a cost-function, bounded from below, 
and T i s  a parameter 
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Figure 1: Subsampled, 128x128 pixel, preprocessed, Landsat image providing the raw (thresh- 
olded) evidence for water in the Igaliko region of Greenland (left), and the output evidence 
obtained by the unsupervised cellular neural network (right) 
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s Dx is short for s nj dzj. The learning algorithm is derived by gradient descent minimization 
of the information distance. The recursive learning algorithm reads: 

- 

for a any cost-function linear in the parameters w,: E(x,h,y) = ~ ,n , (x ,h ,y )w, , ,  where 
Q, (5,  h, y) is an expression in the stochastic variables. (...)c,ornped indicates that the average is 
performed with respect to the current Gibbs distribution, with ked values for all the stochastic 
variables that are specified as input or output variables in an example of the database, i.e. (2, y). 
Similarly (...)free is the average with only input variables fixed. In brief we can characterize the 
learning process as follows: the parametars are adjusted to minimize the difference between the 
correlations in situations with and without the teacher specifying the correct output [lo, 91. 

We can employ the above formalism for unsupervised learning if we let our output units 5’ play 
the role of hidden units and partition the input image d into a Boltzmann “input” part and 
a Boltzmann “output” part. The Boltzmann learning process then adapts the model until we 
reach a parameter set for which the “output” part of the image is estimated correctly from 
“input” part. Our procedure can be viewed as an example of statistical cross-validation. 
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Figure 2: Unsupervised Boltzmann learning of the noise parameter of the cellular segmentation 
network. 

4 Experimental and concluding remarks 

Our case-study concerns the segmention of a subsampled Landsat satellite image. The input 
signal is a preprocessed 128 * 128 pixel image representing the evidence for water in the Igaliko 
region in Greenland. The preprocessing scheme establish the evidence using four frequency 
bands. Part of the image has been classified manually into five classes and the evidence is the 
result of a simple linear model relating the intensities in the four bands to the classification. 
Thresholding the evidence at zero results in Figure la). We adapt the noise parameter of the 
cellular network in unsupervised mode using a gradient descent parameter of 0.15. In Figure 
lb) we show the segmentation of the adapted network. The convergence of the noise-parameter 
Wd towards the selfconsistent optimal value is presented in Figure 2. 

In conclusion we have shown that the Boltzmann Machine learning rule can be used for identifi- 
cation of parameters in cellular nenral networks designed using Bayesian reasoning. By invoking 
a crossvalidation-like procedure we were able to adapt the parameters of the cellular network 
without supervision, hence generalizing our earlier results on parameter estimation in cellular 
networks with hidden units [SI. 
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