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ABSTRACT 

In this paper evidence is compiled to demonstrate 
that asymmetric hunting of railway vehicles and chaotic 
motion occur as a consequence of the instabilities of 
the vehicle above certain critical speeds. References 
are made both to theoretical investigations of mathem- 
atical models and to a scale-model roller rig experi- 
ment. These instabilites may be a cause for the un- 
even wear of wheels which has been observed on some 
unit trains running always between the same two des- 
tinations over the same line. 

INTRODUCTION 

Recent investigations of hunting show, that there 
exist various kinds of hunting motion. It is often the 
case - as is tacitly assumed - that the wheelset or the 
truck will oscillate periodically around the track 
centerline after the onset of hunting. The assumption 
is based on the symmetries of the wheel and the track 
respectively. 

In spite of these symmetries the wheelset may os- 
cillate periodically around an off-centered line paral- 
lel to the track. In that case there exist two equally 
probable oscillation modes; one is the reflection of 
the other in the track center line. It will depend on 
the disturbances in the track geometry, which of the 
two possibilities the wheelset or bogie will choose, 
after the speed of the vehicle has passed a certain 
critical speed. Each of the two asymmetric modes is 
very stable, so it may need a large disturbance or a 
change in the direction of the track to "knock" the 
asymmetric oscillation out of its mode. 

tude leads to flange contact at one or both rails. 
Theoretical investigations have demonstrated, that the 
oscillations often have an erratic appearance. A closer 
investigation of these oscillations then have revealed 
the existence of chaos. 

dangerous than a periodic oscillation. The plotted time 
series look like strong periodic oscillations with 
small erratic disturbances superposed. What is very im- 
portant, however, is that chaotic wheelset o r  bogie 

Another situation occurs, when the hunting ampli- 

All results so far indicate that chaos is no more 

oscillations have been found often to be asymmetric. 
Either the oscillations are purely asymmetric or the os- 
cillations jump back and forth between two asymmetric 
modes in an erratic fashion. Symmetric chaotic motion 
may occur at low speeds. 

Although the bias in the yaw is very small, it may 
have a measurable effect on trains running back and 
forth over the same line under conditions, which change 
only little from time to time. Once the wheels of a 
wheelset undergo different wear as a consequence of a 
bias in yaw, the effect is selfamplifying. The bias in 
yaw will be more pronounced, which leads to a growing 
differential wear and so on. 

In this article we present results from investiga- 
tions of a mathematical model of the motion of first a 
single wheelset and next of a truck. In all models it is 
assumed the motion is with constant speed V along an 
ideal, rigid, straight and horizontal track. The speed 
V is the control parameter in the problems. All dis- 
placements are measured in a coordinate frame, which 
moves along the track centerline with the speed V. 

THE WHEELSETS 

Knudsen et al. ( 1 9 9 2 )  investigated a model of a 
wheelset suspended in a frame. The frame can rotate 
around a frictionless, vertical pivot in the car floor. 
It is assumed that the vertical displacements are small, 
so they only need to consider two degrees of freedom: 
Lateral and yaw motion. Only the lateral motion is re- 
stricted by linear springs without damping. The model is 
shown on figure 1. 
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The wheel profile is conical, and the rail surfaces 
are approximated by arcs of a circle. Apart from the 
springs all parts are assumed to be perfectly rigid. The 
creep forces are determined by Vermeulen and Johnson's 
(1964) theory. The flange force is approximated by a 
very stiff linear spring with a dead band. Gravitational 
stiffness is ignored. The mathematical formulation of 
the problem as a system of four ordinary, first order 
differential equations is presented in (Knudsen et al. 
1992). Table 1 presents some of the parameter values 
used. 

Table 1. 

THE TRUCKS 

True (1992) has examined Cooperrider's (1972) truck 
model. It consists of two of the wheelsets Knudsen et 
al. (1992) examined, suspended in a stiff frame. In ad- 
dition to the lateral springs both longitudinal and 
vertical springs are added in the primary suspension. A 
secondary suspension system connects the frame with the 
car body. Figure 2 shows the model of the truck. The 

constant value 

1022 kg 
678 kgm2 
0.716 m 
9.1 rn 
1.823~ 104Nm-l 
14.6OMNm-1 
0.4572 m 
0.05 
0.15 
lOkN 

description 

mass of wheelset 
moment of inertia 
half of track gauge 
dead band 
lateral spring constant 
"flange spring'' constant 
centered wheel rolling radius 
slope of wheel profile 
coefficient of friction 
N is the vertical force 
between wheel and rail. 

Jaschinski (1990) and Knudsen et al. (1991) consider a 
dicone suspended in a moving frame by longitudinal and 
lateral springs in the outer ends of the dicone. The 
flange forces are ignored. It is considered as a simple 
model of a real wheelset on rails. It still has most of 
the basic properties of the real wheelset on rails since 
the creepage-creep force relations are assumed to be 
nonlinear. The creep forces in the model depend not only 
on the creepages but also on the constraint forces. The 
model has three degrees of freedom: Lateral, yaw and 
roll motion. For the calculation of the creep forces 
they use an approximation of Kalker's creep force laws 
for small creepages with a constant saturation value 
for large creepages. The equations of motion and their 
derivation are presented in (Jaschinski, 1990). Jaschin- 
ski also made experiments with his dicone on a small 
roller rig. In Table 2 some of the parameter values used 
are shown 

Table 2. (from Jaschinski, 1990 p. 138) 

constant value description 

m 16.08 kg mass of the dicone 
I 0.366 kgm2 moment of inertia 
a 0.1506 m half distance of nominal rol- 

klk2 104-105Nm-1 variable spring constants 
ro 0.1 m centered cone rolling radius 
A 0.0262rad cone angle 

N 78.87N normal force in contact point 

ling radii 

U 0.12 coefficient of friction 

for the nominal position of 
the dicone. 

Meijaard (1991) also investigates the dynamics of a 
suspended wheelset theoretically. His model has two de- 
grees of freedom (lateral and yaw motion), and the dif- 
ferential equations are nondimensionalized through a 
proper scaling. His creep force calculations are based 
on linear Kalker theory, and the flange forces are 
modelled by a partially elastic impact involving a coef- 
ficient of restitution. The wheelset is suspended by 
linear lateral and yaw springs in a frame. 

2 1  I L r r 4  

BT I .  

--* 
V 

- 1  I-T' 
2b 

Figure 2 Bogie model with the notation used. 

values of the additional parameters are given in (True, 
1992). The model has seven degrees of freedom: Lateral 
and yaw for each of the wheelsets and truck frame and 
also roll of the truck. 

Jaschinski (1990) also examined a truck model. It 
is made in scale 1:5, and it consists of a truck frame 
and two conical wheelsets without flanges. The primary 
suspension consists of longitudinal, lateral ad ver- 
tical spring without dampers. The frame is fixed only 
longitudinally by a spring on either side, and it can 
move freely in the lateral and yaw direction. 
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NUMERICAL ANALYSIS 

All the theoretical results were obtained through 
numerical integration of the system of equations of mo- 
tion. Knudsen et al. (1992) use either the LSODA rou- 
tine, which automatically switches between stiff and 
non-stiff solution methods whenever needed or an eighth- 
stage explicit Runge-Kutta pair of order five and six. 
It uses variable time step and error control. True 
(1992) uses the LSODA routine in connection with the 
continuation or path following routine PATH. PATH deter- 
mines the solutions with a relative error of lo-'. 

veloped software and the earlier mentioned software 
package PATH. Jaschinski (1990) uses a routine DASSL, 
which provides the solution of the system of differen- 
tial equations and the algebraic constraint equations 
simultaneously (Brenan et al. 1989). 

order Runge-Kutta method with a fixed stepsize. Since 
the dynamical system has isolated discontinuities, the 
integration is restarted at the points of discontinui- 
ty - possibly with an adjusted initial value. 

Knudsen et al. (1991) use specially in-house de- 

Finally Meijaard (1991) uses a classical fourth- 

Table 3. (from Jaschinski, 1990 p. 70-72) 

constant value 

mF 42.82 kg 
m 16.08 kg 

0.769 kgm2 rFX 0.921 kgm2 
IN 1.573 kgm2 
IF'= Iz 0.366 kgm2 
Ix 0.0605 kgm2 
cyc 6.4.104N/m 
cxcy 2.5.105N/m 
X Y  
C 5.0.105~~ 

r0 ? 
hZ 0.0262 rad 

description 

mass of frame 
mass of one wheelset 
moments of inertia 
for the frame 

moments of inertia 
for the wheelsets 
stiffness of primary springs 
stiffness of secondary 
springs 

cone angle 
centered rolling radius 

RESULTS, WHEELSETS 

Knudsen et al. (1992) found, that their wheelset 
model has one asymptotically stable solution for the 
speed V less than 10.050 m/s. The solution describes a 
steady, centered motion along the track. At the crit- 
ical speed V = 10.050 m/s the solution loses it stabil- 
ity, and a limit cycle grows up with the speed. Already 
at V = 10.056 m/s flange contact occurs. The"amp1itude" 
of the motion then grows much slower, and the ampli- . 
tude is no longer well defined. It lies within a band, 
which widens with growing speed. The phenomenon can be 
illustrated on a socalled bifurcation diagram, figure 3, 
where the positive maximum of the lateral displacement 
of the wheelset is plotted against the speed V. 

the same speed V indicates, that the oscillation is no 
longer periodic. Knudsen et al. (1992) verify in their 
paper, that the motion is chaotic, but it is obvious 
from figure 4 that the chaotic deviations from theperi- 
odic motion hardly will be visible in a time series 
such as figure 4, where the lateral displacement is 
shown versus time. 

The structure of figure 3 with narrowing bands in 
certain speed ranges is typical of chaotic behavior. 
Around V = 10.31 m/s the chaos concentrates onto four 
narrow bands. They represent two asymmetric solutions 
with double period. These modes go through a frequency 
doubling at V = 10.32 m/s, and then the wheelset will 
oscillate in one of t w o  different asymmetric modes up 
to V = 10.59 m/s. Please remember that only thepositive 

The broad band of oscillation maxima for one and 

1 0.0092 

i d 
0 .rl 0.0091 
4 
(d 

.I+ t a 

0.0089 ! 1 ~ 1 1 ~ 1 1 1 1 1 " ' ~ " ' ~ ' I ' " " " " l " " ~  

10.00 10.20 10.40 10.60 
V m/s 

Figure 3 Maximum lateral displacement versus time. For 
10.056 m/s < V < 10.31 m/s the wheelset moves chaotic- 
ally, and for 10.32m/s <V<10.59 m/s the wheelset os- 
cillates in one of two different asymmetric modes. 

0.01 0007 

0.00500 

E' 
? 0.00000 
X 

- 0.00500 
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0.'0 10.0 20.0 30.0 40l.0 50.0 
time s. 

Figure 4 Lateral displacement versus time. V = 10.1 
m/s. Chaotic motion. 

maxima of the two oscillations are shown. The upper 
branch of the plot on figure 3 thus corresponds to the 
mode, which has abiastowards the right rail. The lower 
branchcorrespondsto the mode, which has a bias towards 
the left rail. The branch in the middle corresponds to 
an unstable, symmetric oscillation, which will never be 
observed except as part of a transient below V = 10.59 
m/s. At V = 10.59 m/s the symmetric oscillation becomes 
stable, and the two asymmetric modes cease to exist. 
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Knudsen et a1 extend their investigations to V -50 
m/s, and they find no further speed ranges with symmet- 
ric limit cycles. All the stable oscillationsare either 
chaotic or asymmetric limit cycles. 

Meijaard's (1991) independent investigation sup- 
ports the qualitative picture outlined above. His res- 
ults can be summarized in the following way: For V < 1 
(nondimensional speed) the trivial solution (all dis- 
placements equal to zero) is asymptotically stable. For 
1.0 < V < 1.165 the wheelset moves chaotically. In the 
range 1.165 < V < 1.318 two asymmetric limit cycles ex- 
ist. A new phenomenon exists in the range 1.318 < V < 
1.679 where the two asymmetric limit cycles coexist 
with a symmetric limit cycle. If means, that in reality 
three different modes of oscillation may be observed. 
It will depend on the disturbances which one of the 
three modes that will be seen in experimental test. 
Above V = 1.679 the symmetric oscillation is the only 
stable solution - at least up to V = 2.0 m/s, where the 
calculations stop. 

Knudsen et al. (1991) find that their wheelset 
model has a stationary equilibrium solution - the triv- 
ial solution - which is asymptotically stable up to 
V = 15.69 m/s. At that speed an unstable periodic os- 
cillation develops with an amplitude which grows with 
decreasing speed. At V = 11.9 m/s the unstable solution 
is annihilvated in a coalescence with a stable peri- 
odic solution, which exists only above V = 11.9 m/s. 
This gives rise to a hysteresis phenomenon that is 
wellknown from road tests. The vehicle runs steadily up 
to a certain speed VU, where it suddenly changes into a 
measurable hunting oscillation. When the vehicle slows 
down, the hunting persists until a lower critical speed 
VL is reached, where the hunting suddenly stops. In the 
speed range VL < V < Vu there exist two stable modes: 
The stationary solution with no hunting and a hunting 
mode. The critical velocity Vu is sensitive to external 
disturbances and may often be difficult to measure ac- 
curately in field experiments. In such cases the change 
from stationary to hunting motion is sensitive to dis- 
turbances and takes place before the speed Vu is 
reached. The larger the disturbance the smaller the 
speed at which the transition occurs. 

At the speed V = 12.25 m/s the symmetric limitcycle 
loses stability, and two asymmetric limit cycles de- 
velop. An overall picture of the transitions ispresent- 
ed on figure 5 and the twoasymmetric limit cycles are 
shown on figure 6. When the speed is increased further, 
the asymmetric limit cycles lose stability and the mo- 
tion becomes chaotic through a cascade of period 
doublings. This transition is a wellknown feature in 
nonlinear dynamics. Also in this case the amplitude of 
the chaos is so small that it is unlikely that it will be 
detected in a field test. The chaos disappears in a re- 
verse period doubling cascade ending at V = 12.56 m/s, 
where two stable asymmetric limit cycles develop. At 
12.57 m/s the original symmetric limit cycle regains 
its stability. At higher speeds other transitions oc- 
cur, and the intekestedreader is referred to Knudsen et 
al. (1991). 

RESULTS, TRUCKS 

True's(1992) results are shown on figures 7 and 8 .  
The truck model has a stationary solution, which is 
asymptotically stable up to V = 65.4 m/s. A periodic os- 
cillation starts at V = 65.4 m/s, its amplitude grows 
with decreasing speed, and it is unstable. At V = 63.6 
m/s flange contact occurs, and a stable, symmetric limit 
cycle develops. Its amplitude grows with the speed until 
around 113 m/s. A detailed picture of the stable and 
unstable solutions around V = 110 m/s is shown on figure 

0.015 

0.01 0 

U 
U 
L v 

5 > 
0.005 

0.000, 

/-- 

I I I I I 
.O 1 li0 12.0 13.0 14.0 15.0 16.0 

Speed (m/s) 

Figure 5 Maximum yaw angle versus speed from Knudsen 
et al. (1991). 

0.012 

0.008 

0.004 
A 
U e - 0.000 

>- 5 
-0.004 

-0.008 

-0.01 2 
-1 18 -0.b04 O.ob0 0.d04 O.ob8 

Lateral deviation (m) 
Figure 6 Projection of the two asymmetric limit cycles 
at 12.45 m/s onto the plane of lateral and yaw-dis- 
placements. From Knudsen et al. (1991). 

8. I n  addition to the solutions, indicated on 
the figure, asymmetric chaotic solutions were found 
around V ='113 m/s. An evidence hereof is presented on 
figure 9. In the projection shown a limit cycle would 
have been a closed curve. The width of the band shown 
is a demonstration of the erratic nature of the motion, 
and it corresponds to the band of positive maxima shown 
on figure 3 in the preceding section. Notice that the 
phase plotextendsfrom the lower left hand corner to the 
upper right hand corner with the extrema1 values close 
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Maxlx51 m. 

1 
0.015 

0.01a 

0.005- 

1 i  
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60 80 100 120 140 160 180 200 

Figure 7 
rear axle versus speed. 

Amplitude of the lateral displacement of the 

Max x5 m. 

0.012 1 100 110 120 130 v mls. 

Figure 8 
The figure shows the maximum positive lateral displace- 
ment of the rear axle versus speed. 

A blow up of the circular domain on fig. 7. 

to the 45' line. It demonstrates that both axles in the 
bogie have a bias towards the same rail. At V = 112.7  
m/s two stable asymmetric oscillations develop, which 
continue to exist up to a very high speed. The dis- 
tance between the neutral lines of the two different 
oscillations is measured in tenths of a millimeter and 
is therefore undetectable in field experiments. True 
(1992)  calls these oscillations periodic, but recent 

E . _  I U J  
x 0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
-0.0 
-0.0 
-0.0 
-0.0 
-0.0 
-0.0 
-0.0 

- 0 . 0 1 5 0  -0.0050 0.0050 0.0150 

A projection of the phase space trajectories 
Xlm 

Figure 9 
at V = 112.9 m/s onto the Xl-X5 plane, X 1  and X5 are 
the lateral displacements of the front and rear axle 
respectively. Chaotic behavior. 

investigations indicate, that the oscillations may be 
weakly quasi-periodic. Figure 1 0  shows the lateral 

v = 1 1 7 . l m / s  
r I c 

T- 

X 0. 

0 .  

0 .  

0. 

-0. 

-0. 

-0. 

6 B 1 0  1 2  1 4  16 18 20 22 24 
T s. 

Figure 1 0  Transient behavior of the lateral displace- 
ment of the front axle at V = 1 1 7 . 1  m/s. The initial 
conditions are on the unstable symmetric solution. 
Around T = 15s. the oscillation becomes asymmetric. 
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displacement of the front axle versus time. The inte- 
gration starts with initial conditions on the unstable 
symmetric solution, and it is seen that the amplitude 
grows slowly over approximately 15 seconds. Then the 
motion changes to one of the stable asymmetric oscil- 
lations. An amplitude modulation is visible on the fig- 
ure, and it may be due to quasi-periodicity. Further 
investigations are necessary to determine the true na- 
ture of these oscillations. 

ults show the same tendency. He makes a comparison be- 
tween the numerical simulation and the experimental 
results and finds good agreement. Jaschinski finds two 
asymmetric limit cycles for his truck running between 
11 m/s and 14 m/s. This was the highest speed the ex- 
periment would allow, because the amplitude of the os- 
cillations of the flangeless wheels lead to "derailing" 
above that speed. At a speed of 13 m/s the calculated 
(11 mm) and measured (11,5 mm) amplitudes of the front 
wheelset are in very good agreement. For the rear 
wheelset the calculated values (16 mm) are somewhat 
larger than the measured values of about 13 mm. 
Jaschinski writes that the difference may be due to the 
neglect of the particular kinematics of the roller rig 
in the equations of motion. The results also show that 
both wheelsets have the same bias, and the neutral 
lines of the twodifferent asymmetric limit cycles are 
3 mm apart. This distance grows with the speed. Taking 
into account that he considers a scaled down model, the 
asymmetry is large. Jaschinski ascribes the asymmetric 
behavior to the low ratio of the lateral over longi- 
tudinal frame suspension stiffness. In his model the 
ratio is equal to 0.2. This ratio is certainly import- 
ant, but it can not be the single determining quantity. 
In Trues (1992) truck model the corresponding ratio of 
lateral over longitudinal frame suspension is around 
7*10-4, and the distance between his neutral lines of 
oscillation is measured in tenths of a millimeter. 

Jaschinski's (1990) numerical and experimental res- 

CONCLUSION 

The evidence collected in this paper shows that 
asymmetric hunting may be even more common in reality 
than symmetric hunting. Furthermore chaotic behavior 
can be expected under certain circumstances, and final- 
ly it is demonstrated that a railroad vehicle may 
behave in more than one way under the same external 
conditions (existence of multiple solutions (attrac- 
tors)). 

Although the bias in the asymmetric hunting motion 
is of small magnitude, it may lead to lopsided wear of 
wheelsets. The lopsided wear is self-amplifying, be- 
cause it leads to a decrease of the speed at which 
hunting starts, and the asymmetry thus created is bias- 
ed in the same direction as the instability on the 
track section where the asymmetric motion started. Even 
in the cases where the asymmetry is of small magnitude, 
it may have an observable effect on trainsets that run 
exclusively on a certain railroad line (suburban 
trains, subways,unit trains for coal or ore). A vehicle 
that runs all over the system will be exposed to dis- 
turbances that will act first in one and then maybe in 
the other direction, so on the average both wheels on 
a wheelset will be worn evenly. Therefore uneven wear 
caused by a hunting instability should not be observed 
very often. 

of small magnitude relative to the amplitude of the 
periodic motion on which it is superposed. It presents 
no danger to railroad operations. However large ampli- 
tude chaotic and asymmetric motion has been found in 
theoretical investigations (Kaas-Petersen 1986) at 

The erratic or chaotic behavior presented here is 

speeds that are unrealistic today. However chaotic be- 
havior depends strongly on the truck design, and in- 
vestigations of other truck models have been started 
to determine whether they move chaotically with large 
bias at realistic speeds. The kind of chaos presented 
here may only lead to difficulties in finding the 
hunting motion in theoretical investigations of rail- 
way dynamical problems. 

Finally attention must be given to multiple so- 
lutions. In numerical simulations the result depends 
on the initial conditions. If multiple solutions exist, 
there may be a disagreement between the simulations 
and the experimental results - simplydue to differ- 
ence in the initial conditions. When theoretical in- 
vestigations are made, it is therefore important to 
know all the stable solutions for a given speed when- 
ever there exist more than one stable solution. 

This work was supported by the Danish Council for 
Scientific and Industrial Research grant no. 
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