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Abstract 

The use of ariificial neural networks for biological 
sequence analysis has ncenily been strongly intensified. 
This paper describes work on ihe dificuli coding/non- 
coding classification problem in human DNA - an im- 
portant step in the informaiion processing of the living 
cell. The network approach was utilized noi only for 
gccnemlizaiion purposes, but also aa 5 tool for obiain- 
;rag knowledge aboui previously unknown local features 
of the DNA sequence. 

1 Introduction 

The study of molecular computing engines based on 
the analysis of biological sequences of chemical sym- 
bols - one dimensional descriptions of proteins, RNA 
and DNA - is faced with the accumulation of quanti- 
tative information at an ever increasing rate. The chief 
source of this information is DNA sequencing and - 
thereby - the associated amino acids in proteins; but 
data sets covering functionality and three-dimensional 
structure of macromolecules are also growing rapidly. 

Considerable advances in the development of soft- 
ware and hardware capable of mapping, analyzing and 
comparing complex sequences of chemical letters - 
including those of bacteria, yeast, and man - are 
needed to keep pace with the enormous expansion in 
the databases produced by the new efficient experi- 
mental techniques of molecular biology. The impact 
of modern methods of sequence analysis has generated 
an environment in which computer-based methods of 
analysis form an integral and vital part of the research 
process. 

In the last five years the use of non-linear neu- 
ral networks[9] for understanding and modeling the 

relation between the symbolic content of biological 
sequences and macromolecular structure and func- 
tion has been strongly intensified. Complex biological 
mechanisms are often very non-linear: small changes 
in the content of chemical components may cause large 
changes in the products of reaction chains and in 
molecular function and form. Neural networks are in 
general mostly used due to their ability to generabe, 
that is to ‘recycle’ non-linear regularities in a training 
set of examples to new cases. The utilization of neural 
networks is often questioned because of the difficulty 
in extracting knowledge from them following training. 
However, as shown below it is poesible to ‘invert’ the 
trained network and in the pattern of ita adjustable 
parameters to identify what sequence features are re- 
lated to the specific classification task carried out by 
the network. By monitoring the training procew it is 
also possible to detect abnormal examples deviating 
strongly from prevailing patterns in the training set. 
Abnormal examples may arise either from the appli- 
cation of weak classification strategies, or simply due 
to classification errors introduced randomly devoid of 
any systematics at all. In addition to errors caused by 
simple misprints in the databases, the network method 
has been able to detect errors caused by incorrect in- 
terpretation of experiments. 

2 Removal of non-coding regions in hu- 
man pre-mRNA 

Most eukaryotic genes contain several non-coding 
regions, (see Green, 1986 for a review, or the contri- 
bution from T. Schneider in this volume). In the nu- 
cleus these regions, known as introns, are excised from 
the pre-mRNA and the mature mRNA is formed by 
concatenation of the coding regions, the exons. Subse- 
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quently the mRNA leaves the nucleus to be translated 
according to the genetic code into sequences of amino 
acids. In a computer or compiler analogy this re- 
moval corresponds to the stripping of comments from 
ordinary computer programs written in high level lan- 
guages such as Fortran or C prior to the generation 
of the machine code. In these computer languages 
the beginning and end of comments are unambigu- 
ously defined by symbol patterns such as C, /* and 
*/. In the cell the splicing process recognizes se- 
quences at the exon-intron and intron-exon borders 
and is mediated by a group of small nuclear RNAs 
(snRNAs) complexed with protein as ribonucleopro- 
tein particles (snRNPs), [ll,  71. In the pre-mRNA 
sequence special regions hold very ambiguous infor- 
mation on the location of the introns or ‘comments’. 
The exon-intron border, the donor site, can be char- 
acterized by a consensus sequence[13], C ~ ~ / ~ ~ + i ~ .  
However, this consensus sequence ie insu B cient in dis- 
tinguishing, with any reasonable degree of accuracy, 
between potential sites selected by the splicing ma- 
chinery and those which are not. When the splicing 
process proceeds in the cell donor sites may therefore 
be defined by additional sequence characteristics rec- 
ognized by the snRNPs or other known or unknown 
factors. The intron-exon border is even more weakly 
defined by a consensus sequence(8, lo]. It is charac- 
terized by a 10-50 bp long polypyrimidine tract with 
strong overabundance of nucleotides C and T and very 
few AG dinucleotides. An AG dinucleotide terminates 
the intron. 

The general problem of classifying fragments of 
DNA sequence according to its function has been ad- 
dressed by several methods, primarily either based on 
the compilation of tables of codon usage[lb, 17], or de- 
tection of local non-randomness in the sequence[5, 151. 
This problem is far easier when sequence fragments are 
“pure”, that is, when they in their entirety stem from 
one specific class only. If the objective is to locate in- 
trons in unannotated DNA a high degree of accuracy 
in regions of transition between the different categories 
is of prime importance. 

Recently a neural network method for prediction of 
splice sites in human pre-mRNA has been published[3, 
1, 21. This method combines a local search for poten- 
tial donor and acceptor sites with a global evaluation 
of jumps in the coding/non-coding signals. By s u p  
pressing splice site assignments in regions of constant 
“exon-ness” a large number of false positive assign- 
ments in the interior of exons and introns could be 
eliminated, and likewise in regions of sharp transition 
in the coding/non-coding signal weak splice site a~ 

1 
A G G C A C C A G G T A G G G G A G C  

Figure 1: A small version of the feed-forward neu- 
ral network used for classifying the middle nucleotide 
in one of two categories: coding or non-coding. The 
particular architecture shown has nineteen nucleotides 
visible to it in the input layer, twenty non-linear hid- 
den units and one non-linear output unit. 

signments could be enhanced. Compared to conven- 
tional weight matrix methods the ratio between true 
and false positives could be improved by an order of 
magnitude. This work presents an analysis of the clas- 
sification strategies used by the network with the aim 
of revealing differences in the local and global sequence 
characteristics of coding and non-coding DNA. 

3 Inverting the coding/non-coding 
network 

The neural network used was of the feedforward 
type[l2, 91, see Figure 1. It was equipped with an 
input layer scanning the sequence of nucleotides, a 
hidden layer, and an output layer delivering classifica- 
tions of the nucleotide configurations in the window. 
The sliding window covered 301 bp of sequence, based 
on which the network classified the central nucleotide 
in one of two categories: coding or non-coding. TO 
each letter in the window four units were associated 
and connected to 200 hidden units which in turn 
were connected to one output unit. The coding/non- 
coding network was very large, and contained a total 
of 241,201 adjustable parameters. 

The functional steps of the network operation are 
as follows: The input layer reads a sequence fragment 
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Figure 2: For the nucleotides A, C, GI and T these 
ffour curves give the average size of the weights in 
the codingjnon-coding neural network as function of 
the position in the input window. Each point on the 
curves represents an average over 200 values of the 
input-*hidden weights for each position in the win- 
dow. 

of 301 nucleotides which is coded as a binary string 
consisting of 301 blocks of four elements. An A is r e p  
resented by the binary pattern 1000, C by 0100, G by 
0010 and T by 0001. This string of 1204 numerals 
is broadcasted to the 200 hidden units each of which 
computes a weighted sum which subsequently is made 
the argument of a non-linear function possessing a sig- 
moidal ( i .e .  Sshaped) form. The value of the latter is 
limited downwards by zero and upwards by one. With 
the 200 real numbered activities in the hidden layer 
this step is repeated for the output unit, and finally, 
the resulting real-numbered activity is compared with 
N cutoff value, which separates the two output cat& 
gory assignments from each other. 

For this network the 200 weights connecting the 
hidden units with the output unit had a large positive 
average value, meaning that input window configura- 
tions giving rise to  high activities in the hidden units 
were likely to be classified as coding, while window 
configurations inhibiting activity in the hidden layer 
were likely to be classified as non-coding. 

The size of the parameters connecting the input 
layer with the hidden layer was strongly correlated 
with both the window position and type of nucleotide, 
as can be seen in Figure 2. 

Strong network parameters in specific regions of the 

input window mean that a matching sequence compe 
sition has a high chance of being classified as coding. 
Window configurations with high adenine content in 
the righthand side, high cytosine content in the left- 
hand side, and/or anti-correlated gradients in the gua- 
nine and thymine contents were likely to be classi- 
fied as coding. Numerical estimates could be made by 
presenting lo' randomly generated window configura- 
tions to the network. 3.8% of these were classified as 
coding. They had: a) adenine and guanine contents in 
the right part exceeding the contents in the left part by 
1.1% and 1.8%, respectively; b) cytosine and thymine 
contents in the left part exceeding the contents in the 
right part by 0.9% and 2.0%, respectively. 

The prototype piece of DNA is compatible with the 
base composition in the region surrounding the accep 
tor site, where the polypyrimidine tract in the ter- 
minal part of the intron lowers the A and C content. 
Hence, in this region the network was able to perform 
the coding/non-coding classification with high confi- 
dence. 

But what about the region surrounding the donor 
site in the initial part of the intron ? By measuring the 
jump in the frequencies at the donor sitea in 95 human 
genes extracted from GenBank (all entries contained 
the complete coding sequence as well aa the complete 
RNA transcript) it was demonstrated that the features 
of the prototype also can be found here. In the laet 50 
bp of the exons and in the first 50 bp of the introns the 
jump in the C content (from 28.8% down to 24.4%) and 
in the G content (from 27.9% up to 33.6%) was moet 
significant and in fine agreement with the high aver- 
age strengths of the network weights for C and G shown 
in figure 2. The change in the C content followed the 
jump in the average C content in exons and introns, 
while the G content in the terminal part of the exons 
was even lower than the average for exons, 28.596, see 
Brunak et al., 1991. The A content decreased from 
24.4% down to 19.7%, while the T content increased 
slightly from 20.9% up to  22.5%. (This is not in agree- 
ment with figure 2 because of the conflicting situation 
with the terminal part of the introns). 

Only the absolute size of the jumps depended on 
the length of the interval used when summing. The 
general picture holds out to about 100 bp, and also if 
the near vicinity of the donor site covered by the donor 
site consensus sequence iAG/GTgAGT was excluded. 

Together these numbers show that the initial part 
of human introns contains what could be termed a 
G/C rich tract, with a clear deficiency of adenine and 
thymine in the initial part of the introns. Figure 3 
gives the Shannon information content as function of 
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Figure 3: Shannon information content as function of 
position in the exon-to-intron transition region. The 
base-specificity in the G/C-tract lowers the information 
content in the initial 50 bp of the introns to a level 
below average for both exons (positions -100 through 
-1) and intron, where the value eventually comes very 
cloee to 2.0. The values for the information content 
were averaged over 10 neighbors. The unit of infor- 
mation is bits per nucleotide. 

poeition in the exon-to-intron transition region. From 
the figure it may be concluded that the highest degree 
of systematics in this region is found in the initial 50 
bp of the introns. The average value per nucleotide in 
the initial 50 bp of the introns is 1.85 bits and in the 
terminal 50 bp of the exons, 1.95 bits. 

When frequencies were compiled for each of the a 
set of the 95 human sequences extracted from Gen- 
Bank it showed that this systematics of the context 
of coding nucleotides is rather robust[4]. Apart from 
a few sequences with abnormally large internal exons 
the systematics was quite regular, indicating that this 
persistent systematics may be involved in the selection 
of proper splice sites and/or exons through binding or 
guidance of some of the molecules involved in s p l i c e  
some assembly[ll]. 

4 Discussion 

The complex biological mechanism where introns 
are removed from the genes is a crucial step in the 
information processing of the living cell. Just like in 
ordinary information processing in ordinary comput- 

ers the biological computation where DNA is copied 
(transcribed) into pre-mRNA followed by intron re- 
moval and subsequent translation into a sequence of 
amino acids information is lost during the process. It 
is not possible to run the operation backwards; the W- 
quence of the mature mRNA cannot be inferred from 
the protein sequence and the location and content of 
the introns cannot be deduced from the mRNA. 

Neural networks have been shown here to  be ef- 
fective in identifying compositional gradients in DNA 
sequences which may support a recent model for splice 
site selection in vertebrates involving scanning[l4]. 
The base specificities found by network inspection are 
to a large extent features which are present at each sin- 
gle transition from coding to non-coding sequence re- 
gions and not rather weak characteristics enhanced by 
obtaining statistics from a large sample of sequences. 
Thie indicates that the persistent systematics may be 
important for some of the steps in the proceasing of 
pre-mRNA. 

The use of neural networks is often questioned be- 
cause of the difficulty in extracting knowledge from 
them following training. This work shows however 
that it may be feasible to  reveal previously unknown 
local features of the training data even for networks 
with as many as 241,201 adjustable parameters. 

Acknowledgements 

This work was supported in part by the Danish 
Natural Science Research Council under grants No. 
J.nr. 11-8168 and 5.26-1818. 

References 

[l) Brunak, S., Engelbrecth J. and Knudsen, S., 
“Cleaning up gene databases”, Nafarre, Vol. 343, 
123, 1990. 

[2] Brunak, S., Engelbrecth J. and Knudsen, S., ‘Neu- 
ral Network Detects Errors in the assignment of 
pre-mRNA splice sites” , Nucl. Acids Res., Vol. 18, 
4797-4801, 1990. 

[3] Brunak, S., Engelbrecth J. and Knudsen, S., upre+ 
diction of human mRNA donor and acceptor sites 
from the DNA sequence”, J. Mol. Biol., Vol. 220, 
49-65, 1991 

114 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 12:49:34 UTC from IEEE Xplore.  Restrictions apply. 



[4] Engelbrecth J., Knudsen, S .  and Brunak, S., “G/C 
rich tract in 5’ end of human introns”, J. Mol. 
Eiol., Vol. 227, 108-113, 1992. 

[5] Fickett, J., ”Recognition of Protein Coding Re- 
gions in DNA Sequences”, Nucl. Acids Res., Vol. 
10,5303-5318, 1982. 

[6] Green, M. R., “Pre-mRNA Splicing,” Ann. Rev. 
Cenef. ,  Vol. 20, 671-708, 1986. 

[7] Guthrie, C., “Messinger RNA splicing in yeast: 
Clues to why the spliceosome is a ribonucleopro- 
tein”, Science, Vol. 253, 157-163, 1991. 

[8] Harris, N. L. and Senapathy, P., “Distribution 
and Consensus of Branch Point Signals in Eucary- 
otic Genes: a Computerized Statistical Analysis”, 
Nucl. Acids Res., Vol. 18, 30153019, 1990. 

E91 Hertz, J., Krogh, A. and Palmer, R.G., “Introduc- 
tion to the theory of neural computation”, Santa 
Fe Institute, Studies in the Sciences of Complexity, 
Addison-Wesley, 1991. 

[lo] Lukashin, A. VI Engelbrecht, J. and Brunak,S., 
“Multiple Alignment Using Simulated Annealing: 
Branch Point Definition in Human mRNA Splic- 
ing“, Nucl. Acids Res., Vol. 20, 2511-2516, 1992. 

[ll] Maniatie, T. & Reed, R., T h e  role of small 
nuclear ribonucleoprotein particles in pre-mRNA 
splicing“, N a f u n ,  Vol. 325, 673-678, 1987. 

[12] Minsky, M. and Papert, S., “Perceptrons”, MIT 
Press, Cambridge, Massachusetts, 1969, 1988. 

[13] Mount, S.M., “A catalogue of splice junction se 
quences”, Nucl. Acids Res., Vol. 10,459-472, 1982. 

[14] Niwa, M., MacDonald, C.C. and Berget, S.M., 
“Are vertebrate exons scanned during splice-site 
selection” , Nafure, Vol. 360, 277-280, 1992. 

[I51 Smith, T.F., Waterman, M.S., and Sadler, J.R. 
“Statistical characterization of nuclei acid se- 
quences functional domains”, Nucl. Acids Res., 
Vol. 11,22052220,1993. 

[Is] Staden, R. “Computer methods to locate signals 
in nucleic acids sequences”, Nucl. Acids Res., Vol. 
12,505-519, 1984. 

[I71 Staden, R. “Measurements of the effects that cod- 
ing for a protein has on a DNA sequence and their 
use for finding genes”, Nucl. Acids Res., Vol. 12, 
551-567,1984. 

115 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 12:49:34 UTC from IEEE Xplore.  Restrictions apply. 


