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A GENERALIZATION ERROR ESTIMATE 
FOR NONLINEAR SYSTEMS 

Jan Larsen 
The Computational Neural Network Center 

Electronics Institute, Building 349 
Technical University of Denmark 

DK-2800 Lyngby, Denmark 

INTRODUCTION 

Evaluation of the quality of an estimated nonlinear model, e.g. a neural 
network, is important for the purpose of selecting a proper architecture. In 
this work the employed quality measure is the generalization error (expected 
squared prediction error). The topic of the paper is to derive an estimate 
of the generalization error for incomplete models, i.e. models which are not 
capable of modeling the present nonlinear relationship perfectly. 

Consider the following discrete nonlinear system: 

Y ( k )  = g ( x ( k ) )  + 4 k )  (1) 

where the scalar output, y(k), ( k  is the discrete time index) is generated 
as the sum of a nonlinear mapping, g ( . ) ,  of the input vector x ( k )  and the 
inherent noise E(k) .  In a signal processing context the input vector may e.g. 
represent a tapped delay line, i.e. x ( k )  = [ z ( k ) ,  z ( k  - l) ,  . . . , z ( k  - L + l)IT 
(T is the transpose operator). 

Assumption 1 The input x ( k )  is assumed to  be a strictly stationary se- 
quence and E(k)  a white, strictly stationary sequence with zero mean and 
variance U:. Furthermore, x ( k )  is assumed independent of E ( k ) ,  V k .  

Let 7 be a set of nonlinear functionals parameterized by an m-dimensional 
vector w = [wl, w2, . . . , w,IT. In general it is assumed that the functionals 
are nonlinear in w.  Feed-forward neural networks with hidden units are 
examples of F. Let f( .) E F. The model of Eq. (1) becomes: 

Y ( k )  = f ( x ( k ) ;  w )  + e ( k ;  w)  (2) 

The prediction of y ( k ) ,  say @ ( k ) ,  is: @ ( k )  = f ( x ( k ) ; w ) .  When referring to a 
nonlinear model @(k) is considered to be nonlinear in w. 
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Definition 1 I f3wo:  g(x(k) )  E f(x(k);wo) the model is sigijied as  com- 
plete otherwise as  incomplete. w" is  denoted the true weights. 

Usually the lack of knowledge concerning the structure of g ( . )  precludes the 
possibility of suggesting a complete model with a finite m. Consequently, it 
is claimed that incomplete models are the common case. 

Given a training set: 7 = { x ( k ) , y ( k ) } ,  k = 1 , 2 , - . . , N ,  where N is the 
training set size, the model is estimated by minimizing some cost function, 
say SN(W). In this work a least squares (LS) cost is employed: 

The training performance SN(+) is usually not a reliable measure of the 
quality of a model because it depends on the actual training set. A reliable 
quality measure is the generalization error, G, (e.g. [7]) which is defined as the 
expected, squared prediction error on a test sample, { x t , y t }  (denoting t for 
test), which is independent of the training set but with identical distribution. 

G(w) = Ext,,, { [ ~ t  - f(xt;w)I2} (4) 

Ex,,,,  {.} denotes expectation with respect to the joint p.d.f. of [xt, €11. Note 
the dependence on both f(.) and w. 

In the litterature several attempts have been made in order to estimate 
the generalization error of both linear and nonlinear models, for instance [l] 
and [3] which focus on complete models, while [5] and [7] focus on incomplete 
models which are claimed to be the most common. 

In [5] a generalization error estimator for linear incomplete models is de- 
veloped. The estimate requires knowledge of the estimated parameters G)j, 
i = m + 1 ,  m + 2 , .  . . , mo where mo denotes the dimension for which the 
model becomes complete. Unfortunately, these estimated parameters are not 
accessible when fitting with only m parameters. Therefore, the final result of 
[5] is essentially the FPlCcriterion [l]. 

The GPE estimator [7] is claimed to estimate the generalization error for 
both nonlinear and incomplete (in [7] denoted biased) models when using the 
sum of SN (LS-term) and a regularizing term as the cost function. However, 
in the next section, which deals with a new generalization error estimate with 
validity for both incomplete and nonlinear models, it is established that the 
error, e ( k ;  w), and the input, x ( k ) ,  are not independent unless the model is 
complete. This dependence is not taken into account in [7]. 

GENERALIZATION ERROR ESTIMATE FOR INCOMPLETE, 
NONLINEAR MODELS 

In this section a new generalization error estimate for incomplete nonlinear 
models, called GEN, is introduced. The aim is to estimate G(iG), i.e. how well 
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the estimated model, f ( x ( B ) ;  G ) ,  generalizes. In order to evaluate Eq. (4) the 
nonlinear system Eq. (1) must be known. Secondly, knowledge of the input 
and error distributions is required. However, these assumptions are not met 
in general; the only knowledge of the actual system is obtained implicitly 
from the acquired data. For that reason the presented generalization error 
estimate is based on training data solely. 

To ensure the validity of the GEN-estimate the following assumptions 
must be satisfied: 

Assumption 2 Define 52" as the compact set which the weights minimizing 
the cost, S N ,  belong to. Assume the existence of a covering of 52" in compact 
subsets, i.e. R" = Ui nm(i), such that the estimator G(i)  E Q m ( i )  uniquely 
minimizes SN(W) within the partition W ( i )  and further 

Observe that {i%(i)} may contain both local and global minima, even though 
the global minima are preferred. The occurrence of multiple minima is in 
evidence among feed-forward neural networks, due to e.g. symmetries which 
cause multiple minima in the cost function, see e.g. [4]. 

Assumption 3 Assume a covering 52" = UiRT( i ) ,  such that the optimal 
weights w*(i) E O?(i) uniquely minimze G(w) within the partition 52F(i) 
and further 

Note that the optimal weight vectors reflect the "best" models within the ac- 
tual set 3. That is, the models obtained by training on an infinite training set 
corresponding to minimal generalization error as limN+m S N ( W ~ )  = G(w) 
(provided that e2(k ;  w) is mean-ergodic). 

Assumption 4 Let the minimization Of SN on the training set result i n  the 
estimate: i%'. Assume the existence of an optimal weight vector W* such 
that the remainder of the following second order Taylor series expansion is 
negligible. 

where Aw = i? - w*,  H(w*) is the nonsingular ( b y  Eq. (6)) Hessian matrix 

G(G) x G(w*) + AwTH(w*)Aw (7) 

'Note that the weight estimate is highly dependent on the chosen weight estimation 
algorithm due to local optimization, initial conditions, etc. An alternative algorithm used 
on the same training set may therefore result in a different weight estimate. 
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+t(w*) = af(x,; w*)/aw and !Ft(w*) = d$(xt; w*)/8wT. Note lhal 
dG(w*)/aw = 0 according to Eq. (6). 

second order is negligible, i.e. 
Further assume that the remainder of expanding SN around G ( i )  to the 

sN(w*) % sN(G) + A W ~ H ~ ( ~ + ) A W  (9) 

where HN(G) is the nonsingular Hessian given b y  

$ ( k ;  G )  = af (x(k);G)/aw and #(k; G )  = 8$(x(k); G)/8wT. Note that 
a S ~ ( G ) / a w  = 0 according to Eq. (5). 

Assumption 5 x ( k )  is an M-dependent stationary sequence, i.e. x ( k ) ,  x(k+ 
r )  are independent V r  > M ( A  weaker assumption aims at x(k) being a 
strongly mixing sequence [8, p .  621). 

Assumption 6 Assume large training sets, i.e. N + CO. In  particular: 
N > M .  Further, assume that m is finite. 

Definition 2 The generalization error estimate for nonlinear systems, GEN, 
is defined as a consistent (N + CQ) estimator of r (the expectation of the 
generalization error w.r.2. the training set), 

r = E7{G(G)} (11) 

where G is the actual weight estimate and 7 is the training set. 

Theorem 1 Assume that the nonlinear system is described b y  Eq. (1). I f  
assumptions 1 - 6 hold and the model in Eq. (2) is incomplete then the 
GEN-estimate is given by: 

where the correlation matrzces R(r), T = O,l,. . . , M ,  are calculated as: 

(13) 
1 N - T  

~ ( 7 )  = 

Sketch of Proof The basis of the proof is the Taylor series expansions 
in Eq. (7), (9). Taking the expectation, ET{.} (i.e. w.r.t. the training 
set) of these equations it is possible to substitute Eq. (9) into (7) and thus 
express E7{G(G)} in terms of training data. This is due to the relation: 

+(k; G ) e ( k ;  G ) + ~ ( ~ c  + r; G ) e ( k  + T ;  G )  
k = l  
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E~{S~(w*)} = E*(G(w*)}. When evaluating the expectations it is impor- 
tant to notice that the error (cf. Eq. (1) and ( 2 ) )  

e(L; w) = ~ ( k )  + g(x (k ) )  - f(x(k); w) (14) 

depends both on x ( k )  and ~ ( k )  unless the model is complete and W* is the 
global optimum since g(x )  G f ( x ( k ) ;  w') in this case2, In [6] the details of 
the proof are given and the estimate is further extended to treat other cost 
functions, for instance the LS-cost with inclusion of a weight decay term as 
in [7]. Note, that the derivation is valid even when dealing with noise free 
systems, i.e. U," = 0. 

Theorem 2 If the system in Eq. (1) is linear, the model Eq. (2) is linear 
and complete, W* in Assumption 4 is the global minimum, and ut # 0 then 
the GEN-estimate coincides with the FPE-Criterion [l]: 

SN(G) N + m  
N - m  

GEN = FPE = - 

Proof See the sketch above and [6]. 

NUMERICAL EXPERIMENTS 

In this section the validity of the proposed generalization error estimate is 
tested by comparison with the FPGestimate and the leave-one-out cross- 
validation technique. A linear system and a simple neural network is under 
consideration. 

Linear System 

The linear system is given by: 

Y(k) = Yo@) + E ( % )  = [+), X2(k)]W0 + E@) (16) 

where W O  = [ l , lJT.  The input ~ ( k )  = ~ ~ = , b , u ( k  - n) where u(k)  is an 
i.i.d. Gaussian sequence with zero mean and unit variance. b, is designed to 
implement a low-pass filter3 with normalized cutoff frequency 0.01. ~ ( k )  is 
consequently colored and M-dependent (see Ass. 5 above) with M = 15. ~ ( k )  
is an i.i.d. Gaussian noise sequence with zero mean, CT," = 0.2.E,(,,{(y0)2(k)}, 
and independent of u(k). The model used is incomplete and given by: 

y(k) = wz(k)'+ e(k; w) (17) 
~ 

2Note that g - f may be equal to a constant which is independent of X .  However, this 

3The design is performed by the MATLAB (The Math Works, Inc.) M-file "firl" which 
case never occurs if the model contains a bias term. 

uses a Hamming windowed ideal impulse response (i.e. sinc(z)). 
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G E N  is compared to two different methods for estimating the generaliza- 
tion error. First, a comparison with the FPEestimate which is much less 
computationally complex according to  Eq. (12) and (15). 

Secondly, comparison with the leave-one-out cross-validation method [2], 
[4] is performed. Within this method training is replicated N times. The j’th 
training is performed on the data: {x( I C ) ,  y( k)}, 6 = 1,2 ,  - . . , j-1, j+l, - . . , N ,  
j = 1 , 2 , . . . , N 4  resulting in the estimate G(j ) .  e 2 ( j , G ( j ) )  is a qualified 
estimate of the generalization error and consequently G is estimated as: 

. N  

Knowing the details of the system Eq. (16) it is possible to compute the true 
generalization error G(6) according to Eq. (4). Let E{ . }  denote expectation 
w.r.t. x t  and E t .  Now, noting that x t  is Gaussian: 

G(G) = E { [wnzt + WO,.: + ~t - G x t ] ’ }  

= (wp - 6 ) ’ E { x ; }  + 3 ( w ; E { x ; } ) 2  + (7: (19) 

In order to simulate the statistical variations of the training sets Q inde- 
pendent training sets: { x ( q ) ( k ) ,  y ( q ) ( k ) } ,  q = 1 , 2 , .  ’ .  , Q, is generated for 
every specific training set size, N .  Next, Q models are estimated by (the 
LS-estimator) : 

N 

= - y ( x ( ‘ ) ( k ) ) 2  . E x q k ) p ( k )  (20) 
[k:l 1-’  k = l  

h 

Let G be a specific generalization error estimator, i.e. GEN,  FPE,  C or L.  
For the purpose of comparison the relative average deviation ( R A D )  is defined 
as: 

where (.) denotes the average with respect to the Q realizations. 

Averaging was done with: 
The result of comparing the RAD’S of G E N  and F P E  is shown in Fig. 1. 

30000 5 5 N 5 9 
Q = {  20000 10 5 N 5 170 

When N is small compared to M R(T) (cf. Eq. (13)) will be rather noisy. 
Therefore T = 1 , 2 , .  . . , min{M, [N/lO]} was used, where [.] denotes rounding 
to the nearest integer. Using a standard Gaussian test (details omitted) it 

‘Note that min(k) = 2 for j = 1 and max(lc) = N - 1 for j = N .  
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Figure 1: Comparison of the RAD'S of GEN and FPEfor the linear model Eq. (17). 

is seen that the R A D  of the GEN-estimate is significantly5 better than the 
R A D  of the FPEestimate for all N > 15 and roughly equal as N 5 15. 
However, the R A D  only shows the average performance. The estimator with 
the best R A D  performance may still not be the preferred estimator. In order 
to elucidate the variations in the estimates the probability that GEN is closer 
than FPE to the average of the true generalization, (G), was estimated. That  
is, 

I t  was found that y > 0.5 V N 2 25 and y % 0.75 when N 2 40. Consequently, 
one may prefer the GEN-estimator when N > 25. 

Next, GEN is tested against leave-one-out cross-validation and averaging 
was done with: 

10000 5 5 N 5 9 

7 = P{ I(G) - GENl< I(G) - FPEl } (22) 

Q = {  5000 10 5 N 5 100 

The result is shown in Fig. 2. As N > 15 the GEN-estimate is significantly 
better than leave-one-out cross-validation as the R A D  is lower. Further', 
y > 0.5 as N 2 30 and y x 0.75 for N 2 40. This is in spite of the fact 
that the computationally complexity of the L-estimate normally is greater 
than that of the GEN-estimate. The number of multiplications involved in 
the computation of the GEN-estimate is approximately M N m 2  whereas the 
L-estimate requires in the order of N2m2 multiplications (this is due to  the 
fact that training is replicated N times). 

Simple Neural Network 

Consider a simple nonlinear system which consists of a single neuron: 

y(k) = yO(k) + E ( k )  = h ( X T ( k ) W O )  + E ( k )  , (23) 
'Here and in the following a 0.5% significance level is employed. 

FPE is replaced by L in Eq. (22).  
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Figure 2: Comparison of the RAD'S of GEN and leave-one-out cross-validation, L ,  
for the linear model Eq. (17). 

h ( t )  = exp (- (y)2) -exp (- (y)') (24) 

where W O  = [3,3IT. Let u(k) be a two-dimensional i.i.d. Gaussian sequence 
with zero mean and E{u:(k)}  = 1, E{ul(k)u2(k)}  = 0.5. b, is given as in 

an i.i.d. Gaussian noise sequence with zero mean, U," = 0.1 .Ex( , ) { (y0) ' (k) } ,  
and independent of u; (k ) , .  The activation function h(z )  is chosen to be a 
sum of two Gaussian functions in order to enable the evaluation of the true 
generalization error Eq. (4). In this simulation: v = 2 and q = 1. The 
employed incomplete nonlinear model of Eq. (23) is: 

the preceding subsection and z,(k) = Cn=Obnui(k 15 - n), i = {1,2}. ~ ( k )  is 

Y(k.1 = h ( W + l ( k ) )  + e ( k ; w )  (25) 

According to Eq. (4), (23), and (25) (E{ . }  w.r.t. [ x t , ~ t ] ) :  

G(G) = E { [ E ~  + h ( x T ( k ) w o )  - h(w^zl ( k ) ) ]  '} 
= E { [h(xT(k)w") - h(Gz@)) ]  '} + U," (26) 

Evaluation of the first term in Eq. (26) is possible, however, due to the extent 
of the derivation it is omitted, see [6] for further details. 

The parameter w in Eq. (25) is estimated using a modified Gauss-Newton 
algorithm [9, Ch. 141. That is, for each training set {zp)(k),y(q)(k)}, q = 
1,2 , .  . . , Q (below the q index is omitted for simplicity): 
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N 

V(w(i)) = h’(w(j)zl(k)) . zl(h) . e ( k ;  w(i)) (29) 
k=l 

where 0 _< p _< 1 is the step-size and ’ denotes the derivative. For each iter- 
ation, i ,  p is adjusted in order to ensure: sN(W(j+ l ) )  < SN(w(i))-  The em- 
ployed stopping criterion [9, Sec. 14.41 was: ( S ~ ( ~ ( i + i ) ) - S ~ ( w ( i ) ) ) / S ~ ( z u ( i )  

The result of comparing GEN to FPE is shown in Fig. 3 (Q = 5000). I t  is 
< 10-l2. 

rNmOcw-n 
Figure 3: Comparison of the RAD’S of GEN and FPE for the nonlinear model 
Eq. (25). 

observed that the RAD of the GEN-estimate is significantly better than that  
of the FPGestimate for all N > 10 and that (cf. Eq. (22)) y > 0.5 as N >_ 15 
and y x 0.6 for N > 15. 

CONCLUSION 

In this paper a new estimate (GEW of the generalization error is presented. 
The estimator is valid for both incompleie and nonlinear models. An incom- 
plete model is characterized in that it does not model the actual nonlinear 
relationship perfectly. The estimator can be viewed as an extension of the 
FPE and GPE estimators [l], [7]. The GEN-estimator has been evaluated 
by simulating incomplete models of linear and simple neural network systems 
respectively. Within the linear system GEN is compared to the Final Predic- 
tion Error (FPE) criterion and the leave-oneout cross-validation technique. 
It was found that the GEN-estimate of the true generalization error is less 
biased on the average. Further the probability, y, of GEN being closer to 
the true generalization error than the other estimators was estimated, and it 
was found that y > 0.5 within a large range of training set sizes. Comparing 
the GEN-estimate to FPE when simulating a simple neural network shows 
that GEN is less biased on the average and that y a 0.6 when using trainig 
sets of sizes greater than 15. In summary it is concluded that GEN is an 
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applicable alternative in estimating the generalization at the expense of an 
increased complexity. However, the leave-one-out cross-validation estimate 
which possess a higher complexity was not able to outperform GEN in the 
chosen example. 
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