

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

The evolution of CACSD tools-a software engineering perspective

Ravn, Ole; Szymkat, Maciej

Published in:
IEEE Symposium on Computer-Aided Control System Design

Link to article, DOI:
10.1109/CACSD.1992.274428

Publication date:
1992

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ravn, O., & Szymkat, M. (1992). The evolution of CACSD tools-a software engineering perspective. In IEEE
Symposium on Computer-Aided Control System Design (pp. 225-231). IEEE. DOI:
10.1109/CACSD.1992.274428

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13730156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/CACSD.1992.274428
http://orbit.dtu.dk/en/publications/the-evolution-of-cacsd-toolsa-software-engineering-perspective(267d51ac-a1e9-4582-bec9-9cd05ec10cef).html

The Evolution of CACSD Tools
- A Software Engineering Perspective

Ole Ravn,
Institute of Automatic Control Systems,

Technical University of Denmark, Building 326,
DK-2800 Lyngby, Denmark

Maciej Szymkat,
Institute of Automatics,

Academy of Mining and Metallurgy, al. Mickiewicza 30,
30-059 Cracow, Poland.

MATLAB:=
Abstract

LINPACK/EISPACK + Co&and interpreter + Graphics
The paper presents the earlier evolution of CACSD

tools in an software engineering perspective. A model of
the design process is presented M the basin for principles
and requirements of future CACSD tools. Combinabil-
ity, interfacing in memory and an open workspace is seen
as important new concepts in CACSD. Some points are
made about the problem of ‘buy or make” when new
software is required. The idea of “buy and make” is put
forward. Emphasis is put on the time perspective and the
life cycle of the software.

MATLAB solved many of the compatibility and software de-
velopment problems. The control system designer may access
through MATLAB many tools that can be used in the design
process. It is normally not as time consuming to make the nec-
essary specific software for solving a problem in MATLAB as
before. However MATLAB has certain limitations, too. One
being the simple data structure (i.e. a complex matrix), an-
other being the large number of m-files. A number of 300-400
m-files is easily reached when using some of the extra tool-boxes
in MATLAB. It can be more difficult to find the m-file that
solves the problem than writing a new one. This implies that
some data-management system with more advanced typing and
a tool-management system is needed. A number of packages with
features to MATLAB and better interface has emerged,
but none has gained the sme wide use as MATLAB.

The introduction of workstation and the extended availability
Of powerful gaphics computers has made it possible to meet new
Objectives. A number Of g a p h i d interfaces embedding MAT-
LAB and some simullrtion package has emerged. These Packages
hide the MATLAB interface snd provide some sort Of graphical
front-end as well as some data management. However this is of-
ten accomplished at the expense of the easy extendability that

Mathworks has introduced a package called SIMULAB which
extends MATLAB with a non linear simulation tool while pre-
serving the design and analysis capabilities of MATLAB. This is
a step in the direction of more integrated environments.

Recently Integrated Systems Inc has introduced a new envi-
ronment called Xmath featuring object oriented approach to

1 Introduction

Starting in the late fifties and early sixties computers available
to control system designers were not very powerful, nor very WY
to program or interact with. Features of software packages for
c~~~~~~~ ~ i d ~ d Control ~ ~ ~ i ~ ~ ~ i ~ ~ have been d e t e h n e d by
the commonly available computer technology at that time.They
were used to automate difficult numerical c&ulations such a
FFT. Most of the work done to design a controller was still done
manually. During the sixties batch-operation of large ‘computers
became commonly available and
puters for tasks such as calculation of frequency rapon-, time
responses, root loci and simulation. These programs were made
at departments and universities all over the world as there were
no commercial programs available. The resulting programs and
libraries were in many cases incompatible what made it difficult
to reuse data in other programs.

LINPACK and EISPACK were introduced in the mid-seven-
ties providing well-tested solutions to various numerical prob-
lems. They became the basis for more specialized libraries for
solving control problems. The designer still had to write the main
program and this was often a difficult task as data structures had
to be adjusted. Debugging was also difficult.

The introduction of terminal-access to mainframe computers
made i t possible to make interactive programs which could per-

data from the same program. A number of commercial programs

it feasible to

MATLAB.

CACSD tools.
attention to those aspects of

CACSD tools development which can be addressed from the point
of view of software engineering. The computer science perspec-
tive is certainly needed to understand the role of such factors as
program portability, reusability or extendability.

not cover the whole software development cycle. In what follows

we would like to drive

form many different tasks, design and On It should be emphasized that the implementationd issues do

Of lhis kind emerged the These program were Of- it will be assumed that the functional of the soft-
ten very large and at the lame time in the context to extend’ Many ware requirements is h e a d y given, what

of CACSD, that the design strategy, algorithms to be used, user
interaction requirements are predefined in the conceptual phase
of the design process.

designers still found it easier write their own software.

is relatively simple:
In 1981 MATLAB was introduced. The formula of MATLAB

225

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

The typical practical problems arising at the implementation
stage are following :

0 should the commercially available software be acquired ?

0 should some algorithms be coded, who should do it and
how ?

0 should the available tools be used in a wider framework and
what platform should used for the integration ?

It is important to say here that it would be naive to expect that
some general answers for these questions could be given. Each
particular situation has its own context and the feasible solutions
have to take it into account. The aim of this contribution is
to identify factors which constitute this context and essentially
influence the software project development.

There are not many publications taking software engineering
point of view on CACSD, just to mention here (21, [21] only.
Certainly it is much more attractive to write how the "ideal tool"
should look like, than to report why this or that project turned
out to be unsuccessful. On the other hand in the field of the
CACSD software we meet a very rapid "depreciation" process,
the programs and packages written five years ago, may look today
quite obsolete just because of the fast changes in user-interfaces
and software development tools available at the moment, and
it may seem that it is not very much worthy to deal with the
"old program" any more. What we found very important is that
some time perspective is necessary to assess to whole software
development project.

The preferred solution for the implementation of the CACSD
software is acquiring the existing commercially available prod-
ucts. If it is possible to find the product which is compatible
with the available hardware and software resources, which fits
well to the design requirements, which is reliable and well sup-
ported by the vendor, assures good portability for expected future
applications, there is no doubt that the solution of this kind will
probably be the most cost-efficient. Unfortunately, almost never
all these conditions are fully satisfied and it is quite acceptable if
only some adoption or integration is needed.

Two remarks are here in turn. Although, it is generally not
advisable to write anew the "original" code for matrix manipu-
lation or nonlinear simulation, there may exist situations when
some reasonably small improvements in the already available soft-
ware may be attractive, because the user does not have to change
his habits and waste time for training to adopt the new tool.

The second remark concerns some potential drawbacks of ac-
quiring the ready-made software which may include :

Lack of reliable soflware quality measurment tools - the
use of existing benchmarks, c.f. [7], [17), is hardly sufficient
for comprehensive assessment,

hidden limitations - meaning a kind of the "closedness" of
the tool concept that may make it useless for future appli-
cations,

dependence on the vendors development policy - e.g. the
lack of future support for new the hardware and system
software platforms.

It may be proved on many examples that vendors of succe~s-
ful software products in the product-oriented (not user-oriented)
software market try to use their monopolist-like position, simply

because they do not have enough incentives for the substantial
improvement of their products, they introduce not much different
new versions just to keep the user in a kind of trap. The dis-
tributed users (user groupe) cannot force the real changes. The
only positive thing here is the competition among the leading
vendors.

2 CACSD and scientific and engi-
neering computing

Let us invoke the early definition of CACSD cited in c.f. [20]

the use of digital computers as primary tool during the
modelling, identification, analysis and design phase of
control engineering

and think if it should be today updated. How many other tools of
control system design are used - e.g. paper and pencil, pocket
calculator ? If we separate the conceptual phase belonging rather
to mathematical control theory domain, there is almost no other
tools except for computers, unless we do not exclude the use of
data acquisition cards with AC/DC converters, analog simulators
and maybe some more electronic quipment used for prototype
installations. This is why there is a strong feeling that the com-
puters are now a standard tools for control design and that there
is nothing special about it. Even more, computers have over-
whelmed the whole control engineering and that is why it seems
to be more appropriate now to talk about the Computer Aided
Control Engineering.

Certainly, there are some specific problems that solely concern
the man-machine interaction, the use of human and "artificial"
intelligence in the control design process, which are very much
specific to CACSD, see the inspiring paper [13]. In some way,
they also relate to the software development process. It is impor-
tant to note here that these problems are in some sense common
to other engineering disciplines. The interesting view from that
perspective is presented in [IO].

It is well known that CACSD software is only the part of
wider class of computer software supporting the so called science
and engineering computing. This class is the second to data pro-
cessing computing in terms of general use of computers, where
the software engineering methodology is already well established.
What we are witnessing in recent years is that also in the sci-
entific/engineering software there is a product-oriented software
technology with a typical market containing specialized compa-
nies (the software vendors) and clients (the software users). How-
ever, so far there was little said on specific scientific/engineering
software development paradigm. May be the reason is the ex-
tremely fast "software depreciation" in that area.

This may be explained also by the fact that the driving force
of the technological progress in the computer domain is surely
the hardware which doubles its (installed) capacities more or less
every 2-3 years, the software cm hardly keep this pace, with
doubling time of 6-12 years, the whole computing paradigm con-
cerning the way of the use of computer technology in other fields
is much slower with very rough estimate of 15-25 years doubling
time. The author of [4], see the technology comparison table on
p. 94, claims that this process is caused by the modularity in
the design and reusability of independent components used in
the hardware development, but not in the software development
where the new tools were introduced without increasing the units

226

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

of modularity, what had to result in exponential growth in hard-
ware technolog, but only arithmetic growth in software technol-
ogy. It may be a good explanation but one has to remember also
that software is a secondary factor in the computer technology
and it is very hard if not impossible to predict how the future
developments in hardware could affect the software. Anyway it
is good to keep in mind this general time perspective.

The whole thing is here surely oversimplified because it is of
course unrealistic to treat the software as the.one group, neglect-
ing its diversification into system level software, general purpose
programming languages, specialized packages and environments,
and application programs, similarly the hardware is not a home
geneous object.

3 The Structure of the Design Pro-
cess

It is not feasible just to automate analysis methods any more. A
look at the structure of the design process for controller design
gives insight to objectives that could be pursued in future CACSD
packages.

The design process for a control system is very complex. Some
work has been done to model this process in a CACSD frame-
work, c.f. [13]. The model presented below is a simplified model
which only has a fraction of the possible interactions. Many more
cross-interactions are present but for the purpose of pointing out
possible objectives for CACE systems this model is sufficient.
The implementation aspect of controller design is not addressed
with this model. The model is shown in figure 1.

Goal Generation
I

Figure 1: Structure of the Design Process.

The model contains 5 phases. The first phase to be entered
when the design process starts is the problem description and
goal generation phase. In this phase the definition of the de-
sign goal is generated and the control problem is specified. The
second state is the modelling phase. Often a linear model in
an appropriate domain will be generated during this phase. In
phase 3 the model is analyzed using analysis tools to generate
a controller structure. The parameters of this controller struc-
ture is calculated during phase 4, called the design phase. The
performance of the system with the generated controller is then
compared with the design goals. If the goals are met the process
stops, if the goals are not met an iteration is performed, making
the designer go through one or more of the previous phases again,
changing some parameters.

The first phase of the design process is normally performed by

~

227

the designer without computer 5 d . foo1.s. The control system
designer is often faced with it co:itrol problem generated by deci-
sions taken by others. Therefore this phase in often not explicitly
performed when the process is started, but if the goals can not
be met the designer may have to change the design goals. The
modelling phase of the design process is seldom considered when
describing new analysis or design algorithms. A model in an ap-
propriate domain is used as the starting point. For real systems
the modelling phase can be quite difficult, especially when the
performance of the system is to be optimal.

Many computer baaed tools are available to assist the control
system designer in phase 3, the analysis phase, and some tools
have been made for phase 4, the design phase (e.g MATLAB).
However, these tool are linear in the sense that they transform
an input such as a model description in some domain to some
performance related measure.

The designer is then faced with the problem of evaluating the
measure with respect to the specified goals and performing the
iteration if necessary. The task of evaluating a design is normally
quite complicated and if the design goals are not met it is nor-
mally not obvious which actions are best to be taken. This task
is not easily done using current CACSD systems. The designer
has to perform the iteration himself and determine whether or
not the selected design criterion has improved.

4 CACSD Objectives

The objectives described briefly here are Integration, Extendabil-
ity and Design Actions Support.

Integration is seen as the possibility to integrate different ba-
sic software packages such as MATLAB, ACSL, etc. in a way
that enables the designer to use the tool best suited for the task
without having to go from one model representation to another.
The use of currently established software standards in CACE en-
ables the designer to take advantage of new features available in
these packages. Further, it should be possible to integrate new
packages into the system in a similar way.

By integrating these different basic tools the mental leaps that
are normally required when going from one tool to another are
reduced thus enabling the designer to have a wider variety of
tools available.

Extendability is seen as the being able to extend the current
selection of tools with new ones in a simple manner and use these
tools in a similar way as the build-in ones. The new tools should
be build from already existing tools in the system. Using the
model of the design process as a basis some objective for designer
support in CACSD system can be formulated. Some form of data
and tool management system should be provided, the iteration
and evaluation phases of the design model should be supported.

User Support is essential especially when the iterative nature
of the design process is taken into account. The user should have
tools available for evaluation of the design and analysis results
and for doing the iteration. Concepts such M dynamical data
access, the concept of analysis results seen aa views on the ob-
ject in question are described in greater detail in [15] and [16].
The user should also have easy access to change to one or more
alternate models of the system or alternate controllers. Like in a
deck of cards the top card will describe the current system but
this card can easily be flipped to evaluate an alternative design
or the current design on a more complex model of the system.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

5 Software engineering view on the
implementation process

The fundamental concept of the software engineering is the
project life-cycle, c.f. e.g. [22]. We do not want to recall here the
more detailed description of this concept limiting ourselves just
to saying that there exist at least three kinds of project life-cycles.

0 injotmation system life-cycle - starting from formulation
of user requirements, going through analysis, design, hard-
ware and software development, installation to the mainte-
nance phase,

soflware life-cycle -starting when software product is con-
ceived and ending when software product is no longer avail-
able for use,

0 software deuelopmenf cycle - beginning when a software
product is approved to develop (improve or maintain) and
ending when it is brought to the operational status.

The implementation itself is only one phase within the soft-
ware development cycle, following the analysis phase. It contains
the following stages:

0 progmm specification - program functional specification,
data structures description and user-interface requirements,

0 program coding - using top-down or bottom-up appro-
aches, prototyping etc.,

0 progmm festing - including debugging and other methods
of program quality assurance.

In parallel to all these stages program documentation process
should proceed.

For finding the feasible solution of the software project certain
factors creating the actual context of the implementation have to
be identified in the preceding analysis phase. From the point of
view of CACSD requirements, such factors include :

0 the purpose of the program - training, research, industrial
application,

0 the type of the user - casual, professional, undefined,

0 technical requirements - the needed response time, the pre-
ferred interaction type etc.

The factors important from the point of view of project manage-
ment

0

0

0

0

are :

fhc estimated project sire - number of code lines, number
of terminals etc.,

available hardware resources - mainframes, workstations,
PC's, data acquisition systems etc.,

auatlable soflware rcsourccs - previously acquired libraries,
packages, the earlier developed code etc.,

available financial resources.

The analysis should result in the answer for the question - who
and how will contribute to the project during the software im-
plementation phase.

There are a t least three groups involved in the typical CACSD
software project life-cycle. Their relations are presented below.

ALGORITHM DESIGNERS.
Background: Applied mathematics, control theory.
Objectives: Generality of abstract formulation, correct-
ness of the design approach.

SOFTWARE DEVELOPERS.
Background: Computer science, software engineering.
Objectives: System performance, efficiency, reliability,
testability.

END USERS.
Background: Control engineering, process control.
Objectives: Specific design problem solution.

The real problems appear during the implementation because
of the difference of backgrounds and objectives of all the men-
tioned groups. The increasing specialization is the price which
has to be paid for the technological progress. The current soft-
ware technology makes it almost impossible for the control engi-
neer to write a full-grown commercial quality software product.
Although it is regrettable, the more efficient the new software
technologies are the more knowledge is required to use them in
program implementation, however it does not have to mean that
the more knowledge is required to use the final product. It is
out of question now that commercial software development is a
matter of specialized software companies hiring professional pro-
grammers rather than small control research groups. On the
other hand, these groups are able to make a substantial progress
in the algorithmic development and many products which were
later successfully commercialized were born in academic centers.
There are different possible ways out. One of them is the so called
concurrent engineering aiming at the integration of the various
teams around the common project goal. The other is creation
of the software development environments which will be stan-
dardized and integrated enough to allow the non-professional or
semi-professional to make the effective use of it. At the moment,
generally the gap between the users and software developers has
to be accepted as a given fact which cannot be neglected c.f. [ll].

6 Developing the original CACSD
software

There exist situations when developing the original CACSD may
occur preferable. They may concern specific training programs
or educational minitools. Sometimes the need for this kind of
development may be caused by the lack of software fitting to the
configuration of the available resources. A special category are
the programs which have to protect the proprietary solutions of
the user organization, or other type of the intellectual property,
from the possible competition. The last but not least are the
products which are planned to be commercialized.

The basic requirement for medium to large size projects is
the professional programmers team work. It is very important
that inside the team are both algorithm specialists, software de-
velopers and "representative" usem. It is completely clear that

228

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

projects of that scale cannot be successful if they are not well
managed.

As far the coding is concerned, there exist well established
software engineering methodologies supporting both productivity
and quality of programming. Just to r d l , the basic principles
are :

e

e

0

0

modularity - the internal design of each program com-
ponent should be organized in such way that it does not
depend on the internal design of any other component,

conciseness - the code should be clear and easy to un-
derstand at least by other members of the programming
team,

strucfurcd approach - large programs should be decom-
posed into manageable size parts with well-defined rela-
tionships,

testability - the program components should be easy to be
independently tested and debugged.

All the structural languages like C or Pascal and object-based
languages like Ada or Modula-2 do support the programming
styles emphasizing the above properties. The basic concept used
in structural programming is the praredun (function) with data
structures hierarchy a bit in the background. There are two ex-
tremes in structural programming - the use of "pure" functions
with no external dependencies and the whole interface in argu-
ments, and the use of functions "parameterized" by the global
variables. The first solution may be very inconvenient, but the
second is certainly "less structural" and in fact may break the
modularity principle, and result in the code which will be com-
pletely not nusable, i.e. when it comes to upgrading or integra-
tion with another environment the large parts of the program
will have to be reorganized if not rewritten.

The above contradiction seems to be resolved in the men t ly
rapidly developing object-oriented programming technology. The
basic concept here is the object possessing its own data (its state)
u.hich are protected (hidden) from the unauthorized use, and
its own code, similarly to the classical procedure. The object-
oriented approach enhances such programming mechanisms as:

0 data abstraction - expressing the separation of the pro-
gram design concepts from the implementation details, hid-
den (encapsulated) in the objects,

0 inheritance - allowing to define new object types (classes)
on the basis of already defined more general object types
by specializing it, i.e. specifying the differences.

The "good style" of object-oriented programs should assure a
high level of potential code reusability, c.f. [12]. The object-
oriented languages provide certain mechanisms increasing pro-
gram erpnssivcncss like automatic dynamic memorp manage-
ment, polymorphism - allowing context dependent meaning of
certain programming constructs and Zate binding - postponing
some code processing from the compile-time to the run-time what
may significantly increase program flexibility. There is one more
property advocating for the object-oriented approach. I t turns
out that the way the designer thinks on the model of some reality
is itself oriented on objects rather than on functions, c.f. 141, [lo].

The recent rapid development of the object oriented languages
like C++, Objective C, Smalltalk 80, CLOS and others, reflects

-

229

the importance of the problem of code reusability. At the mo-
ment high expectations accompany the introduction of the new
kind of tool, called class libraries, both of general and specialized
application, c.f. (31, [SI. They offer a kind of "reusable software
components" - a self-contained pieces of code to be used in user
applications, allowing the programmer to concentrate on higher
level abstractions (e.g. matrices, vectors) and formulate the al-
gorithm in their expressive language, with virtually no loss in the
run-time efficiency.

It is hard to overemphasize the role of the object oriented
programming technology as the programming productivity tool.
There have been already reported certain object-oriented pro-
gramming applications in the field of CACSD, c.f. 111, [14], (91,
but the real "software revolution", c.f. (5) is still to come.

7 CACSD software integration

However, as it was said previously, the acquiring of the ready-
made tools is mostly preferable, the typically chosen alternative
is adopting available tools to the given application. This is caused
by the fact that problems solved in the design practice are rarely
"standard", there are always certain their properties which re-
quire specific algorithmic improvements or specializations etc. In
this way the problem of CACSD tools cztcnsibility is raised.

Let us begin with single tool extensibility problem on the
MATLAB example, to show what kind of limitations are met
here. The MATLAB concept of the programming environment
conforms to the traditional, horizontally divided software archi-
tecture, see Figure 2.

user applications

high level language programs

~ 7 ~~ ~ ~~

universal language programs I
I system level software I

Figure 2 Horizontally divided software architecture.

In the lower level we have internal MATLAB functions, in the
higher level Toolbox libraries, and user scripts and functions on
top. This architecture is quite logical but suffers from the serious
drawbacks. First, the user files are interpreted, or semi-compiled
and that degrades their run-time efficiency (there is a "way-out"
by constructing executable equivalents, but it is far from being
automated and the "ease-of-use" is rather problematic). Sec-
ond, the user files does not have the "qua l access" to program
workspace (except for global variables, and interpreted "eval"
mechanism). And third, the user cannot construct (and use in
MATLAB) other data types than those supported by MATLAB.
These limitations are simply consequences of the MATLAB pro-
gram architecture concept and would be very hard to overcome
in "evolutionary way".

The newly introduced Xmath tool which is functionally equiv-
den t to MATLAB, uses the object-oriented programming to cope
with the extensibility problems. I t offers more rich collection of
the elementary data types together with some object creating ca-
pabilities (e.g. list) in MathScript - the Xmath's programming
language. According to [9], linked user-functions and callable
user-interface will be soon available and as contrasted to MAT-

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

LAB vendors policy, the specification of this interface is planned
to be published. If general user defined objects to be used within
the Xmath workspace were also available, this environment could
become a general platform for CACSD tool integration. Now, it
is too early to make such predictions.

A lot of effort was already devoted into creation of multi-tool
integrated CACSD environments. However, they may be use-
ful in proprietary settings, there is a common feeling that there
is a small hope for making them portable. There also many
unanswered questions concerning the concepts of multi-tool in-
tegrated environments. Should the integration be model-data or
tool-methods oriented ? Should it possess a common "integrated"
user-interface or should it rely on separate tools' user-interfaces
? 1151, [16] and [l] , but it seems to be too early for definitive an-
swers. Although, it is commonly agreed that the evolution of the
software systems definitely tends towards the reusable compo-
nent architecture, see Figure 3, both vertically and horizontally

II -il II

Figure 3: Reusable software component architecture.

divided, with system components ("glue code") supporting
the communication (data exchange?) between the components
belonging to the given software level. So far, one of the success-
ful steps in this direction is the X-Window system. It is quite
probable that the true integration of high level tools is only pos-
sible if their lower level components fit well. As long there is no
clear accepted standard for the dynamical (run-time) exchange
of the structured data (objects) between separate programs, all
the integrating attempts are more or less temporary.

Some progress in the creation of first programming systems
supplying both object-based programming languages and object
abstraction at the operating system level has been already made,
c.f. [6]. These kind of systems enable objects to be maintained,
managed and used most efficiently, and what seems .to be very
important from the point of view of CACSD tools integration,
they support object sharing by independent programs, users etc.
Although, the methods of communication (object interaction) are
being developed, the new challenge emerges, i.e. the standard-
izafion of the objects used in the area of CACSD.

8 Conclusion

The software engineering perspective on CACSD tools is de-
scribed together with some of the background of early CACSD
tools. A simple model of the design process has been presented
and two are= not easily handled using current CACSD pack-
ages are pointed out. They are the evaluation phase and the
iteration in the design model. The objectives of integration and
extendability and the features of user support for the iteration are
described. Taking a software engineering approach some guide-
lines of developing original CACSD software and the problems
of software integration are presented. The problems concerning
information system, software life-time and software development
cycle are treated and the inherent problem of the different objec-
tives of algorithm designers, software developers and end users

is outlined. The importance of current trends in software archi-
tecture (object sharing, dynamic data exchange etc.) is pointed
out.

References

M. Andersson, S.E.Mattsson, B.Nilsson : On the architecture
of CACE environments. Computer Aided Design in Control
Systems - CADCS 91, Preprints of the 5th IFAC Sympo-
sium, Swansea, UK, July 1991, ed. H. A. Barker. Pergamon
Press, Oxford 1991, pp. 63-68.

H.A.Barker, M.Chen, P.W.Grant, I.T.Harvey, C.P.Jobling,
A.P.Parkman, P.Townsend : The making of eXCes - a
software engineering perspective. Computer Aided Design in
Control Systems - CADCS 91, Preprints of the 5th IFAC
Symposium, Swansea, UK, July 1991, ed. H. A. Barker.
Pergamon Press, Oxford 1991, pp. 27-32.

G.Booch, M.Vilot : The design of C++ Booch compo-
nents. ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications / European Conjer-
ence on Object Oriented Programming OOPSLA/ECOOP
'90, Ottawa, November 1990, pp. 1-11.

B.J.Cox : Object-oriented programming approach - an evo-
lutionary approach. Addison Wesley, Reading 1986.

B.J.Cox : Planning the software industrial revolution. IEEE
Soflwupc, November 1990, pp. 25-33.

RS.Chin, S.Chanson : Distributed object-based program-
ming systems. ACM Computing Surveys, vol23, no. 1, 1991,
pp. 91 - 124.

E.J.Davison (ed.) : Benchmark problems for control systems
design. Report of the IFAC Theory Committee, Laxenburg,
May 1990.

J.M.Dlugosz : Libraries with class. Byte, February 1991, pp.
164-168.

M.A.Floyd, P.J.Dawes, U.Milletti : Xmath -a new genera-
tion of object-oriented CACSD tools. First European Control
Conjerence ECC'91, Grenoble, July 1991, ed. C. Commault
et al., vol. 3, Hemes, Paris 1991, pp. 2232-2237.

S.Gossain, B.Andersson : An iterative-design model for
reusable object-oriented software. ACM Conference on Ob-
ject-Oriented Programming, Systems, Languages and Appli-
cations /European Conference on Object Oriented Progmm-
ming OOPSLA/ECOOP '90, Ottawa, November 1990, pp.
12-27.

J.Grudin : Interactive systems - bridging the gap between
developers and users. Computer, April 1991, pp. 59-69.

K.J.Lieberherr, 1.M.Holland : Assuring good style for
object-oriented programs. IEEE Softwan, September 1989,
pp. 38-48.

A.G.J.MacFarlane, G. Griibel, J.Ackerman : Future design
environments for control engineering. Automatica, vol. 25,
no. 2, 1989, pp. 165-176.

230

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

[14) J.Parr, P.W.Grant, C.P.Jobling : Object-oriented program-
ming and the implementation of a block diagram editor for
the Macintosh. Computer Aided Design in Control Systems -
CADCS 91, Preprints of the 5th IFAC Symposium, Swansea,
UK, July 1991, ed. H. A. Barker. Pergamon Press, Oxford
1991, pp. 194-199.

1151 O.Ravn : On user-friendly interface construction for CACSD
packages. 1989 IEEE CSS Workshop on Computer-Aided
Control System Design, December 1989, Tampa, Florida, pp.
33-40.

1161 O.Rsvn : Objectives and concepts in computer aided engi-
neering. Proceedings of the Nordic CACE Symposium, Tech-
nical University of Denmark, Lyngby 1990, pp. 1.11- 1.16.

[17] M.%mer, D.K.Frederick, C.Y.Huang : Solutions of the sec-
ond benchmark control problem. IEEE Control Sysfems
Magazine, ~01.10, no. 4, August 1990, pp. 33-39.

[16] M. Rimvall : ELCS - the eztended list o j control soflwan
(Swiss edition). No. 4, ETH, Zurich, December 1987,

[191 W. Schaufelberger: Educating future control engineers.
Pnpn'nb of the 11th IFAC World Congress, Tallinn, 1990,
vOl.1, pp. 82-93.

1201 C.Schmid : Techniques and tools of CADCS. 4th IFACSym-
posium on Computer Aided Design in Control Systems, Bei-
jing, PRC, 1988. IFAC Proceedings ser. 1989, no 7, pp. 91-
99.

1211 M.Szymkat : Computer aided control systems design. Com-
puter methods in control engineering, Ed. W.Wajs, Academy
of Mining and Metallurgy, Cracow, 1991. (in Polish)

[22] E.Yourdon : Managing the system iife cycle. 2nd edition,
Yourdon Press, Englewood Cliffs, 1988.

231

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

