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INTRODI ZTION 

The problem of nonlinear, adaptive filtering has been dealt with using many 
diflerent filter architectures among which we find the neural feed-forward 
network [4] and the Volterra filter [6]. In this paper a synthesis of these two 
architectures is proposed in the form of a new feed-forward net designed for 
the purpose of nonlinear filtering of time series. The general nonlinear filter 

Figure 1: Nonlinear adaptive filtering configuration. z(k) is the input, y(k) the 
output, and d(k) the desired signal. The filter is adapted in order to minimize the 
mean square error, E, e 2 ( k ) .  

configuration is shown i n  Fig. 1 .  This configuration may perform tasks such 
as prediction and identification of transfer functions [9]. The filter is designed 
to implement the equation: 

y(k) = F [ z ( k ) , z ( k -  l ) , . . . , z ( lC--  L +  l ) ;w]  (1) 
where F[.] is an unknown nonlinear function parameterized by w, IC is the 
discrete tinie index, and L is the filter order. Note, that  we have restricted 
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Figure 2: Network architecture. 

the nonlinear mapping of z(k) into y(k) to be non-recursive which ensures the 
BIBO-stability of the filter. In the following sections a description of the new 
network architecture and algorithm for estimating the network parameters 
will be given along with an analysis of the computational complexity. Finally, 
we show a simulation in order to substantiate the usefullness of the proposed 
approach to nonlinear filtering. 

NET WORK ARCHITECTURE 

The proposed network architecture is shown in Fig. 2. The network, which 
may be viewed as a generalization of the Wiener model [6], is composed of 
three sections: A preprocessing unit consisting of L input neurons and p 
hidden neurons , a memoryless, multidimensional nonlinearity, and a linear 
output neuron. The main objective of the preprocessing is to extract the 
essential information contained in x = {zj} = [ z ( k ) , z ( k  - l),-..,t(k - L + 
l)IT without loosing information concerning d ( k )  and simultaneously ensuring 
that U has a dimension, p 5 L .  The polynomial nonlinearity is memoryless 
and transforms the vector U into the vector v of dimension q = Cm+p,m, 
where Cn,k denotes the binomial coefficient, and m is the maximum order 
of the polynomial terms U,, r = 1,. . . , q .  Finally the linear neuron forms a 
weighted sum y(k) of the terms in v. It is worth noting that for m = 1 the 
network is equal to a standard 2-layer feed-forward net. This iniplies a trade 
off between the complexity of the hidden layer and the complexity of the 
output neuron expressed in terms of p ,  in and q .  The merit of the proposed 
architecture is that it shifts the complexity from the hidden nciirons to the 
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linear output neuron, which is normally easier to adapt (fast convergence, no 
local minima, see e.g. [9], [l]). 

Preprocessing network 

The hidden nodes in the preprocessing network follow the equations: 

L 

ui = tanh(ti) ,  t i  = z c i j z , ,  i = 1 , 2 , . . . , p  (2) 
j =  1 

Where xj = c(k - j + 1). In an earlier work [2] it was suggested to estimate 
the parameters c;, solely on the basis of the input signal z(k) using principal 
component analysis (PCA) [3]. This aproach has the obvious flaw of not using 
the desired signal in the calculation of c,, which may lead to a significant 
loss of information concerning the mapping of c(k) into d ( k )  [2]. A way of 
overcoming this deficiency is to make c;, adaptable and thus dependent on the 
overall performance criterion (i.e. the mean square error). This can be done 
using a variant of the well-known backpropagation algorithm [5]. However, 
it is a prerequisite that we develop a scheme for the efficient computation of 
the derivatives of the polynomial nonlinearity. 

Polynomial nonlinearity 

In accordance with the Wiener model [6] the nonlinearity combined with the 
linear output neuron is chosen such that y(k) is expressed as a truncated 
polynomial expansion: 

Where Ps(u;) is a polynomial in ui of order s and as,il,ia, ... are the weights 
in the output neuron. In this paper we will use a slightly different. notation: 

Q P 

~ ( k )  = x a r v r ,  = ~s~(u1)p,~(u2)...~s~(u~), Csi 5 m, si 2 o (4) 
r = l  i=l  

v = {U,.} contains alldistinct products of the polynomials Ps,(ui). If Ps(u) = 
us Eq. (4) becomes a Volterra expansion. In the Wiener model it is assumed 
that the u;’s are independent, Gaussian variables. This assumption leads 
to the choice of using the Hermite polynomials as the product terms, v,, in 
Eq. (4) consequently become orthogonal. Furthermore this entails that  con- 
vergence in mean is assured for all values of ui [6]. In general the distribution 
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of U is unknown which makes it impossible to find a set of orthogonal poly- 
nomials. However, due to the squashing functions in the hidden layer ui is 
limited to the interval ] - 1; l[. This makes the Chebyshev polynomials an 
attractive choice as they limit v, to ] - 1; l[. Furthermore they tend to be 
less correlated than the Volterra polynomials for most practical input distri- 
butions, partly due to the fact that the Volterra polynomials of even order 
contain a substantial mean value. This decreases the speed of convergence 
when adapting the output neuron using backpropagation. An alternative 
way of avoiding the problems of slow convergence for highly correlated v, is 
to adapt the output neuron with a 2nd order algorithm of the Gauss-Newton 
type [7, Ch. 141. 

The Chebyshev polynomials T,(u;) and their derivatives dT,(u;)/du; may 
be obtained using the recurrence formulas: 

T , + l ( U )  = 2uT,(u) - T , - I ( U ) ,  To(u) = 1 ,  T1(u) = U ( 5 )  

An efficient algorithm for calculation of the output terms v, from the 
inputs U ,  of the polynomial nonlinearity along with the derivatives av,/du; 
is not easily derived from Eq. (4). Instead it is proposed to picture the 
computations as a tree traversing procedure as shown in Fig. 3. The tree 
traversing is done as follows: Initially the value 1 is in the accumulator (this 
term is used to denote a temporary variable) and as we move downwards we 
multiply with the polynomials marked on the branches we follow. The tree 
is divided into layers at depths 1 + + . p  such that the first branch we traverse 
is a polynomial in u1 of order SI 5 m, the next branch a polynomial in u2 of 
order s2 5 m - SI and so forth. At the terminal node the accumulator will be 
equal to an output term v,. Looking at  the trees it should be easy to realize, 
that  the derivatives av,/au; can be calculated using the same procedure. 
The only modification necessary is to replace the polynomials Ps(ui)  with 
the corresponding derivatives dP,(u;)/du;, s = 0 , 1 ,  - .  . , m. That is, in order 
to calculate both the polynomial terms v, and their derivatives dv,/buj it is 
necessary to traverse one polynomial tree and p derivative trees. The pseudo 
code for the tree traversing procedure is very simple as shown below (Note 
that the code needs some (immaterial) modifications when implemented with 
variable p ) :  
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Figure 3: Calculation trees for calculating the polynomial terms and their deriva- 
tives. Maximum order m = 3, no. of input variables p = 2, and no. of output 
variables q = 10. 
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acc = 1 

fors1 = 0 , 1 , . . . , m  
T = l  

acc = T81(u1). acc 
for s2 = 0 , 1 , .  . . , m - 91 

acc = TS2(uz). acc 
f o r s 3 = 0 , 1 , . . . , m - s ~ - s ~  

. . .  
for s p  = 0,1,. . . , m - r-' n=l  sn 

U ,  = Tsp(up).  acc 
T = T + 1  

WEIGHT ESTIMATION ALGORITHM 

The weights in the hidden neurons as well as in the output neuron may readily 
be estimated using a modified a-LMS algorithm [$I: 

Aw = w(IC + 1 )  - w(IC) is the change in the weights due to updating and 
Q is the normalized step-size. The algorithm remains stable for Q E [0;2[, 
however selecting a > 1 is not sensible [8]. Time index is omitted as all 
terms are evaluated at  time IC. The modification consists of replacing the 
input vector with the gradient aylaw thus making the algorithm applicable 
to nonlinear systems. The partial derivatives are easy to find using the chain 
rule: 

This yields the following update equations: 

Vup Aa,. = ae- , T =  l ; " , q  

COMPLEXITY 

In order to properly evaluate the proposed network and weight estimation 
algorithm it is necessary to obtain an estimate of the computational com- 
plexity e.g. in terms of the number of multiplications/divisions needed in one 
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iteration of filtering and adaptation. For this purpose we use the calculation 
trees 

e 

e 

e 

e 

in Fig. 3 and state certain facts: 

There is Cm+n,m = ( ",' ) nodes at  depth n in the tree, n E 

The total number of multiplications in the tree is equal t o  the number 
of nodes minus 1. 

Calculation of p Chebyshev polynomials up to order m requires p ( m -  1) 
effective multiplications (cf. Eq. 5) (i.e. multiplications with 1 and 2 
are not counted). 

Calculation of p derivatives of Chebyshev polynomials up to order m 
requires p(m - 2) effective multiplications (i.e. multiplications with 1, 
2 and 4 are not counted). (cf. Eq. 6). 

{l,...,Pl [61. 

From Fig. 3 it should be evident that the number of multiplications with 1 
going from depth n to depth n + 1 in the polynomial tree is equal to the 
number of nodes at  depth n. The total number of times the accumulator is 
multiplied by 1 is thus equal to the total number of nodes minus the number of 
nodes in the final layer (n = p ) .  The number of times where the accumulator 
is equal to 1 and is multiplied by a polynomial Ps(u,)  # 1 is mp. Using all 
these facts it follows that the number of effective multiplications is: 

N p  = ( " , + ' ) - l - m p + p ( m - l )  

m l  1,  

where q is the dimension of v. It is easy to show, that N p  reaches the lower 
bound on the number of multiplications necessary to calculate v. Using 
similar arguments it can be shown that the number of effective calculations 
in the derivative tree is (The derivatives are simply polynomials of order 
m- 1): 

m 

m + P  
= q - - ( P + l ) ,  m > 2 ,  p 2 1  

Counting the number NN of multiplications in the adaptation and filtering 
by the neurons is straight forward keeping in mind, that av,/aui = 0 in a 
fraction of p / ( m  + p )  times. 

N N  = (x + 3) q + 2 ( p +  1)(L + 1) - L + 3, 
m+P 
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The total number of multiplications per iteration turns out to be: 

= ( 2 s  + 4 )  q +2(p+  l ) ( L +  1) - ( p +  1)’ - L + 3 ,  

m 2 2 ,  P > l  (15) 

Normally (cf. Section ) q is much larger than L and p .  That is, for most m 
q min(m, p )  >> p L ,  in which case (2mp/(m + p )  + 4)q is a rough estimate of 
the number of multiplications. This emphasizes the main difficulty with this 
kind of network, which is the fast growth of q with growing m and p .  If the 
estimation of the weights in the hidden neurons is performed using PCA the 
complexity is roughly 4q multiplications per iteration, i.e. the relative change 
in complexity when implementing the backpropagation is: 

SIMULATIONS 

In order to illustrate the benefits of the proposed method of preprocessing 
compared to the PCA method, we have simulated a simple example of system 
identification. The unknown system is a network as shown in Fig. 2 with 
parameters 

1 0.3 -0.25 0.1 -0.15 
-0.2 -0.1 0.2 -0.1 

c = { c . . }  = $3 

a = { a i }  = [ 0.2 0.5 -0.4 0.7 0.6 -0.8 IT (18) 
Implying that p = 2, L = 4, m = 2, and q = Cz+z,z = 6. The input 
signal z(k) is a colored sequence which is obtained by filtering zero mean 
white Gaussian noise with a 2nd order butterworth lowpass filter (cutoff at  
0.15fs, where fs denotes the sampling frequency). The two networks used for 
the identification were given the same architecture as the unknown system 
(i.e. p = 2, L = 4, m = 2), and the normalized step-size Q was set to 
0.3. A set of 200 samples was used to train the networks, and after each 
pass of the entire set the performance index E = n,/nd was calculated. The 
standard deviations ne , ud of the cross-validation error and the desired signal 
were estimated using an independent set of 200 samples. Fig. 4 shows how 
the convergence of E depends on the choice of preprocessing method. The 
network using PCA displays a fast convergence but at  the expense of a high 
final error index. Note that this network is linear in the parameters i.e. 
there are no local minima, and consequently there would be no significant 
decrease of E even if the number of passes was increased. The proposed net 
converges slower but eventually it reaches the optimal solution ( E  = 0, not 
shown in Fig. 4) unless the weight estimation algorithm is caught up in a 
local minimum. 
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Figure 4: Convergence of the error index E as a function of the pass number n. 
Dashed line: The network using PCA. Solid line: The proposed network. 

CONCLUSION 

In this paper a new neural network based on the Wiener model has been 
proposed. The network is composed of a hidden layer of preprocessing neurons 
followed by a polynomial nonlinearity and a linear output neuron. In contrast 
to earlier suggestions [2] we try to solve the problem of finding an appropriate 
preprocessing method by using a modified backprdpagation algorithm. It is 
shown by the use of calculation trees, that the proposed approach is simple to 
implement, and that the computational complexity is not much larger than 
for the alternative method of using PCA to determine the weights in the 
preprocessing network. Finally, a simulation has been given which indicates 
superior performance of the proposed network compared to the PCA network. 
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