

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

A neural feedforward network with a polynomial nonlinearity

Hoffmann, Nils

Published in:
Proceedings of the IEEE-SP Workshop Neural Networks for Signal Processing

Link to article, DOI:
10.1109/NNSP.1992.253708

Publication date:
1992

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hoffmann, N. (1992). A neural feedforward network with a polynomial nonlinearity. In Proceedings of the IEEE-
SP Workshop Neural Networks for Signal Processing (pp. 49-58). IEEE. DOI: 10.1109/NNSP.1992.253708

http://dx.doi.org/10.1109/NNSP.1992.253708
http://orbit.dtu.dk/en/publications/a-neural-feedforward-network-with-a-polynomial-nonlinearity(3ff71b0b-6336-4991-b0ea-07bf39bb0ee7).html

A NEURAL FEED-FORWARD NETWORK
WITH A POLYNOMIAL NONLINEARITY

Nils Hoffniann
Electronics Institute, Building 349
Technical University of Denmark

DK-2800 Lyngby, Denmark
Phone: +45 45931222 ext. 3916

Fax: +45 42880117

INTRODI ZTION

The problem of nonlinear, adaptive filtering has been dealt with using many
diflerent filter architectures among which we find the neural feed-forward
network [4] and the Volterra filter [6]. In this paper a synthesis of these two
architectures is proposed in the form of a new feed-forward net designed for
the purpose of nonlinear filtering of time series. The general nonlinear filter

Figure 1: Nonlinear adaptive filtering configuration. z(k) is the input, y(k) the
output, and d(k) the desired signal. The filter is adapted in order to minimize the
mean square error, E, e 2 (k) .

configuration is shown i n Fig. 1 . This configuration may perform tasks such
as prediction and identification of transfer functions [9]. The filter is designed
to implement the equation:

y(k) = F [z (k) , z (k - l) , . . . , z (lC-- L + l) ;w] (1)
where F[.] is an unknown nonlinear function parameterized by w, IC is the
discrete tinie index, and L is the filter order. Note, that we have restricted

49 0-7803-0557-4/92$03.00 0 1992

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 10:49:55 UTC from IEEE Xplore. Restrictions apply.

>oIynomia

Nonline-
arity

X(k- L+ 1) W

Figure 2: Network architecture.

the nonlinear mapping of z(k) into y(k) to be non-recursive which ensures the
BIBO-stability of the filter. In the following sections a description of the new
network architecture and algorithm for estimating the network parameters
will be given along with an analysis of the computational complexity. Finally,
we show a simulation in order to substantiate the usefullness of the proposed
approach to nonlinear filtering.

NET WORK ARCHITECTURE

The proposed network architecture is shown in Fig. 2. The network, which
may be viewed as a generalization of the Wiener model [6], is composed of
three sections: A preprocessing unit consisting of L input neurons and p
hidden neurons , a memoryless, multidimensional nonlinearity, and a linear
output neuron. The main objective of the preprocessing is to extract the
essential information contained in x = {zj} = [z (k) , z (k - l),-..,t(k - L +
l)IT without loosing information concerning d (k) and simultaneously ensuring
that U has a dimension, p 5 L . The polynomial nonlinearity is memoryless
and transforms the vector U into the vector v of dimension q = Cm+p,m,
where Cn,k denotes the binomial coefficient, and m is the maximum order
of the polynomial terms U,, r = 1,. . . , q . Finally the linear neuron forms a
weighted sum y(k) of the terms in v. It is worth noting that for m = 1 the
network is equal to a standard 2-layer feed-forward net. This iniplies a trade
off between the complexity of the hidden layer and the complexity of the
output neuron expressed in terms of p , in and q . The merit of the proposed
architecture is that it shifts the complexity from the hidden nciirons to the

50

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 10:49:55 UTC from IEEE Xplore. Restrictions apply.

linear output neuron, which is normally easier to adapt (fast convergence, no
local minima, see e.g. [9], [l]).

Preprocessing network

The hidden nodes in the preprocessing network follow the equations:

L

ui = tanh(ti) , t i = z c i j z , , i = 1 , 2 , . . . , p (2)
j = 1

Where xj = c(k - j + 1). In an earlier work [2] it was suggested to estimate
the parameters c;, solely on the basis of the input signal z(k) using principal
component analysis (PCA) [3]. This aproach has the obvious flaw of not using
the desired signal in the calculation of c,, which may lead to a significant
loss of information concerning the mapping of c(k) into d (k) [2]. A way of
overcoming this deficiency is to make c;, adaptable and thus dependent on the
overall performance criterion (i.e. the mean square error). This can be done
using a variant of the well-known backpropagation algorithm [5]. However,
it is a prerequisite that we develop a scheme for the efficient computation of
the derivatives of the polynomial nonlinearity.

Polynomial nonlinearity

In accordance with the Wiener model [6] the nonlinearity combined with the
linear output neuron is chosen such that y(k) is expressed as a truncated
polynomial expansion:

Where Ps(u;) is a polynomial in ui of order s and as,il,ia, ... are the weights
in the output neuron. In this paper we will use a slightly different. notation:

Q P

~ (k) = x a r v r , = ~s~(u1)p,~(u2)...~s~(u~), Csi 5 m, si 2 o (4)
r = l i=l

v = {U,.} contains alldistinct products of the polynomials Ps,(ui). If Ps(u) =
us Eq. (4) becomes a Volterra expansion. In the Wiener model it is assumed
that the u;’s are independent, Gaussian variables. This assumption leads
to the choice of using the Hermite polynomials as the product terms, v,, in
Eq. (4) consequently become orthogonal. Furthermore this entails that con-
vergence in mean is assured for all values of ui [6]. In general the distribution

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 10:49:55 UTC from IEEE Xplore. Restrictions apply.

of U is unknown which makes it impossible to find a set of orthogonal poly-
nomials. However, due to the squashing functions in the hidden layer ui is
limited to the interval] - 1; l[. This makes the Chebyshev polynomials an
attractive choice as they limit v, to] - 1; l[. Furthermore they tend to be
less correlated than the Volterra polynomials for most practical input distri-
butions, partly due to the fact that the Volterra polynomials of even order
contain a substantial mean value. This decreases the speed of convergence
when adapting the output neuron using backpropagation. An alternative
way of avoiding the problems of slow convergence for highly correlated v, is
to adapt the output neuron with a 2nd order algorithm of the Gauss-Newton
type [7, Ch. 141.

The Chebyshev polynomials T,(u;) and their derivatives dT,(u;)/du; may
be obtained using the recurrence formulas:

T , + l (U) = 2uT,(u) - T , - I (U) , To(u) = 1 , T1(u) = U (5)

An efficient algorithm for calculation of the output terms v, from the
inputs U , of the polynomial nonlinearity along with the derivatives av,/du;
is not easily derived from Eq. (4). Instead it is proposed to picture the
computations as a tree traversing procedure as shown in Fig. 3. The tree
traversing is done as follows: Initially the value 1 is in the accumulator (this
term is used to denote a temporary variable) and as we move downwards we
multiply with the polynomials marked on the branches we follow. The tree
is divided into layers at depths 1 + + . p such that the first branch we traverse
is a polynomial in u1 of order SI 5 m, the next branch a polynomial in u2 of
order s2 5 m - SI and so forth. At the terminal node the accumulator will be
equal to an output term v,. Looking at the trees it should be easy to realize,
that the derivatives av,/au; can be calculated using the same procedure.
The only modification necessary is to replace the polynomials Ps(ui) with
the corresponding derivatives dP,(u;)/du;, s = 0 , 1 , - . . , m. That is, in order
to calculate both the polynomial terms v, and their derivatives dv,/buj it is
necessary to traverse one polynomial tree and p derivative trees. The pseudo
code for the tree traversing procedure is very simple as shown below (Note
that the code needs some (immaterial) modifications when implemented with
variable p) :

52

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 10:49:55 UTC from IEEE Xplore. Restrictions apply.

v v
1 2

n

V
10

1 depth-2

dy/du, dvjdul dYddul

Figure 3: Calculation trees for calculating the polynomial terms and their deriva-
tives. Maximum order m = 3, no. of input variables p = 2, and no. of output
variables q = 10.

53

~

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 10:49:55 UTC from IEEE Xplore. Restrictions apply.

acc = 1

fors1 = 0 , 1 , . . . , m
T = l

acc = T81(u1). acc
for s2 = 0 , 1 , . . . , m - 91

acc = TS2(uz). acc
f o r s 3 = 0 , 1 , . . . , m - s ~ - s ~

. . .
for s p = 0,1,. . . , m - r-' n=l sn

U , = Tsp(up). acc
T = T + 1

WEIGHT ESTIMATION ALGORITHM

The weights in the hidden neurons as well as in the output neuron may readily
be estimated using a modified a-LMS algorithm [$I:

Aw = w(IC + 1) - w(IC) is the change in the weights due to updating and
Q is the normalized step-size. The algorithm remains stable for Q E [0;2[,
however selecting a > 1 is not sensible [8]. Time index is omitted as all
terms are evaluated at time IC. The modification consists of replacing the
input vector with the gradient aylaw thus making the algorithm applicable
to nonlinear systems. The partial derivatives are easy to find using the chain
rule:

This yields the following update equations:

Vup Aa,. = ae- , T = l ; " , q

COMPLEXITY

In order to properly evaluate the proposed network and weight estimation
algorithm it is necessary to obtain an estimate of the computational com-
plexity e.g. in terms of the number of multiplications/divisions needed in one

54

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 10:49:55 UTC from IEEE Xplore. Restrictions apply.

iteration of filtering and adaptation. For this purpose we use the calculation
trees

e

e

e

e

in Fig. 3 and state certain facts:

There is Cm+n,m = (",') nodes at depth n in the tree, n E

The total number of multiplications in the tree is equal t o the number
of nodes minus 1.

Calculation of p Chebyshev polynomials up to order m requires p (m - 1)
effective multiplications (cf. Eq. 5) (i.e. multiplications with 1 and 2
are not counted).

Calculation of p derivatives of Chebyshev polynomials up to order m
requires p(m - 2) effective multiplications (i.e. multiplications with 1,
2 and 4 are not counted). (cf. Eq. 6).

{l,...,Pl [61.

From Fig. 3 it should be evident that the number of multiplications with 1
going from depth n to depth n + 1 in the polynomial tree is equal to the
number of nodes at depth n. The total number of times the accumulator is
multiplied by 1 is thus equal to the total number of nodes minus the number of
nodes in the final layer (n = p) . The number of times where the accumulator
is equal to 1 and is multiplied by a polynomial Ps(u,) # 1 is mp. Using all
these facts it follows that the number of effective multiplications is:

N p = (" , + ') - l - m p + p (m - l)

m l 1,

where q is the dimension of v. It is easy to show, that N p reaches the lower
bound on the number of multiplications necessary to calculate v. Using
similar arguments it can be shown that the number of effective calculations
in the derivative tree is (The derivatives are simply polynomials of order
m- 1):

m

m + P
= q - - (P + l) , m > 2 , p 2 1

Counting the number NN of multiplications in the adaptation and filtering
by the neurons is straight forward keeping in mind, that av,/aui = 0 in a
fraction of p / (m + p) times.

N N = (x + 3) q + 2 (p + 1)(L + 1) - L + 3,
m+P

55

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 10:49:55 UTC from IEEE Xplore. Restrictions apply.

The total number of multiplications per iteration turns out to be:

= (2 s + 4) q +2(p+ l) (L + 1) - (p + 1)’ - L + 3 ,

m 2 2 , P > l (15)

Normally (cf. Section) q is much larger than L and p . That is, for most m
q min(m, p) >> p L , in which case (2mp/(m + p) + 4)q is a rough estimate of
the number of multiplications. This emphasizes the main difficulty with this
kind of network, which is the fast growth of q with growing m and p . If the
estimation of the weights in the hidden neurons is performed using PCA the
complexity is roughly 4q multiplications per iteration, i.e. the relative change
in complexity when implementing the backpropagation is:

SIMULATIONS

In order to illustrate the benefits of the proposed method of preprocessing
compared to the PCA method, we have simulated a simple example of system
identification. The unknown system is a network as shown in Fig. 2 with
parameters

1 0.3 -0.25 0.1 -0.15
-0.2 -0.1 0.2 -0.1

c = { c . . } = $3

a = { a i } = [0.2 0.5 -0.4 0.7 0.6 -0.8 IT (18)
Implying that p = 2, L = 4, m = 2, and q = Cz+z,z = 6. The input
signal z(k) is a colored sequence which is obtained by filtering zero mean
white Gaussian noise with a 2nd order butterworth lowpass filter (cutoff at
0.15fs, where fs denotes the sampling frequency). The two networks used for
the identification were given the same architecture as the unknown system
(i.e. p = 2, L = 4, m = 2), and the normalized step-size Q was set to
0.3. A set of 200 samples was used to train the networks, and after each
pass of the entire set the performance index E = n,/nd was calculated. The
standard deviations ne , ud of the cross-validation error and the desired signal
were estimated using an independent set of 200 samples. Fig. 4 shows how
the convergence of E depends on the choice of preprocessing method. The
network using PCA displays a fast convergence but at the expense of a high
final error index. Note that this network is linear in the parameters i.e.
there are no local minima, and consequently there would be no significant
decrease of E even if the number of passes was increased. The proposed net
converges slower but eventually it reaches the optimal solution (E = 0, not
shown in Fig. 4) unless the weight estimation algorithm is caught up in a
local minimum.

56

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 10:49:55 UTC from IEEE Xplore. Restrictions apply.

I-

0 . 2 0 L - f - - - 10 I5 20 25 30 35 40
’

Pass n

Figure 4: Convergence of the error index E as a function of the pass number n.
Dashed line: The network using PCA. Solid line: The proposed network.

CONCLUSION

In this paper a new neural network based on the Wiener model has been
proposed. The network is composed of a hidden layer of preprocessing neurons
followed by a polynomial nonlinearity and a linear output neuron. In contrast
to earlier suggestions [2] we try to solve the problem of finding an appropriate
preprocessing method by using a modified backprdpagation algorithm. It is
shown by the use of calculation trees, that the proposed approach is simple to
implement, and that the computational complexity is not much larger than
for the alternative method of using PCA to determine the weights in the
preprocessing network. Finally, a simulation has been given which indicates
superior performance of the proposed network compared to the PCA network.

ACKNOWLEDGEMENTS

I would like to thank Lars Kai Hansen, Jan Larsen, Peter Koefoed Moller,
and John Aasted Sorensen for helpfull comments on this paper.

REFERENCES

[l] S. Haykin, Adaptive filter theory, Englewood Cliffs, N.J.: PRENTICE-
HALL, 1991.

[2] N. Hoffmann & J . Larsen, ” A Neural Architecture for Nonlinear Adaptive
Filtering of Time Series” in B.H. Juang, S.Y. Kung & C.A. Kamm (eds.)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 10:49:55 UTC from IEEE Xplore. Restrictions apply.

Neural Networks for Signal Processing, Proceedings of the 1991 IEEE
Workshop, Piscataway, N.J.: IEEE, 1991.

[3] P.R. Krishnaiah (ed.), Multivariate Analysis 2, New York, N.Y.: ACA-
DEMIC PRESS, 1969.

[4] A.S. Lapedes & R. Farber, "Nonlinear Signal Processing Using Neu-
ral Networks, Prediction and System Modeling," Technical Report
LA-UR-87, Los Alamos National Laboratory, 1987.

[5] J.L. McClelland & D.E. Rumelhart (eds.), Parallel Distributed Proces-
sing, Explorations in the Microstructure of Cognition. Vol. 1: Founda-
tions, Cambridge, Massachusetts: MIT PRESS, 1986.

[6] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems,
Malabar, Florida: ROBERT E. KRIEGER PUBLISHING COMPANY,
1989.

[7] G.A.F Seber & C.J. Wild, Nonlinear Regression, New York, N.Y.:
JOHN WILEY & SONS, 1989.

I81 B. Widrow, R.G. Winther & R.A. Baxter, "Layered Neural Nets
. A

for Pattern Recognition," IEEE Transactions on Acoustics Speech and
Signal Processing, vol. 36, July 1988.

[9] B. Widrow & S.D. Steams, Adaptive Signal Processing, Englewood
Cliffs, N.J.: PRENTICE-HALL, 1985.

58

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 06,2010 at 10:49:55 UTC from IEEE Xplore. Restrictions apply.

