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ABSTRACT 

This paper decribes the application of xlaptive segmentation techniques 
to EEG-signals. A number of methods to detect abrupt changes in the 
signal are discussed. assuming that it can be modelled as realizations of 
quasi-stationary autoregressive (AR) pmxsses. Earlier plblished methods 
are revised to obtain symmetrical de&tion. so that a comparable segmenta- 
tion pedormance is achieved independent of the change in power across a 
segment boundary. Simulation studies are used to rank the methods. 

INTRODUCTION 

EEG recordings vary due to changes in the physiological or psychologi- 
cal state of the subject. The implication is that the statistical characteris- 
tics of the EEG vary with time.. and the signal is therefm considered to be 
non-stationary. This pcwes a significant problem in EEG analysis, since 
the basic assumption in the use of classical analysis methods (spectral-, 
period- and correlation-analysis) is that the signal is stationary. 

The problem of detecting abrupt changes, and segmenting the signal 
into quasi-stationary parts has been a continuing subject of research for 
many years [l ,  2. 4. 51. This study outlines the method of adaptive 
segmentation. It assesses some of the limitations of previous methods and 
presents modifications of them. The performance of the described 
algorithms are compared and evaluated in a simulation study. 

THEORY 

In order to perform a segmentation of the EEG signal we assume that a 
homogenous part of the signal can be modelled as a realization of an 
autoregressive (AR) process: 

P 
x(n) = 4 x(n - k) + e h )  (1) 

k = l  
where p is the model order, a are the AR-parameters and e(n) is a zro  
mean white mise se~uence with variance U:. 

The parametric AR-model has often been applied to EEG signals with 
orders varying from 5 to 15 depending on the length of the signal and the 
model application [l,  21. The advantage of using an AR-mode1 is that the 
statistical properties are solely described by the. set of AR-parameters. 
which are constant within a stationary segmenL It is therefore sufficient to 
detect achange in h s e  parameters to detect a segmentboundary. 

The principle in adaptive fillering, as Originally proposed by [41 is as 
follows. Features from an initial reference window are extracted and 
continuously compared with those of a moving window of EEG signal. A 
segment boundary is detected when the featms of the reference window 
differ s ign i f i l ly  from lhose of the moving window. A new reference 
window is then specified following the boundary and the procedure is 
repeated. Applying AR-modelling, the comparison between the reference 
and the moving windows can be done in the following ways: 
I. An AR-model is estimated for the reference window and the signal in 
the moving window is filtered with the. corresponding inverse filter. The 
basic assumption is that the output of the filmtion will be a zero mean 

white noise residual signal. The. comparison is therefore reduced to a test 
of how far the residual signal is from the white noise hypothesis. This 
method has been extensively used [l, 3.4.51 and a typical test statistic of 
how far the residual signal is from the white noise. hypothesis has been 
based upon the cumulative sum of the residuals: 

(2) 

w k N ,  is the number of samples in the moving window, e&) is the 
residual signal and U: is the estimated noise variance of the reference 
window. Under the hypothesis that the signal is Gaussian and that no 
change occurs, this test statistic is asymptotically Gaussian distributed as 
N(0, 1). At first glance, the test seems to be effective, but it has been 
shown that it posses some serious drawbacks [3]. A problem occus when 
the signal undergoes a change with a decrease in energy, i.e. when 

< U',. In this case the drift of the test statistic can be positive as well 
as negative. Such a situation occurs regularly in EEG signals, e.g. in 
sleep recordings with transitions between sleep stages. 

11. A simple solution to the asymmetry of the test statistic in Eq. (2) can 
be achieved by performing a dual inverse filtering, followed by a 
calculation of a cumulative test statistic. More specifically, an AR-model 
is estimated for the reference window, followed by an inverse filtering of 
the moving window, and a calculation of the slaristic Z,. Now a new AR- 
model is estimated for the moving window, followed by an inverse 
filtering and calculation of test statistic for the reference window. A final 
statistic can now be calculated as Ihe sum of the two intermediate values: 

This two step calculation insures a symmetrical detection of a change 
between two models, independent of whether there is an increase or 
decrease in energy across a segmentboundary. 

The use of Eq (3) is not without problems. Since it is now also 
necessary to estimate an AR-model for the moving window, the number of 
samples in this must be increased. The result is a smaller accuracy in the 
exact segment boundary. Furthermore the cumulated statistic does not 
follow a simple distribution due to the dependency between the two 
inverse filtrations. This means, that the segment boundary must be 
determined, when Z is larger than an empirically calculated threshold 
value. In practice this does not pose a problem, since the EEG signal is 
rarely Gaussian disuibuted. Empirical thresholding is therefore generally 
also required when Eq. (2) is used. 
IIl. A different approach from the inverse filtering, which can be used to 
compare the AR-parameters of the reference and moving windows has been 
described in [6]. In the derivation of the method, the asymptotic Gaussian 
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distribution of the AR-parameters is used to achieve a test statiaic far the 
diffemlcebetween the twosefsof AR-pmmaexs: 

where N are the number of samples, a = [ 81.82, ... ; b l T a r e t h e ~  
ARcoefficients, d is the estimated noise variance and Rp is the p x p 
autocorrelation matrix of the signal. The subscripis r and m refer to the 
reference and moving windows respectively. It is shown that ZI  is 

IV. Itcanbeseendirectly from Eq. ( 4 ) t h a t h ~ o n l y  Rr is used, this test 
also possesses some asymmetry, and to compensate for this, the following 
statistic is consrmcted: 

asympto(ically X*l) distributed. 

z12 =z1+ z, ( 5 )  

where Z1 is identical to the expression in Eq. (4) while 22 has the 
subscripts r and m r e v d ,  when compared to Eq. (4). 
Compared to Z1 in Eq. (4) there is only a very little increase in the 
computational work when Z12 is used. since both autocarrelaton matrices 
already have been calculated during the parameter estimation. As in the 
case of the dual inverse filtration test, the test statistic, Z12, must be 
compared to an empirical threshold value. 

EVALUATION OF METHODS 

Methods I, II, III and IV described in the previous section has been 
applied to simulated as well as real EEGs [l]. An example of a simulated 
test signal is shown in Figure 1. 

signal 1 signal2 

o /  ... ... { 
I I I 

4800 49W Moo 5100 5200 

No. of Samples 

Flgure 1. Part of test sipal at boundary between simulated rraliutions of 
two AR(14)-models. 

The test signal consist of 2 x 5000 samples, from two simulated 
realizations of AR(14)-models. The fm part (Signal 1) is a simulated 
EEG signal from 14 AR-parameters estimated from a true EEG signal. For 
the simulation of the second part (Signal 2). one of the reflection 
coefficients from the model of Signal 1 was changed (there is a direct 

relationship between the AR-parameters and the reflection coefficients of 
an AR-model. The advantage of changing a reflection coefficient, to obtain 
an new model, is that stability of the system is insured. as long as the 
absolute values of the reflection coefficients m less than one [I]). 

The variance of the noise was a%1 = 0.35 for Signal 1. while it was 
changed to a%z = 0.48 for Signal 2. Since a transition from Signal 1 to 
Signal 2 is an increase in & one would therefore expect all 4 methods to 
detect the change, while at least method I would fa& if the two signal 
were reversed. This is confmed by the result in Figure 2. Notice that the 
reference window is kept at the initial position, even afm the transition, 
to follow the values of the test statistics. A significant improvement is 
achieved when either meihod I1 or IV is used. and it is in both cases 
possible to detect the boundary (absolute symmetry is not achieved, since 
the reference windows are different in the two cases). No significant 
difference has been observed between method I1 and IV, and method IV 
should therefore be recommended, since it is p l y  parametrical and does 
not require inverse filtering. 
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Figure 2. 
Values of test statistics after 
segmentation in test signal. In 
the right column (A, B. C and 
D), the reference window was 
the fmt 300 samples of Signal 
1. while the moving window 
(also 300 samples) was sliding 
along signal 1 followed by 
signal 2. In the left column (E, 
F. G and H) the signals were 
reversed. Now the reference 
window was the first 300 
samples of Signal 2, while the 
moving window was sliding 
along the rest o f  Signal 2 
followed by Signal I .  
Fig. A and E m e M  1 
Fig. B and F method I1 
Fig. C and G: method III 
Fig. D and H method IV 
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