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NEURAL NETWORKS AS A TOOL FOR UNIT COMMITMENT 
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Professor Ph.D. Jan Renne-Hansen 

Electric Power Engineering Dept. 
Technical University of Denmark 

DK-2800 Lyngby 

Abstract 
In this paper some of the fundamental problems 
when solving the unit commitment problem by 
means of neural networks have been attacked. 
It has been demonstrated for a small example 
that neural networks might be a viable alter- 
native. Some of the major problems solved in 
this initiating phase could form the fundament 
for the analysis of real life sized problems. 
These will be investigated in the near future. 

1. In- 
Neural networks have for some time proven to 
be a useful tool when dealing with signal 
analysis: alarm treatment and certain types of 
forecasting. In all these applications data can 
be characterized by an inherent structure 
clearly suited for pattern recognition. 
An investigation of the unit commitment pro- 
cedure does not reveal an obvious structure 
even though the skilled operator (expert) is 
able to make decisions very close to optimum 
without any analytical tool at hand. It was 
decided in a masters thesis (total duration 5 
months) to make an effort in applying neural 
networks to this problem area. Some of the 
findings during this research is described in 
this paper. 
Among the problems which should be solved was 
of course how to present the problem to the 
neural network - and thus influencing the 
construction ofthenetwork. Evenmore difficult 
was the problem how to describe the load curve 
in a simple and accurate way. 
The knowledge gained is that a structure does 
exist, however weak and still not obvious from 
load and unit data. This points to further 
investigations including problems of real life 
size. These investigations can - to our opinion - be carried out directly based on the results 
reported here. 

ion of the 

In order to consider thiswork inthe perspective 
of the very large width of the optimization 
problem, which the unit commitment problem (UC) 
represents, a general overview of the problem 
will be given here in short. 

As it is seen, the optimization of the power 
production have to be done, observing a variety 
of conditions due to as well the system as the 
individual unit. For the system, the following 
conditions/contstraints has to be fulfilled: 

1.1) 
1.2) 

1.3) 
1.4) 
1.5) 

Electric power load 
Heat load (when combined production 
must be taken into account) 
Import/export agreements/contracts 
Spinning reserve requirements 
Fuel supply constraints 

When considering the individual unit, the 
fo l lowingcondit ionsmustbetakeninto  account: 

2.1) Production boundaries 
2.2) Fuel consumption 
2.3) Start/stop costs 
2.4) Hot-standby costs 
2.5) Scheduled outage 
2.6) Specified production/Specific pro- 

duction requirements 
2.7) Scheduled commitment 
2.8) Maximum step response 
2.9) Crew constraints 
2.10) Interdependencebetweenheat andpower 

production 
2.11) Maximum load gradient 
2.12) Minimum up-time 
2.13) Minimum down-time 
2.14) Penalty factors for network losses 

In this rather traditional survey several 
problems are hidden. The start/stop costs ought 
to include the capitalization of the increased 
risk of outages during start up and shut down. 
These data normally are not available although 
investigations have shown that such indirect 
start costs may exceed the direct start costs 
by several hundred per cent! Neither the fact 
that additional regulation costs when 
increasing the power production, to a certain 
extent can be regained when reducing the pro- 
duction later on are considered. These examples 
are just two of several. 
In the following the problem will be considered 
as including the traditional constraints only 
(i.e. 1.2; 1.3 and 2.5-2.11 are left outJ. 
Even kn this case the solution is difficult. 
Most often less accurate methods are chosen 
since the complexity of the problem makes the 
very accurate solution impossible taking into 
consideration the state of the art of computing 
as well as lack of data. 

To get started, using neural networks to the 
UC problem, it was chosen here to use a 
sufficiently exact method for a rather small 
system when producing learning and test data. 
Hereby the results obtained will be a8 close 

91THO374-9/91~1.00(81991 IEEE 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 05,2010 at 13:38:13 UTC from IEEE Xplore.  Restrictions apply. 



to optimum as possible, and the discussion will 
be concentrated on the application of the neural 
networks and the experience gained. 
Because no program for the solution of the UC 
problem was at hand it was chosen to use dynamic 
programming carried out by hand for a suffi- 
ciently small example system. when taking into 
consideration the llnormalll expenses (as dealt 
with in the standard UC problem) the forward 
dynamic programming procedure gives an accurate 
answer to the problem. Thus still more simple 
cases can be defined by neglecting many con- 
straints. The applicability of neural networks 
for the solution of this problem can be tested 
beginning with a very simple case and step by 
step taking into account still more complex 
examples by adding more constraints from the 
list above. 
A system, which is used in T.S. Dillon's lecture 
notes [2]. This small 5 unit system has been 
slightly modified (table 1) and used as 
described in the following. These 5 units give 
\a total of 32 possible commitments, which is 
too large a number to be dealt with in dynamic 
programming by hand. These 32 commitments 
furthermore have been reduced to 22 legal 
commitments, by neglecting in total 10 com- 
mitments rejected according to the following 
rules. 

- t?a pnits committed (uninteresting) 
- Only one unit committed (no reserve 
in case of outages) 

- Commitments in which the technical 
minimumproduction ofthe largest unit 
committed is bigger than the sum of 
the rated power of all the remaining 
committed units 

COSTS 

0.3 I 
3 13s- 150 0.33 
1 ' 40 - 60 0.33 
2 60-92 17.50 0.38 
3 92-100 0.55 
1 20- 30 0.37 1 
2 30-40 8.54 0.38 1 
3 40-50 0.489 
I 10-30 0.45 
2 ' 30-40 8.25 0.465 
3 40- 50 0.549 
1 0 - 5  0.40 
2 5 - I5 2.00 0.40 
3 15-30 0.50 

Table 1 Unit data 

startup 

50 
- 
' 30 

IO 

13 

5 

When using a discrete dynamic programming 
method, it is necessary to select a step size, 
valid forthe loadaswell as fortheproduction. i 

Having an installed capacity of 380 MW, a step 
size equal to 10 MW was found suitable. For . 
each load step between 50 MW and 380 MW, the 
load dispatch now can be found by using the 
merit order approach. The application of the 
simple merit order approach is possible due to 
the economic structure of the units. However, 
since the actual load dispatch is solved 
independently of the unit commitment problem 
no implication on the function of the neural 
network will exist. This of course is done for 
every legal commitment within the actual load 
step. 
Considering the load curves, the following 
decisions were made. Four load curves from the 
Danish power systemwere selected, representing 
workday and weekend both summer and winter [ 61. 
Furthermore a load curve from CIG- [l] was 
selected, and finally a fictitious load curve 
was constructed. The fictitious load curve was 
chosen closer to the CIGF&-curve than to the 
more uniform curves for the Danish power system 
in order to extend training data for more 
distinct load variations. All the curves were 
adjusted to suitable load sizes. Finally each 
loadcurvewasconsidered followingand followed 
by an identical load curve (fig. 1). 

, 
WLU N 

. .  
4 8 I2 16 20 24 

Commitment schedule, neglecting 
startup costs 

A 8 12 16 20 24 

Commitment schedule, including 
startup costs 

according commitment schedules. 
Figure 1: Example of a loadcurve with 

The next point to be handled, is to select a 
sufficiently simple subset of constraints, by 
removing most of the items of the original 
curves, As said, the idea waa to begin as simple 
as possible, and then extend the complexity, 
as the work proceeded. The most simple problem 
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was selected by considering the following 
constraints only: 

1.1) Electric load 
2.1) Production limits 
2.2) Production costs 

The next constraint, which should be considered 
in addition to the three mentioned is 2.3) : 
Fixe! start up costs. 

4. Selectina the neural n e t w e  
4.1 Choice of t o o h  

It does not require a lot of experience with 
neural networks to observe, that the unit 
commitment problem is not suited for an 
auto-associative neural network paradigm but a 
hetero-associative paradigm must be used. Most 
obvious then is to use the back propagation 
paradigm. This because it is the most common 
used paradigm based on well-known and generally 
accepted engineering methods. Furthermore the 
problem is of a continuous character, which 
excludes e.g. the madaline paradigm. 
Two software packages were used. The first one 
was: NW Explorer from Neural Ware. The appli- 
cation of this is of very basic character and 
therefore can be considered less practical, 
however, of great pedagogical importance since 
the network can be designed directly and the 
learning process closely followed. The second 
package was Brainmaker Professional from 
California Scientific Software. The main part 
of the calculations were carried through using 
this tool. 

4.2 Deslanlna the net- . .  
Next it was decided, how the output should be 
represented. In general three obvious possi- 
bilities can be chosen: 

1) One output neuron/unit => 5 outputs 

mitment => 22 outputs 

net/unit 

2) One output/possible com- 

3) One output i.e. one neural 

2) is not suitable, because an expansion with 
one unit, increases the possible commitments 
with a factor of two. Regarding 3) it necessary 
gets the same fate as 2). The reason is that 
the state of any other unit influences the 
actual unit, when trying to train the neural 
network. Neglecting the other units in this 
phase, makes it much harder, maybe even 
impossible to make the neural net learning. So 
the only possible solution left is 1). 

the networks. 
5.1. The UC procedure ne-t costs, 
In order to begin with what was believed to be 
the most simple problem even the start costs 
were neglected. As our knowledge of neural 
network prior to this investigation was 
extremely limited we did not realize until much 
time was spent in vain that this problem was 
not suited for neural network solution at all, 

inonehour andthe futureaswell as theprevious 
periods. At least not when using the traditional 
data only. Considering such costs as caused by 
changing the produced power by the single unit 
some slight connections over time could have 
been provided, but such data are far less 
important than start costs and not available 
in general. 
When reflecting the nature of unit commitment 
without start-up cost, i.e. the solution is 
found based on the load alone, the question 
comes up: Why at all, try to solve this problem 
using neural networks? The reason is, that in 
general, the problem is solved as a simple table 
look up, unless there is more than one single 
solution for each load step. That is exactly 
the problem here. In a couple of cases two or 
three equal solutions exist, i.e. different 
commitments giving the same cost. In this case 
it makes sense to use a neural net. The aim is 
to learn a neural net to give the correct answer, 
without having to care about whether the sol- 
ution actually is a 99single" or one out of 
several possible. 
In order to create some meaningful interaction 
it was decided to achieve a minimum number of 
starts when more than one solution to a given 
problem exist. Despite this criteria a unique 
solution in a few cases did not exist. Data for. 
the period (t-1) hours to (t+3) hours were used. 
The learning data were formed by 5 out of the 
10 days (each 24 hours) available. The range 
of power considered was 50-340 MW in steps of 
10 MW (as mentioned above). 
Several neural network of widely different 
structure were tested. As common characteris- 
tics the output was chosen corresponding to the 
plants in question (i.e. 5 output neurons) 
whereas thenumber of inputneuronscorresponded 
to the number of time-units considered in the 
single case (between 3 and 8 as each hour and 
its "surrounding" hours form one case). The 
neural networks were arranged in 1-3 hidden 
layers and with various couplings between the 
different layers. The number of neurons in the 
hidden layers varied between 10 (in a single 
layer) and 29 (in three layers). 

As already mentioned the experience from this 
part of the investigation was negative and is 
described here in the hope, that someone else 
hereby could be prevented from a similar dis- 
appointment. Anyway this is a clear example 
showing the difference between conventional 
reasoning when using algorithmic procedures and 
dealing with learning as applied to neural 
networks. 

rt costs, 
When the start-up costs were taken into account , 
the UC problem changes its character, compared 
with the problem described above. The output 
still is the same. Now the search is headed for 
a number of inputs, representing the past as 
well as the present and the future. The aim is, 

since no structure exists between the solution that the input together with the output should 
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describe a general structure of the unit com- 
mitment problem. The following considerations 
were made: 

The past: Having an actual electric load 
to be met, the load curve in the past is known 
as well as the proceeding Commitments. It is 
now proclaimed that all useful information for 
the past is the proceeding commitments. The 
rcason is that the actual commitment is the 
chosen solution for the UC problem till now, 
e.g. itrepresentsallthenecessary information 
of the past. 

The present: It is chosen here to partition 
the load in four intervals: 50-150 MW: 160-250 
MJV; 260-300 MW and 310-380 MW. The choice of 
these limits is made by squinting to the minimum 
andmaximumcapacitiesofthedifferentpossible 
commitments. This makes it easier to find the 
strrtcture, because different neurons become 
active for different loads. If e.g. the load 
is in interval 3, then some of the commitments 
are illegal! 

The future: An option could be to represent 
the future load in the same way as the present 
load for 15-20 hours a head. This implicates, 
however, up to 80 input data. But since the 
clearness of the problem suffers heavily from 
such a large number of inputs, it was chosen 
to descfibe the future by means of maximum and 
mean power demand in a few different future 
time hbrizons. Hereby information about future 
energy consumption is available and from this 
it can be decided whether or not the savings 
by decommiting a unit exceeds the start-up costs 
or not. If the maximum load in the future, with 
the same time horizons, are introduced, then 
it is possible to judge whether or not an actual 
decommitment is desirable within the actual 
time horizon. Let's take an example: if the 
mean load is low in the period considered but 
in the middle of the period a load maximum 
exists which exceeds the maximum power of the 
commitment considered, it is not advisable to 
shot doyn a unit as it must be started up again 
in the middle of the period. 
The mean and maximum values are found for the 
intervals 2, 5, 10 and 15 hours ahead plus the 
mean value for 20 hours ahead. It was decided 
to represent the future mean and maximum loads 
as deviations from the actual load. Hereby it 
is easiertodistinguishbetween decreasing and 
increasing load shape. So it is obvious from 
the sign whether the already committed capacity 
is sufficient or if shortage/surplus must be 
taken care of by commiting/decommiting addi- 
tional capacity. 

A short description of training and test data 
is necessary too. A total of 17 dqys were 
available for the construction of the training 
data and another six days w$re selected as test 
data. 
Naturally the start costs will decrease the 
number of change sin commitment andthe learning 

- 27 inputs now remain in stead of 80. 

~ 

Total amount of data 
Test days wlttwut selectlons 

data when taken chronologically and with the 
same weight given to every hour will provide .. 
very poor training in cases where a change in 
commitment is necessary. TO circumvent this 
draw-back the learning data are partitioned in 
three groups, the two first of which contain 
the "interesting" cases: 

- All time steps where a change in 
commitment is optimal. - All time steps where a change in 
commitment could be expected but must 
not appear. 

The third group does not necessarily contain 
all the remahxng data but a selection which 
ensures the representation of all load sizes 
inperiods of ascending, constant anddescending 
load shape. 
Using these criteria 178 time steps were 
selected as training data from a total of 408 
possible time steps. 
The test data include the remaining time periods 
from the 17 days partially included in the 
learning data (in total 230 time steps remain) 
plusall the 144t imes teps in the6daysse l ec ted  
for test purposes. 
The NN used was a standard back propagation 
network with 50 neurons in the single hidden 
layer. m e n  learning, a noise of 0.05 was ' 
introduced. Furthermore a learning coefficient 
of 0.6 was used, instead of the default value 
of 1.0. This "deceleration" factor indicates 
the vague structure of the problem along the 
time axis. 
The major experience from the work (table 2) 
is that the structure seems to exist even though 
it is rather vague. 

4.5 

I Test data I failure rate 1 
/ 

Training days, before selection 
I of tralnlnadata I 2 7  I 

I for training I 9.7 I 
Table 2: Failure rate for trained n e t w p  - 

Now let's sum up, what has actually been done, 
and the results of this. 
The UC has been solved optimally for a reduced 
system. When neglecting start up costs, the 
structure of the problem was not suitable for 
solving by NN. 
Concerning UC when taking fixed start-up costs 
into consideration. It was found that some kind 
of structure can be recognized. Though some 
important circumstances are observed. 
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1. The ability of learning is dependent [5] California scientific Software 1990, 
on the input and output selected. Brainmaker. 

Neura1,network simulation software. User's 
guide and reference manual. 

[6] Annual Statistics in Danish Power Supply 
1989 (in Danish). 

2. The training data must be selected 
carefully. 

3. With the proposed solutions for the 
above-mentioned points, the structure 
is still very vague, which means that . a low learning coefficient has to be 
used. 

The encouraging fact is, that it has been 
possible to find a structure for an optimally 
solved UC even though a simple case only has 
been used. Thus some weaknesses are present and 
should be mentioned here. 
First, some of the misfits are characterized 
by illegal commitments e.g. the total capacity 
of the chosen commitment was insufficient or 
it belonged to one of the categories previously 
rejected (as stated above). 
Secondly, the tests were not carried out where 
a previously faulty commitment was used as input 
in the succeeding time step. In other words 
secondary failures do not exist. 

This leads to the question: what next? On the 
basis of this work it is not possible to judge 
categorically whether the neural network has a 
future in this field or not. A lot of work 
remains. It must be investigated if parameters 
as e.g. shape of load curve or unit data 
seriously influence the ability to learn. 
Further investigations extending training and 
test data has to be done. Concerning the faulty 
commitments it seems necessary to design some 
kind of llshellll surrounding the neural network. 
This shell prepares the input to each time step 
e.g. transfersthe commitment fromthe previous 
time step and prepares the load data for the 
next 20 hours as described above. Furthermore 
an analysis of the output for each time step 
must be carried out by the shell, even though 
a complete test hardly can be done. The aim 
will be to obtain a very fast system which 
always gives feasible solutions and only in 
rare occasions presents a non-optimal solution, 
judged from the quality of the learning data, 
off course. If it is possible for the shall to 
catch the wrong answers in a relatively simple 
way it is clear that the secondary faults drop 
out. 
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