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Identification of Distillation Process Dynamics
Comparing Process Knowledge and
Black Box Based Approaches.

K.H. Rasmussen C.S. Nielsen S. Bay J0rgensen

The Process Deign, Dynamics, and Control Group
nstitut for Kemiteknik, Technical University of Denmark, DK-2800 Lyngby, Denmark

Absract A distilation plant equipped with a heat pump separates a mixture of isopropanol and methanol.

The mixture contains some water as impurity. The model development aims at dual composition control
design, where top and bottom compositions should follow the setpoints, and disturbances should be re-

jected. Disturbances may occur in feed low rate and feed composition.
Identification is performed using multivariable linear discrete time model structure development tools: a

process knowledge based and a black box approach. In the process knowledge based approach, the model
structure is developed from qualitative process knowledge which presently may require modification to
guarantee identifiability. The black box approach is based on pseudocanonical MFD model representation,
where the model stracture is determined by a set of structure indices. The identifications are performed
on experimental data obtained in closed loop operation of the distillation plant.
In the present work, the two approaches are compared in terms of how well the model fits, and predicts
the data, the conditioning of the model parameter estimation, and convenience of usage.

1 Introduction
Process identification is a disciplin for development
of process model structures and estimation of para-
meter values. The process models may be applied for
control design for proce with complex dynami
behavior. Such proceses may require multivariable
control design in order to minimise loop interactions
and to reduce the effects of complex dynamics. In the
present paper, the main focus is therefore on devel-
opment of multivaniable process models.
Model development for process control can be consid-
ered as a three stage procedure:

1. selection of measurements and actuators

2. determination of model structure

3. determination of model parameters and model
validation

The first stage is usually performed uing qualitative
knowledge about static and dynamic process mea-
surement and actuator sensitivities. This first stage
is considered completed in the present study where
data are used which have been collected during closed
loop identification experiments on a nearly binary dis-
tillation column with an indirect heat pump. The
main subject of the present paper is on the two latter
stages. The model structure selection is performed
using two different approaches. One approach is a

black box approach [41 using a pseudocanonical model
structure, where the structure indices are evaluated
based upon the conditioning of the parameter esti-
mation and the ability to fit and predict data. In the
second approach [81, the model structure is formu-
lated and based upon qualitative process knowledge,
similar to that used in stage one above. The model
complexity is selected based upon the ability to pre-
dict and fit data. The purpose of the present paper is
to investigate and elucidate the relative merits of the
two approaches on a binary distillation plant with an
indirect heat pump.
First the two model structure selectioning approaches
are presented in section 2. Then the process plant and
experimental conditions are given in section 3. The
results are presented in section 4. Then in section
5, the relative merits of the two approaches are dis-
cussed.

2 Model Structnres
This section contain a brief introduction to the black-
box and the process knowledge based methods used
for obtainaining a model structure for identification.
The models obtained are linear discrete time MIMO
models.

2.1 Black Box Method
The parametrisation used for identification is the pseu-
docanonical observable (p.c.o) parametrisation.
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This parametrisation is throughly discussed by Gev-
en and Werts [4].
2.1.1 The Parametrisation
The p.c.o model structure is uniqly determined by a
set of structure indices: nl, n2 ....np where p is the
number of outputs. The sum of the p structure in-
dices is the order of the system: n ni. Given
the structure indices, a state space model is easily
obtained:

x(t + 1) = A . x(t) + B * u(t)
y(t) = C*x(t)

where A contaims block matrices.

(A1l Alp,
A= t . w (nxn)

Apware App

where the blockes are:

(0

Ai= K

(4ii

&'i- (<aiji

'P )

aiini

(n x n,)

(ni x n1)

B is a fully parametrisised p x m matrix where m is
the number of inputs. C is a p x n matrix contaimnng
zeros, except one element in each row. In the 9'th
row, element

jl

qj = 1+Eni
i= I

is equal to one. It is easy to see that the p.c.o para-
metrisation contains n x (p + m) parameters, this is
a little more than a canonical parametrisation which
contains up to n x (p + m) parameters, but the p.c.o
parametrisation is still identifiable. Given a MIMO
linear system of order n, then it can be transformed
into different p.c.o parametrisations (i.e. parametri-
sations with a different set of structure indices), the
p.c.o parametrisations are overlapping. This is not
the case with canonical parametrisations, where only
a MIMO linear system can be transformed into one
canonical parametrisation determined by the observ-
ability indices of the system.

2.1.2 Structure Estimation
Using p.c.o parametrisations for identification, only
the p structure indices are needed to define the model
structure. Since a system can be represented in differ-
ent p.c.o parametrisations, it is not critical that the

structure indices are chosen correctly. Van Overbeek
and Ljung [12] suggested that identification started
using one parametrisation, and then the parametri-
sation may be changed on-line if the parameter esti-
mation became ill conditioned. Perez-Correa and Ker-
shenbaum [11] used p.c.o state space models in a
multivariable selftuning controller, and pointed out
that the selection of the structure indices was not crit-
ical. Numerous groups have worked with the problem
of determining a set of structure indices which will
give a good or the best model, Gevers and Wertz 14].
A method which is often used selects the structure
indices such that the parameter estimation becomes
well conditioned [2,5,131.
2.1.3 Input Output Models
For paraneter estimation it is often convenient to use
input output models. The p.c.o state space model is
easily transformed to a matrix fraction description
(MFD):

P(q) *y(t) = Q(q) *u(t)

where q is forward shift operator P(q) and Q(q) are
polynominal matrices:

PiI(q) - Plp(q)
P(9) = q 6 (p x p)

Pp,(q) Pp (q)

Q.11(q) e Qlrm(q)
Q(o^) = .. (p x m)

K Qpl(q) MQPM(q)
Pii = qnu - iiniqn" - - ii2- ai1
Pi = -aiin qn" - aiil

Qii = bijrp qrl + .+ biq2q + bisj
n = max(r, n) r = max(ni)-1

From this it is seen that if max(n; - nj) > 2 then the
number of parameters in the p.c.o MFD is greater
than n x (p+ m). This means that all the parameters
in the MFD are not independent. Correa and Glover
[3] show that if the outputs are permuted such that
the structure indices are arranged in decreasing or-
der n1 > n2 > ... > np then if the parameters are
estimated for each output, starting with the output
with the highest structure index, the redundant pa-
rameters can be expressed in terms of the parameters
estimated on the lines above. If the constraints on the
parameters are not taken into account, the MFD will
not be proper. The p.c.o MFD's are not im general
monic, only p.c.o MFD's where the structure indices
are equal ( ni = n2 = * = np) are monic. For monic
p.c.o. models the present output can be expressed in
terms of previous in- and outputs:

y(t + 1) = A(q') * y(t) + B(ql) * u(t)
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Figure 1: Dyquid for a distillation column

2.2 Physical Knowledge Based Method
The model structures obtained from physical know-
ledge are obtained from qualitative models. The method
used here is the DYQULI) method 17,8].

2.2.1 The DYQUED Method
The DYQUID (DYnamic QUantity Interaction Dia-
gram) method uses a priori process knowledge such
as coupling between states, interactions, and flows to
construct a diagram that visualizes the interaction be-
tween the relevant quantities as well as the dynamics
in the process. Important dynamic quantities such as
component mass and energy, quantity influence and
transfers, and the variables which influence the rate of
flows/transfers are included in this type of diagram.

2.2.2 DYQUHI) for a Distillation Cohlmn
A schematic DYQUID of the binary separation in the
column and heat pump is shown in figure 1, Nielsen
et al. [iOj.
2.2.3 Input Output Models
A discrete time multivariable input-output model struc-
ture is developed proceeding through the following
sequence: First a continous time state space model
structure is derived from the DYQUID. Therefrom
a discrete time model structure is obtained. Subse-
quentliaIly, the model structure is transformed to an
input-output form including only the measured out-
puts. Thus a discrete time ARX model structure has
been obtained. The ARX model obtained from the
DYQUID is monic. The structure of monkc ARX
models is not yet understood 141, therefore some pa-
rameters might be redundant. For on-line estimation
of the unknown model parameters a first order mov-
ing average term is often included for each output to
yield an ARMAX model. In this work, all estimation
is off-line thus only the ARX structure is applied. The
ARX model structure is used as a vehicle for a search

procedure for a perhaps improved model structure.
A tool for an improved model structure is to inves-
tigate if some parameten are strongly correlated or
uncertain.

2.3 Model Validation
The following four types of measure are used for model
validation in this work:

* model misfit to data used for estimation.

* model misfit to data not used for estimation.

* condition of parameter estimation.

* multivariable frequency domain properties.

The first two measures are based upon the model mis-
fit for the i'th output yj(t):

var(y (t)) where e4(t) = w(t) -A (t)

where y is the one step prediction of output i. If R is
close to sero, the model fits the data welL The third
measure is applied to indicate if a too high model
order is being approached. A too high model order
would make the parameter estimation ill-conditioned
and render the model less able to predict future dy-
namics (measure two). Using a LS procedure the con-
dition number of the parameter covariance matrix is
a measure of the conditioning of the parameter esti-
mation:

07min,i
where a,, and amin,i are the largest and smallest
singular value of the parameter covariance matrix.
If the purpose of the model is that it should be used
for multivariable control, we must demand that the
model describes the multivariable structure of the
plant and the gain directionality. A tool for inves-
tigating this is multivariable frequency domain anal-
ysis, Andersen et al. 111.
3 Experiment
3.1 Experimental Setup
The study is carried out on a full scale distillation
setup at Institut for Kemiteknik. Figure 2 shows
a sinplified process diagram. The plant consists of
three major parts: the column, a heat pump section,
and a tank park. Details are given by Hallager et
al. 161. Separation of methanol and isopropanol with
some water impurity is carried out in the 19 tray col-
umn which is 10.5 m high and has an internal diame-
ter of 0.47 m. Trays are numbered from bottom to top
starting with no. 1. Feed is pumped from the tank
park as two feedstreams Fl and F2 which are mixed
before the feed heater and enters the column at tray
no. 10. Piping and feed heat exchanger between the
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Figure 2: Process diagran

Number of cylinders
High pressure in heat pump
Low pressure
Pressure drop P8P9
Reflux rate
Feedflow
Feed concentration

Ncyl
Plo
P8
AP
R
F
Xf

10
11.0
4.0
1.0

15.0
4.5
0.5

bar
bar
bar
I/min
I/min

Steady State Molefraction of Methanol on trays
estim GC

Tk-ay 1 X1 0.092 0.071
Tray 10 X1o 0.499 0.504
Tray 19 XIg 0.998 O.966

Table 1: Experimental operation point

mixing point and column entrance contain approx. 54
1 of liquid. Some mixing will occur in the end sections
of the heater, these volumes are around 8 1 each. The
condensed vapor is pumped to the accumulator from
which the reflux and top products are taken. At the
bottom the column is coupled to a thermosiphon re-
boiler producing the vapor flow. Bottom product is
also withdrawn here. Distilation products are led to
the tank park.
The indirect heat pump recirculates the energy from
vapor condensation in the condenser to heating in the
reboiler. Essentially, Freon R-114 is evaporated in the
condenser, compressed to about 10 bar and condensed
in the reboiler. For this purpose two 8-cylinders pis-
ton flow compressors are employed. The freon loop is
closed.
Data used in this study are collected around the oper-
ation point given in table 1. Concentrations are mole-
fraction methanol estimated, based on temperatures
measured using PT-I00 sensors and column pressure
at the tray in question assuming an ideal binary mix-
ture. In addition, samples are analysed off-line on a
HP-gaschromatograph. We refer to Nielsen et al. 19}
for further details.

3.2 Location of Measurements
Selection of no. and location of measurements is es-
sential. The measurements must be representative for
the important dynamic quantities. They should pro-
vide early detection of the disturbances and equally
important they should be sensitive to variations in
the important quantities. P8 (low pressure) in the
heat pump section is chosen to represent the energy
quantities around the condenser on the freon side.
The transport mechanisms in the column are convec-
tion and dispersion. Convective transport may be
described using three measurement points. Therefore
at least three measurements are necessary for the col-
umn. Methanol concentrations on tray 1, 10, and
19 are chosen. The top and bottom concentration
measurements are selected for control purposes. It is
advantageous to have a measurement for the prod-
uct purities which are to be controlled. The feed-trayi
(tray no. 10) is selected as a third location because
the disturbance enters the column here. Also this con-
centration measurement is very sensitive to variations
in the mass of a component in the column because the
profile is rather steep in the middle of the column.
Additional concentration measurements, if necessary
should be located in the center of each section of the
column, where the distance between the working line
and the equiibrium curve is large yielding maxima in
sensitivity.

3.3 Perturbation Experiment
A perturbation experiment was carried out around
the operation point shown in table 1. P10 (high pres-
sure in the heat pump), AP (presure difference be-
tween P8 and P9), R (reflux rate), Xf (mole fraction
of methanol in feed) and F (feed flow rate) are all
controlled by SISO loops. The manipulated variables
in this experiment are the setpoints to the five SISO
loops. The measured variables are P8 (low preas-
sure in heat pump), Xi (mole fraction of methanol in
bottom), X10 (mole fraction of methanol at the feed
tray), and Xl9 (mole fraction of methanol at the top
tray). The variables are sampled every 2 min.
To maintain the concentration profile in the column,
it was necessary to perform the perturbationi experi-
ment in closed loop. The controller is a multivariable
high order constant gain controller. To the output
from the controller is added a PRBS (pseudo ranidonm
binear sequence), such that the process inputs are
made from the control signals given by the controller
with a PRBS in addition. This is done in order to
make the closed loop data informative for identifica-
tion.

4 Results
Parameter estimation was performed on 2/3 of the
290 elements in the data vector. The rest were used
for validation. The results using the two methods are
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n
4
5
6
7
8

Indices
(1,1,1,1)
(1,1,2,1)
(2,1,2,1)
(2,1,2)2)
(2,2,2,2)

R3
0.157
0.024
0.021
0.021
0.021

K3 1
67 0.173
154 0.038
183 0.037
219 0.038
402 0.041

Table 2: Validation measure for output S (X1o) with dif-
ferent model orders, n model order, R3 residual on data used
for estimation, K3 Condition number of parameter covariance
matrix, A residual on data not used for identification.

-0.082

=

-0.057

t%.-0.0540.068

(0.003 0

0.027 0
0

Qo (

-0.015
0.001
0.027
0.012

-0.039 -
-0.472
0.024
0.088 -

).034 0.033
0 0

).065 0.148
0 0

-0.02 1
0.076
0.056

-0.020

-0.001
0.541
0.045
-0.167

-0.020
-0.036
0.299
0.085

-0.008
-0.063
-0.104

-0.618

0.484 0.319
0 0

-0.167 0.127
0 0

0.426
0.005

-0.352
0.025

)
0.005

-0.025
0.054

0.108

discussed below. The outputs are y =- (P, X1, X1o, X19)21t is seen that the MFD contains 6 x (4 + 5) = 54
and the inputs are u = (XF, F,t , Plo, AP)'. A parameters, and that the MFD is not monic (i.e. P2
change in feed concentration will occur at the feed is not a unit matrix).
tray about 5 samples delayed, due to the piping be-
tween the mnixin=g point and the feed point. Therefore, 4.2 DYQUID Model

this information is incorporated by letting XF in the The discrete time linear ARX model constructed frm

input vector be 5 samples delayed. the DYQUID was ued for parmeter estiation. The

4.1 P.C.O Model
Parameter estimation and validation were performed
on al possible p.c.o models from order 4 to 8. In
table 2, the validation measures for output 3 (Xio)
are shown for different p.c.o. models of different or-

der. It is seen that R, is decreasing with increasing
model order, and the condition number K3 is growing

because more parameters are used for identification
with increasing model order. More interesting is the
fact that RS first is decreasing and then is increasing
for n > 6, probably because the extra parameters in-

cluded for n > 6 are not used to describe important
process dynamics but noise. Inspecting similar re-

sults for other outputs and other p.c.o. models it was
found that selecting a the model is not an easy task

as one might conclude from table 2. By inspecting
residuals and condition number for each output, a 6
order p.c.o model with structure indices (2,1,2,1) was

selected. It was found in this case by comparing all
p.c.o models of order 6 that looking for a well condi-
tioned parametrization for parameter estimation does
not guarantee that the model describes the data well
The estimated MFD model is:

P2 *y(t+2) +PI *y(t+ 1) +Po *y(t)
= Q, *u(t+ 1)+Qo *u(t)

where

P2=°0 01

0 O O OJ

-0.193
-0.041

-0.143

0.38

0

1
0

0

0.089
-0.990

-0.875
-0.423

0

0

0

1]

estimated ARX model is:

y(t)= Ai*y(t-1)+A2*y(t-2)
+ Bi*u(t-1)+B2*u(t-2)

where

0.252

Al= 0.182
A1= 0.134

0

A2 =

0f02
B1- osoa

0 0

0.316 0.436
-0.090 0.932
-0.189 0.507

0

0

0.059
0.082

0

0.123
0.058

0

0O 0

B2=

0 0.126
82- ~0 0.071

0Q 0

0

0

0

0.182

0

0.062
0.118
0.098

-0.161
0

-0.058
0.622

0 0.117
0 0.145
0 0.128
0 0

0.475
-0.122
-0.162
-0.022

)

0.326
0.124
0.128
0.157 )

0 0.412
0.340 -0.401 0

0.336 -0.352 0.064
0.209 -0.247 0

The ARX model contain 42 estimated parameters.
It is seen that the ARX model can be viewed as an

8 order p.c.o. model with structure indices (2,2,2,2),
where some parameters are fixed to zero.

4.3 Comparing the two Methods
As seen in table 3 the residuals are nearly equal for the
outputs, but the condition number is in general larger
for the p.c.o model. This is due to the fact that the
p.c.o model contains slightly more parameters. The
p.c.o MFD's are not monic as the ARX model ob-
tained from the DYQUID method. This means that
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1
2
3
4

P.0.O.
R K

0.099
0.078
0.021
0.060

183
142
183
142

DYQUID
R f R K

0.147 0.101
0.086 0.092
0.037 0.021
0.184 0.055

20
66
158
99

R
0.141
0.135
0.043
0.191

Table 3: Validation results: # output number, R residual on

data used for estimation, K Condition number of parameter
covariance matrix, R residual on data not used for identifica-
tion.

the p.c.o MFD is not so easy to use for online para-
meter estimation. It was found that the two models
represent nearly the same gain directionality.

5 Discussion
The validation results are compared for the black box
and the process knowledge based approaches in table
3. The main difference between the two approaches is
that the ARX structure obtained from the DYQUID
is based upon process knowledge. This basis yields
advantages in that it is possible to reason on the
parameters in the model structure and to propose
which additional parameters it may be worthwhile to
consider if an improved model is desired. A second
advantage of the DYQUID based ARX structure is
that it can be expected to be reasonable within an
operation region, where the assumptions behind the
model structure development stiU are fulfilled. The
disadvantages are that obtaining models from pro-
cess knowledge are time consuming and that the para-
metrisation of monic ARX models are not understood
yet, i.e. the model structure may not be identifiable.
In contrast the advantage of the p.c.o. approach is
that a model may be obtained with a very little effort
without process knowledge, this model structure may
also be reasonable at different operation regions, due
to the fact that p.c.o. parametrisations are overlap-
ping. The main disadvantage of p.c.o. models is that
they do neither provide nor faciliate physical insight,
and that they usually do not give monic input output
models.
For linear noise free systems one might expect the
condition number to grow to infinity when the true
model order is exceeded, but as seen in table 2 no
such change appers in the condition number calcu-
lated from the real data obtained from the distillation
column. This is probably due to noise and nonlinear-
ities.
A great deal of process knowledge should be used
when measurements and actuators are selected. It
seems not to be a prohibitively large effort to ob-
tain models from process knowledge, compared to ob-
taining black box models, because the process under-
standing is already present.
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