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Abstract 
A unified method for solving control system 

optimization problems is suggested. All system 
matrices are allowed to be functions of the 
design variables. The method makes use of an 
implementation of a sequential quadratic pro- 
gramming algorithm (NLPQL) for solution of 
general constrained non-linear programming 
problems. 

L. Introductipn 
The challenging problems, where the design 

variables are not limited to feedback gains and 
observer gains, but alsomay be plant parameters, 
are emphasized in this paper. Such unified 
optimization problems are important issues, 
especially in connection with active control of 
large space structures ( [4] [7] ) . However, it 
turns out that the methods which are useful in 
the unified optimization problems also offer 
the possibility of optimization of less complex, 
but from a practical point of view very 
interesting cases, such as LQR output feedback 
(constant gain feedback from less than the full 
state vector), LQR design with eigenvalue 
equality and/or inequality constraints, and 
LQ-optimization of more classical controllers 
( [ 5 ] ) .  The present formulation is computa- 
tionally attractive, as it relie s o n  the combined 
use of a robust numerical sequential quadratic 
programming algorithm and the widely used MATLAB 
package. 

Consider the n'th order LTI closed loop 
system: 

and the objective function 
x = A x  , x ( O ) = x ,  , E ( x , x ; } = S  (1 )  

J = E {  { XTQxdr)  ( 2 )  

where A ,  0 and S are matrix functions of the 
elements p ,  in the vector of design variables, 
p. E denotes expected value. 

The following assumptions are made: 
al: A is a stability matrix 
a2: Q-Q ' ->o  
a3: { A , B }  is observable for any b 

such that 0 = Bb' 
a4: Eigenvalues of A are distinct. 
a5: The elements of A and 0 are all 

continuously differentiable 
functions of the design variables 
in the domain of p.  

Then with al-a3 it is well known ([I]) that 

where P is the unique (from al) solution of the 
matrix Lyapunov equation 

Let v ,  and be the bi-orthonormal left and 
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J - E { x i P x , } =  t r { P E { x , x ~ } }  - t r { P S }  

A T P + P A = - Q  (4) 

(3) 
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right eigenvectors (normalized so that $To,= 1) 
corresponding to the j 'th eigenvalue of A ,  hi. 
Then from a4 and a5 it can be shown ([4]) that 

Furthermore, with a1 and a5 we can compute 

%= tr (ddpp - S + P -  ;E.) 
where 5 is the unique (al) solution of the 
matrix Lyapunov equation ([5]) 

(7) 

With (1) - (7) general nonlinear constrained 
optimization problems of the form 
Minimize F ( p )  (8) 

P 

Subject  to G,(p)=O. ] = I  , . . . . , M a  

G,(p) 20, 

p1 S p ,  < p ,  1 = 1 I ...., N 

j =  M e +  1 ,  ...., M 

can now be formulated and numerically solved. 
F ( p )  may be any combination of objective 
functions like (2), (3) and eigenvalue 
assignment criteria ([5]). Likewise for G , ( p )  
(the equality and inequality side constraints). 
The side constraints may be used to assure the 
assumptions al-a5 fulfilled during optimiz- 
ation. p L , L  and p L , "  are lower and upper bounds on 
the i'th design variable, respectively. 

It should be noted, that the assumed sto- 
chastic nature of the initial condition dis- 
tribution in (1) is essential in (3) in order 
to avoid specific initial condition dependence 
ofthe optimal solution. Another closely related 
approach leading to a worst case problem 
specification is presented in [ 3 ] .  

Since a specific control law is not assumed 
in (1) , this method may be used very generally. 
Special examples are the optimal tuning of 
classical P, W ,  PI, PID controllers and of LQR 
output feedback controllers ( [ 5 ] ) .  - 

The program NLPQL is a FORTRAN implementation 
of a sequential quadratic programming method 
for solving general nonlinear programming 
problems, like (8). In each iteration step, a 
linearly constrained quadratic subproblem is 
formulated by approximating the Lagrange 
function quadratically and by linearizing the 
constraints. Subsequently, a one-dimensional 
line search is performed with respect to an 
augmented Lagrange merit function to obtain the 
new iterate. The merit function penalizes 
constraint violations. A further treatment of 
the algorithm and the flexibility it offers, 
can be found in [ 2 ] .  

In our implementation, MATLAB functions are 
'9 
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usedtocomputethe functionvalues andgradients 
(from (3)-(7)) which are necessary inputs to 
NLPQL. The combination of NLPQL and MATLAB makes 
the necessary problem specific programming 
efforts relatively small ([5]). 

It is worth noticing, that the equations (4) 
and (7) only differ on the right hand side, so 
it is possible to reuse the factorisations, 
which are used to solve (4) , in the N solutions 
of (7). 

4-L"ww 
The system under consideration is a solid 

clamped - free Euler-Bernoulli beam of length 
L =  1, density d =  1 and Young modulus E = 1 with 
a circular cross section. The design variables 
are the beam radius r(x) (discretized into 40 
elements of equal length), 2 positions of the 
collocated (point) force actuator/velocity 
sensor pairs and 4 feedback gains. Hence, the 
total number of design variables is 46. The 
objective is to minimize the criterion 

J = E {  1 (xTQx+uTRu)dt 
when the system is modelled as a n'th order LTI. 
The model is obtained through modal expansion 
and truncation ([6]): 

( 9 )  1 
X=AX+Bu, y=BTx, u = - G y  (10)  

with 

where 5 = 0.04, w i  is the i'th modal eigenfrequency 
and O i  is the corresponding normalized eigen- 
function (modeshape). n (eigenvalue) side 
constraints assure stability ofthe closed loop 
system and one side constraint limits the total 
volume to a maximum of 4. The radius is limited 
to a maximum of 2 and a minimum of 0.2. This 
yields (referring to (1)-(3)): 
Q = Q + B G T R G B r  A = A - B G B '  S=Q-I 
All matrices are continuously differentiable 
(no multiple eigenvalues) functions of p .  The 
solutions obtained depend strongly on the 
initial choice of the two positions (cf. [8]), 
but a (local) optimum (for n=6) is found to be 
the beam designed as shown in fig. 1 with 
actuator/sensor positions 
x1 = 0.77 
and the gain matrix 

x2 = 1 .OO 

1 - 0.33 G = [ 
1 22 2.71 

with J = 0.0702 and volume=4. 
This could be compared to the situation with a 
uniform beam of volume 4 with same actua- 
tor/sensor locations. Here the optimal gain 
matrix yields J=O.1541. 

Ffg. 1 
Optimized beam 

This result was obtained in 97 iterations in 
3 hours at an Apollo 4000 workstation. 

5 .  Discussion 
Under weak conditions, the proposed method 

allows optimization of design variables in all 
system matrices. It uses a new approach, which 
is derived in this paper, with direct mini- 
misation of the trace of the matrix product of 
the solution matrix from the Lyapunov equation 
for the system and the covariance matrix for 
the initial conditions. It has been shown how 
to compute the gradients of the objective 
function and the constraint functions imposing 
eigenvalue constraints. In an example it has 
been demonstrated how the method can solve a 
high dimensional problem, where the initial 
condition covariance assumption is used to 
assure constant initial mechanical energy in 
the beam during all iterations in the opti- 
mization. The initial energy is equally dis- 
tributed in the modes, but this could easily be 
relaxed. Future workwill examine the properties 
of the proposed method compared to other unified 
optimization approaches and the practical 
relevance of the objective function and the 
flexibility it offers. 
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