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DECONVOLUTION OF IN VIVO ULTRASOUND IMAGES 

Jgrgen Arendt Jensen 
Electronics Institute, build. 349 

Technical University of Denmark, 
DK-2800 Lyngby, Denmark 

Abstract 
The appearance of an ultrasound image is intimately 
linked to  the nature of the emitted pressure field and 
it,s distortion down through the tissue. The pulse field 
is tcinporally and spatially varying due to  focusing and 
tlic dispersive attenuation. 

The influence of the pulse and attenuation should be 
rcnioved from the picture in order to display a more con- 
sistent and uniform image. 

This paper describes an algorithm to remove the in- 
fluelice of the attenuated pulse on the image. The algo- 
rit,hm takes into account the varying pulse, noise in the 
acquired signal and the changing reflectivity in the tis- 
sue. Both one- and two-dimensional processing can be 
implemented. The algorithm relies on prior knowledge 
of the pulse, and of the covariance of the noise and the 
reflections. Algorithms to  estimate these are given. 

One-dimensionally 
processed images of the kidney and a foetus are shown. 

Examples of use are presented. 

1 Introduction 
Ultrasound is routinely used in hospitals for the investi- 
gation of nearly all soft tissue structures of the human 
body. Advanced transducers (phased and linear array) 
arc used in order to  acquire sharp images. Improved 
rcsolution is steadily sought by increasing the center fre- 
quciicy and bandwidth of the emitted pulse. Increasing 
tlie center frequency, however, limits the depth of pene- 
tration due to tlie dispersive attenuation of the pulse in 
11iv tissue. This limits the resolution attainable, and to  
flirt her increase resolution, or depth of penetration for 
t,lic same resolution, we must turn to  digital processing, 
I .  c deconvolution. 

Several authors have investigated techniques for en- 
hancing the resolution of ultrasound images. Fatemi and 
I<ak [l] derived an expression for the received pressure 
field and suggested use of a Wiener filter [2]. This has 
also been suggested in [3], [4]. Slightly different, but con- 
ceptually similar methods have been suggested in [5], [6], 
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[7] [8]. These estimators use, however, fixed parameters 
for the emitted pulse and can not take into account the 
spatially varying source wavelet and the dispersive atten- 
uation, which are important factors for in vivo images. 
We therefore turn to  other, more advanced estimators. 

In this paper we will devise an algorithm, based on 
physical reasoning, that  can take into account varia- 
tions in pulse shape, signal-to-noise ratio and reflection 
strength. I t  is based on Mendel’s fixed-interval decon- 
volution algorithm [9], [lo], which calculates an optimal, 
minimum variance estimate of the reflections. As this 
estimator can handle varying parameters optimally, the 
original problem is transformed into finding parameters 
to  describe the pulse and covariances for the noise and 
the reflections. These parameter estimators should take 
into account temporal and spatial variations, and section 
4 and 5 will explain how to do this. 

Examples of the use of the combined algorithm are 
shown both for data acquired from a tissue mimicking 
phantom and for clinical in vivo data.  These demon- 
strate the algorithm’s capability to  increase the resolu- 
tion and to  handle variations in reflection strength. The 
effect of non-linearities emanating from the da ta  acqui- 
sition and ways of avoiding them are discussed. 

2 The general algorithm 
It can be shown that the received pressure field can be 
calculated by [ll]: 

P T ( T 2 ,  t )  = upe(t) ; f m ( Q  * hpe(T;, 772, t )  (1) 

where ; denotes a temporal and a spatial con- 
volution. up, is the pulse-echo wavelet, that  accounts 
for the transducer excitation and the electro-mechanical 
impulse response during emission and reception of the 
pulse. fm accounts for inhomogeneities in the tissue 
due to  density and propagation velocity perturbations, 
which gives rise to  the scattered signal. h,, is the modi- 
fied pulse-echo spatial impulse response, that  relates the 
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transducer geometry to  the spatial extent of the scat- 
tered field. Explicitly written out it is: 

1;; denotes the position of the scatterer and F2 the po- 
sition of the transducer. h is the spatial impulse re- 
sponse for the transducer geometry as calculated by the 
Tupholme-Stepanishen method [12] ,[13] ,[14]. Equation 
(1) was derived under the assumption of weak scattering 
by density and propagation velocity perturbations in the 
tissue, and absorption and multiple scattering were ne- 
glected. The  dispersive attenuation can be lumped into 
w p e ,  that then is substituted by a pulse, bea( t ,F1,F2)  
that depends on distance. 

Expression (1) consists of three distinct terms. The  
signal of interest, and the one that  should be displayed 
in medical ultrasound, is f m ( F l ) .  We, however, measure 
a time and spatially smoothed version of this, which 
obscures the finer details in the image. The  smooth- 
ing consists of a convolution in time with a wavelet 
w p e a ( t ,  F1, Fz), and a spatial convolution with a spatially 
varying hpe(T; ,  F2,t) .  

It is necessary to  employ digital signal processing to  
malie a better estimation of fm. Thus,  (1) is reformu- 
lated in a discrete form. 

(3)  

k is the discrete time variable, and Fd is a discrete vec- 
tor. A noise term n ( F d 2 , t )  has been added to  explain 
the inevitable noise in the measured signal. The  term 
accounts for both electrical noise from amplifiers and for 
physical effects not explained by the convolution model. 

We now seek a procedure to  obtain an estimate of 
f , ,z(Fdl) .  This can formally be stated as [15]: 

The  estimate fm(Fdl) is a function of the measured 
signal y(Fd2, k )  and some knowledge, measured or esti- 
mated, about vpea ,  h,,, and n. 

The function F can be a linear or non-linear mapping 
from y, vpea ,  h,,, and n to  fm. It can be evaluated di- 
rectly or through iterative techniques. One of the advan- 
tages of ultrasound B-mode systems is real-time image 
formation. This precludes an iterative search scheme, 
as in a real-time system only a fixed amount of calcula- 
tions can be carried out per sample. Rather the estimate 

f m ( F & )  is based on some estimate of the internal state 
of the system so that  

where 31 linearly relates y ,  vFea ,  hpe ,  and n to  S, and G 
linearly relates S to  f m .  S is a vector of fixed dimension 
that  represents the state of the system. 'H and G can be 
evaluated with a fixed and a priori known number of cal- 
culations. This allows for a time-varying model, where 
each sample can be treated in a fixed, predetermined 
interval of time [15]. 

3 The deconvolution algorithm 

Eq. (5) explains in general terms how to remove vpea 
and h,, from y to  obtain fm. We will now detail how 
to perform this deconvolution, when the parameters are 
known. 

The  algorithm used is Mendel's fixed-interval deconvo- 
lution estimator. It consists of two parts: first a Kalman 
filtering is performed on the da ta  time-recursively, and 
then a subsequent estimation step performed backwards 
time-recursively.' The  result is a minimum variance, 
fixed-interval estimate of the reflection signal. The al- 
gorithm can be used on one A-line or on a number of 
A-lines a t  a time, and thus perform two-dimensional de- 
convolution. 

For easy reference the basic equations are now given. 
The Kalman filter is based on the following time-varying 
state-space model: 

r ( k )  is the measured signal, w(k  + 1) is the "tissue" 
reflection signal, z ( k )  the state vector, and n ( k )  the niea- 
surement noise. @ is the state transition matrix, r the in- 
put distribution matrix, and H the output matrix. Note 
the direct coupling between the input w ( k )  and r ( k ) .  
The equations describe a time-varying model, for which 
a new set of coefficients in the state matrices and vectors 
can be used for each time instance. It is assumed that 
the w(k + 1) and n ( k )  are zero mean, Gaussian signals 
with a covariance of Q ( k  + 1) and Rn(k).  

The Kalman filter is, stated in the predictor-corrector 
form: 

Predictor equations 

(7) 
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P ( k  + 1 I k )  = @ ( k  + l , k ) P ( k  

y(k)  = ' p T ( k ) Q  + e ( k )  (13) C o r r e c t o r  equations 

K ( k  + 1) = P ( k  + 1 I k ) H ( k  + 1) .  (8) and the prediction and prediction error as: 

Y(k I 4  = P T ( V  [ H T ( k  + 1)P(k  + 1 I k ) H ( k  + 1) 

+R,(k + q1-l 6 ( k , S )  = y(k)  - y(k I e )  (14) 
z (k  + 1) - H T ( k  + 1 ) q k  + 1 I k )  

[ I  - K ( k  + l ) H T ( k  + l ) ]  . 

The parameters are found by minimizing the magnitude i(k + 1 I k )  

P(A, + 1 1 k + 1) 

= 

r ( k  + I + '1 = l i . (k + I k ,  + + l)'(k + I '1 of the prediction error. This is formulated as: 
= 

l N  P ( k  + 1 1 k )  

[ j ( k +  1 I k )  is the a-priori state covariance, and P ( k +  1 I 
V N ( ~ ' ,  2 ( N ) )  = y Ci(k, Q ) E ( k ,  B )  (15) 

k=l 

k + 1) the a-posteriori covariance. I<(k)  is the Kalman 
gall1 Q € D M  

8, = Arg min I(,(@, 2 ( N ) )  (16) 

'rhe backwards time-recursive estimation step can be stating that vN is minimized wit11 respect to  under 
the constraint that  the parameters belong to  the set of 
stable models D m .  2 ( N )  denotes the set of measure- 

(9)ments {y(1),y(2),  ..., y(N)} This parameter estimation 
method is called the prediction error method (PEM) [15], 

vsl)resscd as. 

4 i *  + 1 I N )  = Q ( k  + l ) r T ( k  + 1, k ) r ( k  + 1 I N )  
T ( k  I N) = H ( k )  [ H T ( k ) P ( k  I k - l ) H ( k )  

Z(k I k - 1) + ( q k  + 1 , k ) .  

[ I  - I < ( k ) H T ( k ) ] ) T  r(k + 1 I N )  

w ( k  + 1 I N )  denotes the fixed-interval estimate of 
i o ( k  + 1) .  r(k + 1 I N )  is the residual state vector [9]. 

The algorithm can, based on all samples in one or more 
A-lines, estimate the reflections. The pulse parameters 
a n d  the covariances can vary from sample to  sample and 
Ll ie  pulse can be non-minimum phase [9]. 

WI. 
Using an iterative search algorithm employing tlie 

Gauss-Newton sea,rch gradient, we arrive at tlie following 
equations [ l G ] :  

START: 

$(kl  0) = [1 - C(dlP(k) 
. N  

l N  
V/9(O12(N))  = ; C$'(k, Q ) $ ( k ,  e )  

4 Fixed-interval pulse estimator k=l 

a = l  
I I I  ( 5 )  knowledge of up, ,  and h,, is needed. up, ,  must be 
rs( iina.ted because, in general, dispersive attenuation is 
uril~nown. h,, can be calculated from a priori knowledge 
of' t,he transducer geometry. 

A representative model for upea is the ARMA (AU- 
t.oRcgressive Moving Average) model given by: 

ITERATE: 

= 8;) + [vi/$)(e, 2 ( N ) ) ]  -' 2 ( N ) )  
(17) 

Mirror zeros and poles into the unit circle. 

1 .  
N 

V$f')(O, 2 ( N ) )  = - CE(l+l)(k, B)6("+l)(k, e )  wliere y(k) is the measured signal, e ( k )  the reflection sig- 
i ia l )  q - l  the unit backward shift operator, and a l l  ... ,ara ,  
r i i i t l  c l ,  ..., cn, are the ARMA coefficients. 

'I'he parameters to be estimated, and the data values, If v$+') < ~ $ 1  then go to  START. 
an', for notational convenience, organised in a parameter else a = a12 and go to ITERATE with 
vrctor ,  0 ,  and ,a regression vector, p. the new a until tried ten times. If 

II[v//$)(o, Z(N))I-~V/:)(O, z (N) )~I  < 0.01 or 
i = 10 then stop 

k=l 

eT = [all a2, " ' 1  ana, c1, c2, "'1 C n J  (11) 
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i is the iteration step, and Ii 0 1 1  denotes the norm of 

Some initial parameter and prediction error estimates 
They are calculated by the least- 

the vector. 

must be supplied. 
squares method. 

1. Fit an AR-model of order n, + n, to  the da ta  

Model: A,(q)y(k) = e ( k )  

8LSl = 
[ l  

'2. Calculate the 

(18) 

initial estimate of the prediction error 

3 .  Male a least squares fit to  an ARX-model of order 
11, and n,, where the external input is G(k,  QLsl) 

hlodel: A(q)y(k) = C(q)e(k) 

This gives the initial parameter estimate for 0 and the 
prediction error. 

This estimator gives one set of parameters for a seg- 
ment of an A-line. It can be reformulated to  give one 
set for each sample [16] tracking the slow variation in 
t.he pulse. We, however, prefer to  divide the A-line into 
overlapping segments, and then use parameters from the 
previous segment to  initialize the next segment. This has 
giT.en more consistent results than using the recursive 
prediction error method. 

5 Covariance estimation 
The deconvolution algorithm uses the covaria.nce of the 
noise and of the reflections. The  noise is due to  the ana- 
log ainplifiers, the time gain amplifier and quantization 
of the signal. It can be modeled as a fixed noise source 
a.dded to  the noise from the T G C  amplifier that  varies 
with its gain factor. So the noise covariance can be found 
from previous measurement of the noise sources and the 
gain factor actually used for the acquired data ,  

When the signal-to-noise ratio is good we can approx- 
iniat,e the memured signal by the ARMA model in (10). 
The reflections can then be approximately obtained by 
performing a predictive deconvolution by the ARMA fil- 
ter and then finding the covariance. To reduce the vari- 
a.nce of the covariance estimate several adjacent lines are 
used, and each line is weighted by a Hamming window. 
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Figure 1: Position of wires. 

6 Phantom examples 

We will now show results from deconvolving signals ob- 
tained from a tissue phantom (Nuclear Associates). As 
we have not been able to  create an invertible model for 
the pulse-echo spatial impulse response, only a 1D de- 
convolution will be performed with a fixed, estimated 
wavelet. As the da ta  segment only covers a relatively 
small depth, a fixed value of Qu,  and Run will be used. 
The  values are determined by the method described in 
the previous section. 

The  area scanned contained wires as shown in Fig. 1, 
embedded in a substrate which generates a speckle sig- 
nal. 

The  transducer used was the Bruel & ICjzr 8526. The 
focal point is a t  5 cm and the nominal frequency is 3.5 
M H z .  The sampling frequency was 25 MHz. 

The ARMA(6,5) wavelet used by the deconvolution 
algorithm was estimated from one of the acquired lines 
which contained only a speckle signal. The  wavelet is 
shown in Fig. 2. 

Using the approach in section 5, the ratio Q,,/R,, 
was estimated to  be 9.2, and this was used in the de- 
convolution. The  signal-to-noise ratio was estimated to  
43. 

Fig.3 shows the logaxithmic envelope of the signals, 
found by Hilbert transformation. The  picture a t  the 
top is the normally processed picture, as displayed on a 
modern scanner. 

Fig. 3 shows that  the speckle pattern is suppressed and 
the wires are more distinct than in the traditional pic- 
ture. This makes it easier to  distinguish between speck- 
ular scatterers and reflections as the contrast in the pic- 
ture is enhanced. 
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Figure 2: Estimated wavelet for the 8526 Bruel & Kjm- 
t.ra nsducer . 

7 In  vivo examples 
We now present two examples with clinical in vivo data. 
The da.ta were acquired by our own prototype sampling 
system that uses a 12 bits, 20 MHz converter. The mea- 
surements were performed a t  Herlev University Hospital 
i n  Dennmrk with a Bruel & K j m  1846 scanner with a 
8526 3 MHz sector scan transducer. 

The first image shown in Fig. 4 is the lower part of the 
right kidney in a longitudinal scan. 

hlt,liough the change is not as pronounced as for the 
phantom data,  we do see an  improvement. The  speckle 
pattern is finer, and i t  seems easier to  identify the ex- 
ilct boundary of the kidney. The internal structure of 
t,he kidney a.lso seems more clearly identified from the 
speckle noise. 

The second example shown in Fig. 5 is a 13 weeks 
foetus . The head, limbs, and spinal cord can clearly 
be identified. The deconvolved picture shows the same 
clianges, a slightly finer speckle pattern with, apparently 
rasier identification of the extent of the placenta. 

One fea.ture, however, stands out in the deconvolved 
image; the diamond shaped, white area behind the head. 
This is due to  overload of the input amplifier in the 
scanner due to a very large reflection. The algorithm 
relies on a linearity assumption, which is violated here. 
Thus, the measurement process should ensure that no 
non-linearities occur. This should not be done by adjust- 
ing t,he T G C  for the whole picture, rather an adaptive 
T G C  for each individual line should be used. Thereby a 
relatively large signal-to-noise ratio can be obtained for 
t.he whole image. 

Figure 3: Normal a.nd deconvolved response for ima.ge 
measured by the Bruel 8~ ICjm 8526 transducer. Axia.1 
distance 30 m m  and lateral distance 50 mm. Linear scan. 
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Figure 4: Normal (left) and deconvolved (right) image of 
longitudinal scan of right kidney. 1 cm between markers. 

Figure 5: Normal (left) and deconvolved (right) image 
of 13 weeks old foetus. 1 cm between markers. 
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8 Conclusion 
A i l  optimal, fixed-interval, minimum variance algorithm 
for increasing the resolution of medical ultrasound pic- 
t,ures wa.s given. I t  can take into account the spatial and 
t,einpora.l change in the emitted and received pressure 
field and changes in the noise and reflection covariance. 

The algorithm uses knowledge of the interrogating 
pulse and of the covariances, and estimators for the one- 
climensional pulse and for the covariances were given. 

‘I’he algorithm can handle two-dimensional deconvo- 
liit,ion, but currently we have not been able to  obtain a 
st,a.l>le and invertible 2D model for the pressure field. 

Esa.niples of 1D deconvoluted pictures of phantom 
tlaI,a. and in vivo data  were given. They showed, espe- 
cially for the phantom data,  an increased contrast and 
rcsolution. Problems were encountered with in  vivo im- 
ages due to non-linearities in the acquired signals. It is 
suggested that this can be solved by using adaptive time 
gain compensation selected for each line in the image. 
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