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Partial Discharges in Ellipsoidal and 
Spheroidal Voids 

G. C. Crichton, P. W. Karlsson 
and A. Pedersen 
Physics Laboratory 11, 

The Technical University of Denmark, Lyngby, 
Denmark. 

ABSTRACT 
Transients associated with partial discharges in voids can be 
described in terms of the charges induced on the terminal elec- 
trodes of the system. The relationship between the induced 
charge and the properties which are usually measured is dis- 
cussed. The method is illustrated by applying it to a spheroidal 
void located in a simple disk-type GIS spacer. 

I N T R O D U C T I O N  

HE transients which are manifest a t  the electrodes T of a system during partial-discharge activity are re- 
lated to  the charges which, in view of Faraday’s ice-pail 
experiment, are induced on the electrodes. The sources 
of these induced charges are the charges which, as a 
result of this partial-discharge activity, are distributed 
within voids located throughout the system. 

The induced charge can be expressed as the dif- 
ference between the charge on the electrode when dis- 
charges have occurred, and the charge which would have 
been on the electrode had the system been discharge free 
[l]. The direct implementation of this approach could 
be rather cumbersome a s  it requires the solution of Pois- 
son’s equation. 

A more straightforward approach is possible through 
an application of the principle of superposition [2,3]. 
This can be done in two ways depending on whether 
the analysis is based on the P-field [2] or on the D-field 
[3] in the dielectric. In practice, the application of the 
latter is more convenient, and this approach will there- 
fore be employed in the present paper. 

A discharge in a void results in a deployment of 
charges on the surface S of the void. The surface-charge 
density a will attain such values that  the field within the 
void will reduce until the discharge is quenched. In view 
of the principle of superposition, it is evident that the 
induced charge related to  the charge distribution on S 
can be expressed [3], in the form 

in which X is a dimensionless scalar function which de- 
pends on the position of dS only. The function X is given 
by Laplace’s equation 

where E is the permittivity, [4]. The boundary condi- 
tions are A = 1 a t  the electrode on which q is distributed, 
and X = 0 at  all other electrodes. In addition, the follow- 
ing condition must be fulfilled a t  all dielectric interfaces 

ax a A  
E + ( - ) +  = &-( -  an an)- (3)  

where A is differentiated in the direction normal to  the 
interface and the signs + and - refer to  the two sides 
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of the interface. Since Equation (2) is Laplace’s equa- 
tion, any standard method for the calculation of space- 
charge-free electrostatic fields can be used to evaluate 
A. This is possible since the potential V at  a point can 
be expressed as V = XU,  where U is the voltage applied 
in the field calculation. 

Viewed from the electrode on which the induced 
charge q is distributed, the charges deposited on S can 
be considered, to a first approximation, as an electric di- 
pole configuration since the net charge within the void 
remains zero. The dipole moment p of the charges de- 
posited on S is given by 

ji= J s r b d S  (4) 

where c i s  a radius vector which locates the position of 
the surface element dS. The induced charge which arises 
from this dipole is given by [3], 

Although voids in epoxy spacers are usually close 
to  spherical in shape, it is of advantage to consider tran- 
sients caused by discharges in voids of more general ge- 
ometry. Formulae for the dipole moment of relevant 
charge distributions on the surfaces of ellipsoidal voids 
are given. The effects of void size, shape and location on 
the magnitude of the induced charge are then discussed 
with particular reference to spheroidal voids. 

TRANSIENTS RELATED TO 
INDUCED CHARGES 

LTHOUGH the observable transients are inherently A related to  the induced charges, the properties which 
primarily are measured are transients in the applied 
voltage and current pulses in the lead to the terminal 
electrode. The relationship between these properties 
and the induced charge can be found in the following 
manner. Just prior to  the first discharge in the void the 
potential of the electrode is U and the associated charge 
is Q. We compare this with the situation immediately 
after the discharge is quenched. The potential has now 
dropped to U - AU and the charge on the electrode has 
become Q + AQ, where A Q  is the charge transferred to 
the electrode from the external source. Green’s recipro- 
cal theorem [5] then yields 

(U - AU)Q = U ( Q  + AQ) + / V o d S  ( 6 )  

where V is the scalar potential a t  the surface element 
dS for the discharge-free situation. Since V = XU in 
consequence of Equations (2)  and (3),  and Q = CU,  
where C is the capacitance of the system, we obtain 

S 

(7) - J, XudS = CAU + AQ 

or 
q = CAU + AQ (8) 

If the impedance of the circuit is large for the cur- 
rent which is associated with the discharge, then CAU 
can be much larger than AQ. The induced charge is 
then given approximately by 

q x CAU (9) 

It should be emphasized that the capacitance of 
the system is not affected by partial discharges [2,3] and 
that,  as a consequence, the transients cannot be related 
t o  a change in the capacitance. The proper concept of 
capacitance [6] implies that the field between the elec- 
trodes is Laplacian, and the field is not Laplacian if 
space charges are present. However, if the principle of 
superposition is utilized, the actual field can be consid- 
ered to be the sum of a space-charge Poisson field and 
the original space-charge-free Laplacian field. It is the 
latter which determines the capacitance of the system. 

ELLIPSOIDAL VOIDS 

E consider an  ellipsoidal void, the dimensions of W which are so small that  the internal field may be 
considered to  be effectively uniform. Since any direc- 
tion of the field within the ellipsoid can be resolved into 
three orthogonal components, each parallel to  an axis, 
it is sufficient to consider the case for which the field is 
parallel to one of these axes. 

A partial discharge can develop when the field with- 
in the ellipsoid reaches the inception value E;. Such a 
discharge will result in a deposition of charges on the 
surface of the ellipsoid and a reduction in the internal 
field. The discharge will be quenched when this field 
is reduced to  the limiting value El, i . e .  the field below 
which ionization growth is impossible. To simplify the 
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analysis we assume that the field within the ellipsoid re- 
mains uniform, and that the entire volume of the ellip- 
soid is involved in the discharge. In this case, the dipole 
moment can be quantified readily. Even if these assump- 
tions are not fulfilled in practice, the general conclusions 
which can be drawn from the analysis will remain valid. 

The electrostatics of ellipsoids is discussed in sev- 
eral advanced textbooks, e.g. [7]. From the field ex- 
pressions given therein it can be proved that the dipole 
moment of the charge distribution left on the surface of 
an ellipsoid, following the above assumptions, may be 
written in the form 

where a, b, c are the semi-axes of the ellipsoid. Eo is 
the ambient field when the internal field is equal to the 
inception field E,; i . e . .  Eo is the field in the idealized 
( i . e .  void-free) system at  a location corresponding to 
that of the ellipsoidal void. Eo, E;.  and El are all 
assumed to be parallel to  the a-axis. The parameter A 
is given by the integtal 

where s is a dummy variable. The relationship between 
Eo and the inception field E; is given by 

] gi (12) $0 = [1+ 2E 
u ~ c A (  E~ - E )  

E is the permittivity of the ambient dielectric and E,, is 
the permittivity of the gas within the ellipsoid; normally 
co can be assumed to be the permittivity of free space. 

If we introduce the dimensionless parameters 

2 
abcA K = -  (13)  

and 
a b c A ( ~ ,  - E )  -' 1 

we may rewrite the dipole moment as 

K 4 -  

/I = ( -)L?E(E; - El)  
h 

where fl equals the volume (47r/3)abc of the ellipsoid. 
The parameters K and h are related by 

K ET h =  
1 + ( K  - 1 ) E ,  

where E~ = E / & ,  is the relative permittivity of the bulk 
dielectric. 

The induced charge is found by combining Equa- 
tions (5) and (15) to  give 

q = -  

Since X is proportional to  the scalar potential for the 
space-charge-free field we have, with reference to Equa- 
tions ( 1 2 )  and (14), that  

where A0 is the solution to Laplace's equation, Equa- 
tion ( 2 ) ,  at  the location of the ellipsoid for the idealized 
(void-free) system. The induced-charge thus becomes 

- - -  
(19) q = -KO&(E;  - E l ) .  VXO 

and as X is eliminated with the introduction of X o  the 
calculation of the induced charge is dramatically sim- 
plified. For practical geometries the evaluation of Xu 
(void-free) is trivial in comparison to that of X (void- 
present). 

SPHEROIDAL VOIDS 

HEN b = c the ellipsoid becomes a spheroid, and vv A and K are then expressible in terms of In, 
arctan, and simpler functions. Introducing b/a = x, 
the dimensionless parameter K for an oblate spheroid, 
i . e .  x > 1, is given by 

(20) 
U3 

K =  (I + d ) ( u  - arctan u) 

where U = d m .  Similarly for a prolate spheroid, 
i . e .  x < 1, we have 

( 2 1 )  
2 v 3  

l + v  
1 - v  

K =  
(1 - v2)(ln - - 2 v )  

where U 
tion of the axis ratio a/b.  

d m .  In Figure 1, K is shown as a func- 

The inception field E,, depends on the pressure p 
of the gas contained in the void and on the critical av- 
alanche length zo [8 ] .  Since the field is parallel to the 
a-axis, the minimum value of E; will be associated with 
the maximum path length in the field direction, viz .  
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Figure 1. 
The parameter K for spheroids. 
field is parallel to the a-axis. 

The applied 

zO = 2a. Consequently, for an electron attaching gas, 
the minimum value of E; will be given by 

where M is the figure of merit for the gas [8]. For SFs 
,M = 4 Pa m and Ef/p = 88.6 V/Pa m. The dependence 
of M upon El/p is shown in Figure 2. The curve is valid 
for both unary gases and binary gas mixtures [9]. 

Similarly we have for non-attaching gases 

B Ei 
P P 
- = [ l + = ] -  E, 

where B is a constant which is characteristic for the gas 
[lo]. For air B = 8.6 (Pa m)l/’ and Er/p = 24.2 V/Pa 
m. 

The above E,/p expressions are derived via stream- 
er breakdown criterion 181, and at the higher gas pres- 

5 10 15 
(€,/p)/(kV mm-’ bar-’) - 

Figure 2. 
The figure of merit M as a function of El J p  for 
electronegative gases and gas mixtures. 

minimum value for the onset voltage cannot be associ- 
ated with the minimum voltage of the Paschen break- 
down characteristic, as such a minimum is electrode de- 
pendent. 

The streamer criterion, which depends on gas pro- 
cesses only, gives the minimum voltage level required to  
initiate a discharge; that is the onset level UOn. An in- 
herent assumption of this criterion is the existence of a 
suitably placed initiatory electron, such that the value of 
the statistical time-lag t, is zero. In general t, > 0, and 
hence if the applied voltage increases in time, the dis- 
charge will occur at a higher voltage level. This voltage 
is usually referred to  as the discharge inception voltage 
U , ,  with U; decreasing to  U,,,, as t, 4 0. In the present 
study t, is assumed to  be zero. Thus inception and onset 
field strengths are synonymous, and E; is constrained to  
a minimum value. 

From Equations (22) and (23) it  is seen that 

for an electron attaching gas, and 

.~ _ _  
sures these are seen to  be identical in form to the Paschen- 
curve breakdown functions [8]. In contrast, however, the 
above derivations do not invoke the presence of electrode 
boundaries. On this basis, the possible existence of a 

for a non-attaching gas. It should be noted that for an 
attaching gas (E; - Et)  is independent of the pressure, 
since El is proportional to  pressure p. 
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For a fixed location of the void in the system, '?A0 

will be constant. For constant gas pressure within the 
spheroid, we will study how the induced charge varies 
with the axial ratio a /b  for voids of constant volume. In 
this situation, the induced charge can be written in the 
form 

q = knq1 (26) 

where q1 is the induced charge when a /b  = 1, i .e. for 
a spherical void, and kn is a dimensionless shape-factor 
for constant void volume. Insertion of an expression for 
the semi-axis a in terms of Cl and a /b  in Equations (19), 
(24) and (25) shows that,  as K = 3 for a /b  = 1, we have 

for an electron-attaching gas, and 

for a non-attaching gas. These shape-factors are thus in- 
dependent of all the other properties of the gases which 
may be confined within the spheroid. The shape-factors 
for constant fl are shown in Figure 3 as a function of 
a/b.  

In addition to kn it is of interest to consider the 
shape-factors k, and k b  for constant a and b, respec- 
tively. These shape factors are, for an attaching gas 
within the void, given by 

K 
kb = - 

3 

2 

Oblate Prolate 
I- ! -  4 

Figure 3. 
The shape-factor kn for spheroidal voids of con- 
stant volume. I: Attaching gases. 11: Non- 
attaching gases. 

VOID IN A DISK-TYPE SPACER 

E consider a coaxial electrode system with a sim- W ple disk-type spacer of relative dielectric permit- 
tivity .cl. = 4. The radius of the inner electrode is 
r1 = 70 mm, and the inner radius of the outer elec- 
trode is rz = 190 mm. Within the spacer is a spheroidal 
void of volume Cl = 1 mm3. The center of the spheroid 
is located at r = 100 m m  from the axis of the coaxial 
system. In the void is either SFG or air a t  a pressure of 
io5 Pa. 

and for a non-attaching gas by 
For this simple geometry 

K a :  
k h  = 3 1x1 (32) where is a unit vector perpendicular to the axis of the 

coaxial system and directed away from the inner elec- 
trode. Insertion of these data  in Equations (19), (24)- 
(28) and (33) gives the induced charge as a function of 
afb. The results are shown in Figure 6. The assumption 
that t ,  = 0 implies that  the computed charge values are 

These shape factors are shown in Figures 4 and 5,  
respectively, as a function of the axis ratio alb. It should 
be noted that the void gas pressure is held constant as 
in the kn-evaluation. minimum values. 
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Figure 4. 
The shape-factor k, for spheroidal voids with 
constant length of the a-axis. Attaching and 
non-attaching gases. 

The corresponding discharge inception voltages can 
be calculated from data obtained from Equations (22) 
and (23), and these voltages are shown in Figure 7. Al- 
though the inception voltage for SF6 is greater than 
that for air, it is seen that  the induced charge is much 
smaller for the SFs-filled void than for the air-filled void. 
The reason is that ,  for equal 2upvalues, the difference 
(E ,  - El) is in general much smaller for SF6 than for air. 
Again, t ,  = 0 implies minimum inception voltage levels. 

The shape-factors k, and kh, which are distinctly 
different from kn in their variation with a/b,  may be 
employed in the calculations in a manner identical to the 
above. It is interesting to  note that k, is independent 
of the void-gas in question, see Equations (29) and (31) ,  
and that  in the range 0.1 < a/b  < 10 both k, and 
k b  vary monotonically over approximately two orders 
of magnitude, with the former decreasing for increasing 
ulb. 

50 

30 

10 

5 

2 

1 

05 

02 

n i  
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Figure 5. 
The shape-factor ka for spheroidal voids with 
constant length of the b-axis. I: Attaching gases. 
11: Non-attaching gases. 

DISCUSSION 

INDUCED-CHARGE CONCEPT 

HE classical philosophy concerning the transients T which are related to  partial-discharge activity is 
based on the assumption that  the capacitance of the sys- 
tem is affected by the space charges which result from 
this discharge activity. This is, however, a t  variance 
with the concept of capacitance. The key to  the electro- 
dynamics of partial discharges is the concept of induced 
charge. Based on this concept, analytical expressions 
can be derived for the charges induced on the termi- 
nal electrode of a system. In the present study, the 
induced-charge-response to  partial-discharge activity in 
ellipsoidal voids is derived. 
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Figure 6. 
Induced charge q for spheroidal voids in a disk- 
type spacer. 
Location: 7 = 100 mm fiom the system axis. 
Volume: n = 1 mm3. Electrode dimensions: 
71 = 70 mm, 7 2  = 190 mm. Relative permit- 
tivity of dielectric: c, = 4. Pressure within the 
void: p = IO5 Pa. 

INFLUENCE OF VOID PARAMETERS 

The application of the concept to  an actual insu- 
lating system is illustrated by considering a spheroidal 
void in a simple disk-type spacer. From the formulae 
obtained, conclusions can be drawn about the effects of 
the gas within the void on the induced-charge signal, 
together with the the effects of size, shape and void lo- 
cation. 

For the specific case examined, i . e .  p = lo5 Pa, the 
non-attaching gas generates an induced charge which is 
approximately an order of magnitude larger than that 
generated by the attaching gas. In the latter case, how- 
ever, inception voltages are higher by factors in the 
range 1.5 to  3. 

1000 

8 00 
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Figure 7. 
Discharge inception voltages Vi 
ferred to in Figure 6 .  

THE FUNCTION 

2 5 10 
Prolate 4 

for the voids re- 

The variation in induced-charge with location is 
given by the function V Xol  and its introduction greatly 
simplifies the calculation of induced charge. For prac- 
tical systems, which are always associated with non- 
uniform fields, the calculation of Xo (void-free) is essen- 
tially a trivial problem in comparison to  the evaluation 
of X (void-present). 

-+ 

---* 
The function V Xo depends on location in the s a m e  

manner a s  the field-strength in the Laplacian electro- 
static field of the idealized (void-free) system. For a 
simple disk-type spacer the induced-charge is therefore 
proportional to  the inverse of the distance from the axis 
of the electrode system to  the center of the void. 

L I M I TAT IO N S 

For the void geometries considered, it is more prob- 
able that the actual partial-discharge activity would oc- 
cur in the vicinity of the void axis. However, by con- 
sidering the entire volume of the void to  be active in 
the discharge process, quantitative values can be read- 
ily ascribed to  the induced charge characteristics. This 
is not possible if only an axial discharge location is con- 
sidered, as in this latter case the dipole moment would 
remain obscure. The values of induced charge derived 
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in the present analysis should therefore be interpreted 
as upper limiting values in the case t ,  = 0. 

PRACTICAL ASPECTS 

Finally, Equations (1) and (5) imply that the same 
value of induced charge could be associated with an  in- 
finite number of charge patterns and locations. Conse- 
quently, an exact knowledge of void location and geom- 
etry, gas pressure and composition will be required if a 
unique interpretation of the induced-charge signal and 
associated inception-voltage level is to  be achieved. In 
practice, however, these restrictions should not prohibit 
a sound qualitative evaluation of the system insulation 
to  be made on the basis of such measurements. 

CONCLUSION 

HE correct explanation of partial-discharge tran- T sients can be attained only through the concept of 
induced charge. The application of this concept has en- 
abled a partial-discharge theory to be developed through 
which the influence of all relevant void parameters can 
be correctly assessed. In contrast, the widely adopted 
abc-capacitance model [ll] does not allow this insight 
to be achieved. In addition, the abc-model is based on 
an erroneous application of the concept of capacitance, 
and, although this simple approach can be a useful tool 
when discussing measuring techniques, it may lead to 
quite incorrect conclusions if quantitative assessments 
are attempted. 
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