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ON THE ELECTRODYNAMICS OF PARTIAL D I S C W G E S  IN VOIDS IN SOLID DIELECTRICS 

A. Pedersen 

INTRODUCTION 

Partial discharges in voids in a solid dielectric are often discussed in terms 
of a simple equivalent capacitive circuit known as the abc-model. The void is 
represented by a capacitance and discharges are simulated as discharges of this 
capacitance, see Whitehead [l]. An equivalent circuit is a system which can 
generate as faithfully as possible the signals which are manifest at the 
terminals of the actual system, and in this respect the abc- model has been 
quite successful. It is, however, important to realize that the processes 
within an equivalent circuit need not in any way be identical to the processes 
which are involved in the real system. This is evident for the abc-model since 
this model describes a phenomenon, which is inherently a field problem, in 
terms of lumped circuit parameters. 

To envisage a void as a capacitor requires a very loose interpretation of the 
concept of capacitance. This concept is intimately related to conducting 
electrodes between which a space-charge free electrostatic field can be 
established. This means that the field must be Laplacian. Strict proportio- 
nality will consequently exist between the charge Q on the electrode and the 
applied voltage U, i.e. 

Q - C U .  (1) 

where C is the capacitance. A meaningful application of equation (1) to the 
field within a void is hardly possible since the field is a Poisson-field when 
space-charges are present, and this implies that Q will not be proportional 
to U. 

The transients which are manifest at the electrodes of a system during partial- 
discharge activity are related to the charges which, in view of Faraday’s ice- 
pail experiment. are induced on the electrodes. The primary sources for these 
induced-charges are the charges which, as a result of the partial-discharge 
activity, are distributed within the voids. 

The induced-charge can be expressed as the difference between the charge on the 
electrode when discharges have occurred and the charge which would have been on 
the electrode had the system remained discharge free, Repp et al. (21. The 
direct implementation of this approach can be rather cumbersome as it requires 
the solution of Poisson’s equation. A more straightforward approach is possible 
through an application of the principle of super- position. This can be done in 
two different ways depending on whether the analysis is based on the D-field, 
Pedersen [3], Crichton et al. [ 4 ] ,  or on the P-field, Pedersen [5]. The 
former, the Maxwellian description. is more convenient for practical 
applications, whereas the latter, the quasi- molecular description, is suitable 
for fundamental studies of the physics of the phenomenon. 

A. Pedersen is with Physics Laboratory 11, The Technical University of Denmark, 
Building 309B, DK-2800 Lyngby, Denmark. 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 01,2010 at 11:38:59 UTC from IEEE Xplore.  Restrictions apply. 



1 0 8  

THE CONCEPT OF INDUCED CHARGES 

Maxwellian Description 

The charge Qi on the i'th electrode in a space-charge free system consisting 
of N electrodes is given by 

with 

Q i - 0 .  
i-1 

( 3 )  

Vi and U. are the potentials of the i'th and the j'th electrodes, and Cij is 
the partjal capacitance between these electrodes. If space-charges are present 
in the space between the electrodes an additional charge qi, the induced 
charge, will appear on the i'th electrode, i.e. 

The induced-charge depends in a unique way on the locations and magnitudes of 
the space-charges. They are independent of the electrode potentials if the 
permittivities do not depend on the electric field. An infinitesimal charge dQ 
located somewhere between the electrodes will induce a charge dqi on the i'th 
electrode and dqi will, in view of the principle of superposition, be 
proportional to dQ. i.e. 

dqi = -XidQ . ( 5 )  

The parameter Xi is a dimensionless positive scalar function which depends on 
the location of dQ only. The entire induced-charge on the i'th electrode from a 
distribution of space charges can thus be expressed in the form 

in which p is the volume-charge density in the volume element do and U is the 
surface-charge density on the surface element dS of an interface between two 
dielectrics. The volume integral is extended over all space and the surface 
integral over all dielectric interfaces. In a study of partial discharges in 
voids in solid dielectrics the space-charges will be located within the voids 
and on the walls of these voids. 

The response function X i  can, as shown by Maxwell [ 6 ] ,  be found by applying 
Green's reciprocal theorem to the system in the following way. The total charge 
on the i'th electrode will be qi if all electrodes are at zero potential, see 
equation ( 4 ) ,  and space-charges are deposited in the space between the 
electrodes. We compare this with the situation when p - 0 and U - 0 everywhere, 
the potential of the i'th electrode is Ui and all other electrodes are at zero 
potential. Applying Green's reciprocal theorem, Clemmow [ 7 ] ,  to these two 
situations yields 
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Vi denotes the scalar potentials at dn and dS when the i’th electrode is at the 
potential Vi, all other electrodes are at zero potential and the system is 
space-chare free. Comparing ( 6 )  and ( 8 )  shows that 

Xi - VilUi . 
Since Vi is the solution to Laplace’s equation 

div(c grad Vi) - 0 (10) 

Xi can be determined from 

div(c grad Xi) - 0 (11) 

in which e denotes the permittivity. The boundary conditions are Xi - 1 at the 
surface of the i’th electrode and Xi - 0 at the surfaces of all the other 
electrodes. In addition, the following condition must be fulfilled at all 
dielectric interfaces such as the walls of the voids, viz. 

c+(axi/an)+ - c-(aXi/an)- (12) 

where Xi is differentiated in the direction normal to the interface and the 
signs t and - refer to the two sides of the interface. Since equation (11) is 
Laplace’s equation any standard method for the calculation of space- charge 
free electrostatic fields can be used to evaluate Xi. 

Quasi-Molecular Description 

The polarization P in the dielectrics is a significant property when discussing 
the induced charge in a system which contains polarizable materials. The 
importance of the polarization is, however, not evident from the analysis given 
above since the effect of the polarization is automatically included in the X- 
function. This is an advantage when the analysis is applied to practical 
systems whereas it may be less suitable in studies of the physics of the 
phenomenon. 

The effect of the polarization P can be taken into account by adopting a quasi- 
molecular description [ 5 ] .  This means that the entire space between the 
electrodes is viewed as vacuum in which the dielectric is represented by a 
distribution of dipoles with a dipole moment density equal to P. The induced- 
charge on an electrode is then considered to consist of two parts. One which 
is linked with the space-charge distribution created by partial discharge 
activities, and another part which is related to the dipoles, that is to the 
polarization P. 

The induced charge related to a dipole can be found by visualizing a dipole as 
two charges 4 and -4 separated by an infinitesimal distance dr. The dipole 
moment thus becomes 

+ - +  
dp = Qdr . (13) 
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Let 'p denote the A-function for vacuum, then 

p i ( r  t dr) - cp(:) t d;*grad'pi , (14) 

is the radius-vector indicating the position of the dipole. The induced- 

+ +  

where 
charge on the i'th electrode thus becomes 

The response function for vacuum 'pi is given by Laplace's equation for vacuum, 
i.e. 

divgrad'ppi - 0 (16) 

or 

+'pi - 0 . (17) 

The boundary conditions are (pi - 1 at the surface of the i'th electrode and 'pi - 0 at all other electrodes. No condition is imposed on 'pi at the dielectric 
interfaces. Any available method of electrostatic field calculation in vacuum 
can thus be applied to obtain 'pi from the equations 

v2vvi - 0 
and 

'pi - VVilUi 
Vvi is the scalar potential in a point of the space-charge free electrostatic 
field in vacuum where the potential of the i'th electrode is Vi and all other 
electrodes are at zero potential. 

The polarization P in a point of the solid dielectric will depend on the 
applied voltages and on the space-charges formed by partial discharges, i.e. 

- D +  -D 
P -  Pa t Ps , 

where Pa is linked with the applied voltages and Ps is related solely to the 
inter-electrode space-charges. The resulting induced-charge on the i'th 
electrode as a result of partial discharge activities will thus be given by 

The volume integral is extended over the entire space between the electrodes 
and the surface integral over all dielectric interfaces, that is the walls of 
the voids. 

CURRENT PULSES IN THE LEADS 

During the periods of time in which partial discharges are developing transient 
currents can flow in the leads to the electrodes and voltage transients can be 
observed. In addition a transfer of charge may occur from an electrode to the 
space between the electrodes. This is likely to appear if a void is located at 
an interface between an electrode and the solid dielectric. 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 01,2010 at 11:38:59 UTC from IEEE Xplore.  Restrictions apply. 



111 

Let I i  denote the total current flowing in the lead towards the i’th electrode 
and let Iti be the current which represents the transfer of charge from the 
i’th electrode towards the inter-electrode space. These currents are, in view 
of the principle of the conservation of charges, related to the total net 
charge Qi on the i’th electrode in the following way 

Ii - Iti + dQildt (22) 

or 

Ii - Iti + 

j-1 

Differentiating equation ( 6 )  with respect to the time t yields 

- dqi 
d t  -JJJ % - .ff dS 

which by means of the continuity equations 

div 3 + % - 0 and Div 3 + ao - 0 (25)  at  

can be written in the form 

( 2 6 )  

J is,the current density in a point within a void during discharge activities. 
Div J is the interface divergence defined in the following way, Fischer [ E ] .  

dqi dt - JJJ X i  div 3 dn + JJ X i  Div 3 dS . 
., 

Div 5 - ;*(3+ - ?-) ( 2 7 )  

where the signs + and - refer to the two sides of the interface, and ?I is a 
unit vector normal to the interface and directed away from the positive side. 
It is in this analysis assumed that the effect of the surface conductivity of 
the interfaces, i.e. the walls of voids, can be neglected. Introducing the 
identities 

div(Xi3) - Xidiv 3 t ;*gradXi ( 2 8 )  

and 

XiDiv 3 - Div(Xi3) ( 2 9 )  

then leads to 

Applying the extended divergence theorem of Gauss. Joos [ 9 ] ,  to the vector 
field X i ?  reveals that 
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This means that 

Inserting this in equation ( 2 3 )  shows that the total current flowing in the 
lead towards i’th electrode is given by 

Since the Xi-function is determined by Laplace’s equation, see equation (11). 
the gradient of Xi can be found from 

gradXi - -zi/Ui , ( 3 4 )  

in which zi is the field strength in the space-charge free electrostatic field 
between the electrodes of the system if the potential of the i’th electrode is 
Vi and all other electrodes are at zero potential. It should be emphasized that 
Vi and Ei are entirely fictitious quantities since Vi can be given any 
arbitrarily chosen value in the computational procedure, i.e. Vi is not 
synonymous with the potential of the i’th electrode during discharge 
activities. For this reason Si and Vi should not be inserted in the expression 
for the current. 

Should it be desirable to include the polarization in the analysis a similar 
procedure can be applied to equation (21). This leads to the following 
expression for the total current in the lead to the i’th electrode. 

The gradient of p i  can be calculated from 

gradpi - - k , i / V i  

where &i is the field strength in the electrostatic field associated with Vi 
when the entire space between the electrodes is vacuum and all other electrodes 
are at zero potential. 

The current density J is related to the motion of electrons and ions within the 
voids during discharge activities. viz. 

where p is the charge density and the drift velocity, k-0 refers to electrons 
and m is the number of possible species of positive and negative ions which are 
participating in the discharge activity. 

A direct application of equations (21) and ( 3 5 )  to practical systems would be 
rather complicated because of the explicit occurrence of the polarization in 
these equations. A closer analysis, see Pedersen [ 5 ] ,  shows that the 
polarization does play an important role, and that this effect becomes more 
dominant the more oblate the void is with respect to the direction of the 
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applied electric field. 

Formulae similar to those derived above, but for systems in which polarizable 
materials are absent, have been given by many authors, see for example von 
Engel and Steenbeck [lo]. Ram0 [ll]. Shockley [12]. These formulae are 
sometimes referred to as the Ramo-Shockley theorem. It should be remembered, 
however. that a quantitative treatment based on Faraday’s concept of induced 
charges dates back at least to Maxwell [ 6 ] .  

Although the analysis given above is discussed with special reference to 
partial discharges in voids, the sets of formulae are of general validity for 
similar systems in which currents in the external leads depend on charges in 
motion in the space between the electrodes. 

APPLICATION TO PARTIAL DISCURGES 

A discharge in a void results in a deployment of charges on the surface S of 
the void. The surface-charge density U will attain such values that the 
electric field within the void will reduce until the discharge is quenched. 
Since the detection of partial discharges often refers to signals which are 
manifest at the terminal electrode we can leave out the subscripts in the 
following discussion. The resulting induced-charge q on this terminal electrode 
is. in view of equation ( 6 ) .  given by 

q = -ss XadS . 
s 

The dimensions of the void are normally small relative to the distance to the 
electrode, and the nett charge contained within the void will remain zero. This 
means that the charges which are deposited on the wall S of the void can be 
considered, to a first approximation, as an electric dipole configuration with 
the dipole moment 

where is a radius vector which locates the position of the surface element 
dS. The induced-charge which arises from this dipole is given by, see equation 
(15). 

+ 
q - -p-gradX . ( 4 0 )  

In general the gradient of X can be determined only in such cases where the 
location and the geometrical form of the void are known. This difficulty can to 
some extent be circumvented by replacing X with the value which the A- function 
would attain if we assume that the entire insulating system is completely free 
from any voids. Let A0 denote this idealized function. The gradients of X and 
XO are connected by 

gradX = h gradAO . (41) 

If the application is restricted to simple geometries. such as spheroids, we 
can consider the parameter h to be a scalar. Based on the mathematical 
analogies between the A-function and the electrostatic field it is easily seen 
that 
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( 4 2 )  

where er is the relative permittivity of the ambient dielectric. The lower 
limit applies to voids which are very prolate with respect to the direction of 
the applied electric field. The upper limit is approached for a very oblate 
void. Introducing XO leads to the following expression for the induced charge 

An assessment of the dipole moment requires a knowledge of the shape and 
location of the void. The nature of the gas within the void must also be known. 
A quantitative analysis related to ellipsoidal voids has been given by Crichton 
et al. [ 4 ] .  

All the required data will not be available in connection with partial 
discharge testing of commercial high voltage equipment. The dipole moment and 
the parameter h will, however, remain constant if we consider discharges in a 
number of voids of fixed volume and form containing the same gas, but placed at 
different locations within the insulating system. The induced- charge will in 
such cases vary with the location of the void in the same way as the gradient 
of Xo or, in view of the analogy with the electrostatic field, as indicated by 
the variation of the electric field strength for the idealized void-free 
system. 

TRANSIENTS RELATED TO INDUCED-CHARGES 

Although the observable transients are inherently related to the induced- 
charges, the properties which primarily are measured are transients in the 
applied-voltage and current-pulses in the lead to the terminal electrode. The 
relationship between these properties and the induced-charge can be found in 
the following manner. Just prior to the first discharge the potential of the 
electrode is U and the associated charge on the electrode is Q. We compare this 
with the situation immediately after the discharge is quenched. The potential 
has now dropped to U - AU and the charge on the electrode has become Q t AQ, 
where A Q  is the charge transferred to the electrode from the external source. 
Green's reciprocal theorem then yields 

where V is the scalar potential at the surface element dS for the discharge- 
free situation. Since V - X U i n  consequence of equations (11) and (12). and Q - 
CU, where C is the capacitance of the system, we obtain 

-8s XadS - CAU t AQ 
s 

( 4 5 )  

or 

q - C A U t  A Q .  ( 4 6 )  

If the impedance of the circuit is large for the current which is associated 
with the discharge, then CAU can be much larger then AQ. The induced-charge is 
then given by approximately 

q - m u .  (47) 

It should be emphasized that the capacitance of the system is not affected by 
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DISCHARGE PHENOMENA IN VOIDS FILLED WITH FIBROUS MATERIALS 

P.H.F. Morshuis, F.H. Kreuger 

ABSTRACT 

Until1 now paper 3-phase belt type cables were succesfully used for 
voltages upto 20 kV in great parts of the world. Replacement of 
paper by extruded insulation has been unsuccesfull and service 
voltages no higher than 5 kV can be applied because of the large 
discharges and uncontrolled field in the interstices at the core 
and the belt. Belt-type cables remained paper-insulated for that 
reason. 

A breakthrough has been obtained when a non-woven fibrous tape was 
applied to the cores to improve the longitudinal water tightness. 
As these tapes are very poor dielectrics, with low breakdown 
stress, it was expected that the breakdown tests would be impaired. 
At the contrary, the life expectancy was raised from less than 10 
years to more than 30 years at 10 kV. Further study revealed that 
this dielectric improvement was caused by a considerable reduction 
of the discharges in the interstices of the cable: reductions of 
several hundred times were measured. 

INTRODUCTION 

To obtain a waterstop in the longitudinal direction of a 3-phase 
belted cable, a thin non-woven tape was applied to the core 
insulation and to the interstices between the belt insulation and 
the core insulation (Figure l), Kreuger, Morshuis et al. [l]. The 
discharge diagram of this cable and a non-taped cable are shown in 
Figure 2 .  The research on the discharge mechanism of voids filled 
with a nonwoven, fibrous tape was initiated by the discharge 
limiting effect of the tape in the cable and by the fact that the 
cable life was significantly increased. 

To study the discharge mechanism of these taped cables a model was 
built that represented the interstices in the cable. 

EXPERIMENTAL METHOD 

The testcircuit for measuring partial discharges consists of a 50 
Hz high voltage source that can deliver a programmable number of 
half or whole 50 Hz periods. This set-up makes it possible to study 
subsequent discharges or Lichtenberg figures during specific time 
intervals. A balanced discharge detection system is used (Figure 3 )  
combined with a storage facility. Lichtenberg figures can be 

P.H.F. Morshuis is with the High Voltage Laboratory of the 
Technical University of Delft, The Netherlands. 

F.H. Kreuger is professor of High Voltage Technology at the 
Technical University of Delft, The Netherlands. 
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not prohibit a sound qualitative assessment of the insulation to be made on the 
basis of such measurements. 

CONCLUSION 

A correct interpretation of partial-discharge transients can be attained only 
through the concept of induced-charge. The application of this concept has 
enabled a partial-discharge theory to be developed through which the influence 
of relevant void parameters can be assessed in a correct way. In contrast, the 
widely adopted abc-capacitance model does not allow this insight to be 
achieved. In addition, the abc-model is based on an erroneous application of 
the concept of capacitance, and, although this simple approach can be a useful 
tool when discussing measuring techniques, it may lead to quite incorrect 
conclusions. 
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