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A New Approach to Optimal Cell Synthesis 

J a n  Madsen 

Designcenter of Electronics Institute 
Technical University of Denmark 

DK2800 Lyngby, Denmark 

Abstract 

This paper presents a set of algorithms for optimal layout gen- 
eration of CMOS complex gates. The algorithms are able to 
handle global physical constraints, such as pin placement, and 
to capture timing aspects. Results show that this new approach 
provides better solutions in area and speed compared t o  other 
methods. The algorithms have been implemented in a cell com- 
piler (CELLO) working in an  experimental silicon compiler en- 
vironment. 

1 Introduction 
Cell compilers, which translate a behavioral cell description into 
mask layout, makes it possible t o  deal with much larger “cell 
libraries” than the usual standard cell approach, by replacing 
many primitive gates, such as NAND and NOR gates, with a 
single complez gate [8]. This method reduces layout area and 
improves performance. 

Algorithms pioneered by Uehara and vancleemput [SI, who 
introduced the idea of Euler paths and dual trails to obtain a 
layout in the line-of-diffusion layout style, have concentrated on 
specifying a graph theoretical model of the problem and finding 
an optimal solution. [5] generalized the work of [8] and proposed 
an optimal method based upon the same cell model. However 
they did not address the problem of reordering transistors in 
the netlist, which may be a considerable limitation as the order 
influences area as well as electrical performance. [3] propose an 
algorithm, which does not restrict transistor pairs to be aligned. 
Though this might have some advantages when trying to chain 
different cells, the cell height will increase due to a more complex 
routing within the cell. [2] propose an algorithm based upon 
the delayed binding concept, which produces a minimum width 
layout, i.e. an optimal transistor ordering. But as will be shown 
in the next section, minimum width does not imply minimum 
area. Common to these algorithms is, that an optimal solution 
is the one giving the smallest possible cell layout area, i.e. a local 
optimum. 

If, however, a global optimal solution is to be realized, global 
constraints have to be taken into account, e.g. the pin placement. 

So in order to fully utilize the flexibility of the cell compiler 
concept, i t  should be possible to handle pin placement as a con- 
straint. 

This paper presents a set of algorithms able to handle a con- 
strained pin placement for global optimization and still produce 
local optimal cell layout if possible. 

2 General Design Aspects 

Using the line-of-diffusion layout style [SI, where physically adja- 
cent transistors may share a common diffusion area, an optimal 
transistor ordering will maximize the number of shareable diffu- 
sion areas and minimize the number of diffusion gaps. 

However, a given transistor circuit might have several opti- 
mal orderings, all giving a minimal-width layout, but resulting 
in different heights. Figure 1 shows the layout of three different 
orderings of the same transistor circuit. Comparing the layout 
areas, it  is obvious that an optimal ordering does not necessary 
lead t o  an area-optimal layout. Further, the choice of order- 
ing significantly influences the circuit performance (i.e. speed) as 
shown in Table 1, where the worst case propagation delays for 
the three circuits in Figure 1 are listed. 

b 

C d 

Figure 1: The effect of transistor ordering on layout area: a) 
transistor circuit; b) order: a b d c; c) order: d c a b; d) order: 
b d c a .  

I Delay l*l 
t p d ~ + ~  I 1.60 I 1.66 I 1.76 
k w - r ,  I 0.68 I 0.73 I 0.75 

Table 1: Worst case propagation delay (ns) for the circuits from 
Figure 1. 

In the search for an optimal ordering, the delayed binding 
concept is often used, [2]. When using this concept, the transistor 
circuit netlist is regarded as changeable, as long as the function 
realized by the netlist is not changed. Though the concept of 
delayed binding may be efficient, one should be able to distinguish 
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between fixed and cha.ngeable netlists, as the ordering also influ- 
ences the circuit performance. Thus the netlist will be regarded 
a.s fixed if pre-timing optimization has been performed. Simula- 
tions [4] show that for a medium size complex gate (cf. Figure 3) 
a worst ca.se delay gain of 22% may be obtained by choosing the 
right netlist configuration. 

The mathematical model should be able to reflect these tim- 
ing and area aspects, in order t o  produce a physically correct 
solution. 

3 Model and Problem Formulation 
A CMOS transistor circuit a t  the cell level is composed of a pull- 
up and a pull-down network. Each of these two networks can 
be represented by an undirected two-terminal multigraph Q, in 
which an edge ( e )  represents the drain/source connection/path 
of a transistor and a vertex (w) the net connecting several tran- 
sistors. Each edge is indexed by the gate net (signal) of the 
corresponding transistor. The two terminals of the multigraph 
represents the power and output nets. 

A transistor ordering, i.e. a path P, which is an alternating 
sequence of vertices and edges, in which the edges are unique, 
found by the use of the eulerpath concept, corresponds to un- 
folding the pull-up and pull-down graphs. Consequently some of 
the vertices are split into one or more vertices, which has to be 
connected by internal routing. The way the graph is unfolded 
and the endpoints of the path are chosen, influences the final 
layout as shown in Figure 1. 

In order to deal with this, all vertices are classified into one 
of four categories reflecting the characteristics of the layout. A 
vertex in a two-terminal multigraph is either a terminal-vertex 
( T )  or an internal-vertex (I). If a terminal vertex is connected to  
the power supply, i t  is classified as a power-terminal ( P ) ,  and if 
it is connected to the output, it is classified as an output-terminal 
(0). An internal vertex w; is classified as either a single-vertex 
(S) or a multiple-vertex (M), determined by the valence 'U, of 
the vertex w; being equal to or greater than 2. 

4 Algorithms 
To solve the problems described above, a set of algorithms work- 
ing on the two-terminal multigraph Q is formulated. 

E u l e r P a t  hExis t  

This algorithm examines eulerpath existency based on the theo- 
rem: 

T h e o r e m  1 A graph Q has an eulerpath ifl it is connected and 
only two vertices (or no vertex) in Q have odd valence. The 
path P {VI, e l ,  vz, e 2 , .  . . , v, ,e, ,  w,+~}  is called an open (closed) 
eulerpath in Q if 01 # w,+1 (q = vn+l). 

F indSubGraphs  

This algorithm finds the complete set, of two-terminal se- 
rial/parallel subgraphs Gsub in Q. Subgraphs are used when re- 
ordering the edges in the graph to meet given constraints. The 
set of subgraphs is deduced by the use of an recursive graph re- 
duction procedure, in which a number of edges are transformed 
into a single edge representing the subgraph. In each reduction 
step there are two types of two-terminal subgraphs, serial (6:ub), 
and parallel ( Q f u b ) ,  according to the connection of the edges. 

A first-order subgraph is a subgraph not containing any other 
subgraph, i.e. only edges corresponding to  transistors. 

4.1 Constrainted Pin Placement 
If the pin placement is given as a constraint, then depending 
on whether or not the netlist is fixed, two algorithms can be 
formulated, which traverse the graphs in order t o  match the pin 
placement Pp;, t o  one of the possible eulerpaths. 

F indSpeci f icEulerPa th  

This algorithm traverses a fixed graph following the path Pp;, 
given by the pin placement. In this case a match of the path 
to  one of the possible eulerpaths cannot be guaranteed. So if a 
match is not possible, one or more diffusion gaps must be ac- 
cepted or the given pin placement must be ignored. 

C hangeEu le rPa t  h 

This algorithm performs eulerpath preserving changes on the 
graph in order t o  match a given path PPI,. The algorithm tra- 
verses the graph as in FindSpecificEulerPath.  When the next 
edge from the pin placement can not be reached directly, an edge 
interchange has t o  take place before the path trace can continue. 
There are two possible interchanges, which do not change the 
functionality: Edge interchange within a serial two-terminal sub- 
graph Qiub and a two-terminal subgraph swap defined as: 

Gsub(vt,Vj) * Qsub(vj,%) (1) 

In the first case, let Stemp be the set of edges connected to  the 
previous edge e , .  If the next edge e,+] belongs to  a serial two- 
terminal subgraph of Q, which is connected to e , ,  that  is 

3em E Stemp,%,b E Sg,,, : { e m , e , + i )  C G L  (2) 

then the edge e,+] and e,,, are interchanged such that e,+l will 
follow the previous edge e,  as required by the pin placement. 

In the second case where the next edge does not belong t o  
a serial-subgraph, the problem is far more complicated. First a 
possible candidate for a subgraph swap has to  be found. De- 
pending on whether the path traced so far p p a t h  equals one of 
the subgraphs or not, there exists two possible ways of choosing 
a candidate. Let P p a t h  = {. . . , e , }  and Pp,, = {. . . , e , , e , + i , .  . .}, 
where the edges are defined as e,(w,, w,) and et+l(wk, vi), and let 

be the total set of subgraphs in G, then if 

%sub(V,,wj) E : (3) 
(Qsub n P p a i h  = ?path v Qsub n P p a t h  = 0) A 

{ W ~ , V ~ )  n {Q,VI) # 0 A {v1,wj) n { w n , w m 1  # 0 
Qsub is a possible candidate for a subgraph swap. The first term 
selects the subgraph and ensures that the part of the graph whlch 
already has been traced will not be changed by the swap, while 
the second term ensures that e, and e,+l becomes neighbouring 
edges after the swap. Since the swap should preserve the exis- 
tence of an eulerpath, it will only be accepted if 

where zSubvj denotes the number of edges connected to  vertex v j ,  

which belongs to  the subgraph Qsub, and f ( x )  is 1 if z is odd'and 0 
if x is even. Figure 2 illustrates the two possible situations which 
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Figure 2: Subgraph swap acceptance; a) f ( z S u b v , )  = f ( z S u b v j ) ;  
b) f ( ; s"bv4  # J(;a"b%) A f(;\gaubv') = j(; \g'"*%). 

lead to swap acceptance. If no swap is accepted, then either the 
pin placement has t o  be ignored (terminating the algorithm) or 
a diffusion gap has to be inserted. If no candidate is found, a 
series of swaps denoted as a multi-swap is performed. A multi- 
swap is aimed at bringing e,  and e,+l together. While the swap 
acceptance is identical with a normal swap, only subgraphs where 
Bsub n Ppoth = 8 are choosen as candidates, as the traced path 
would otherwise be changed during the swaps. 

Since it is possible to control the properties of the vertices 
while rearranging the graph, the algorithm can be used to change 
the endpoint vertices (i.e. the second type of acceptance) in order 
to either obtain dual eulerpaths if one does not exist, or to influ- 
ence timing performance. Further the algorithm can be used to 
redistribute parasitic capacitances in order t o  inprove timing per- 
formance, i.e. moving high valenced vertices further away from 
the output-terminal. 

4.2 No Constrainted Pin Placement 
When no pin placement is given the objective is t o  obtain an 
area optimal layout, taking into account timing aspects whenever 
possible. 

MakeEulerPat hExist 
This algorithm is a special case of ChangeEulerPath, which 
performs function preserving changes on the graph in order t o  
achieve eulerpath existency. All subgraphs Gsub(v;, v j )  are pos- 
sible candidates for a swap. The swap is only performed if the 
total number of odd valenced vertices are reduced, i.e. if 

When all subgraphs have been examined, then if a t  most two 
vertices have odd valence, the graph has been transformed into 
having an eulerpath. 

FindEulerPath 
This algorithm finds a dual eulerpath in.the two dual graphs 
4 P  and 8" (index p for parallel and s for serial) if such exist. 
Depending on whether or not the netlist is fixed, the algorithm 
is allowed t o  rearrange transistors in the two graphs in order to 
obtain an optimal solution. 

First consider the case of a changeable netlist. In a parallel 
graph the branch to traverse can be selected arbitrarily, the se- 
lection corresponds to choose a certain order of elements in the 
corresponding serial graph. In the case of a changeable netlist 
the problem can be formulated as to select an order in every se- 
rial subgraph which leads to the existency of a dual eulerpath 
([6]). Consequently the algorithm starts in the parallel graph G P ,  
in order to delay the binding of the order of the serial graph. 

To reduce the problem size all first-order subgraphs are re- 
duced prior to the path tracing procedure. In G P  odd parallel 
and all serial subgraphs are substituted with a single edge, while 
even parallel subgraphs are removed. In 9" all first order sub- 
graphs are substituted with single edges. Even serial subgraphs 
corresponding to even parallel subgraphs in Q' are marked. The 
reduced graphs of B P  and P are denoted RP and R" respectively. 

Two essential properties influence the solution; the choice of 
endpoints in a closed eulerpath, and a t  which of the two possible 
vertices in RP t o  resubstitute a even parallel subgraph. Other 
algorithms [2] seems t o  make an arbitrary choice, but as shown 
in Figure 1, the choice may influence both area and electrical 
performance. Therefore a set of rules is proposed for an optimal 
choice of the endpoint in a closed path. In order of preference: 

R u l e  1: Terminal-vertex. Prefer power-terminal to output-ter- 
minal. A terminal vertex (especially the power-terminal) 
will very likely require one routing track. Consequently 
the splitting of such a vertex will not influence the layout 
area. Further, the extra amount of diffusion area from the 
vertex splitting will have the least influence on the electrical 
performance when added to a power-terminal, while having 
significant influence when added to a output-terminal (the 
most sensitive vertex). 

Rule 2: Internal-vertex. Always choose a multiple-vertex. If 
a single-vertex is chosen, cell height is increased since the 
splitting of a single-vertex causes two tracks t o  be used 
because of power and output obstructions (cf. Figure 1). 
Also, the electrical performance is influenced as the para- 
sitic capacitance is significantly increased. 

Based upon the theorem: 

Theorem 2 Having two dual graphs G P  and G", a necessary con- 
dition for the ezistence of a dual eulerpath is that the same edges 
can be reached from endpoints in both G P  and Gs. 
it  is possible t o  decide whether or not there is a chance of find- 
ing a dual eulerpath. If not, and the netlist is changeable, end- 
points may be changed to meet this condition as described in 
ChangeEulerPat h. 

The algorithm first finds all possible paths between the two 
endpoints in RP. This number is usually very limited and heuris- 
tics are used to remove unfeasible paths. In order to decide a t  
which of the possible vertices to resubstitute even parallel sub- 
graphs, the dual graph (R') is traversed for each of the feasi- 
ble paths (PP) from RP. When the next edge from PP can- 
not be reached directly, either a subgraph swap as described 
in ChangeEulerPath has to take place or one of the special 
marked edges has t o  be used. Using one of the special marked 
edges corresponds to choose the vertex at which to resubstitute 
a even parallel subgraph in G P .  If neither of the two situations 
leads to a solution, the next path is tried. 

In the case of a fixed netlist swaps are not allowed. Each 
path is completly traced and whenever the next edge cannot be 
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reached directly or by a special marked edge, a gap is inserted. 
Finally the best solution is chosen. 

Once a solution has been found all first-order subgraphs can 
be resubstituted. If possible, high valenced vertices are placed 
away from the output vertex in order to  improve performance. 

5 Results 
The algorithms described in this paper have been used to  imple- 
ment a cell compiler (CELLO) working in the open experimental 
silicon compiler environment CATOE'  [l]. C E L L O  produces 
a symbolic layout, which is then transformed into mask layout 
by a compactor. Figure 3 shows C E L L O  generated layout af- 
ter compaction, together with the same circuit realized by two 
other methods [8] and [2]. In order to  make this comparison, the 
same physical interpretation of the paths was used to generate 
the layouts for the different algorithms. Table 2 lists the area 
parameters for different layouts, which shows that the new ap- 
proach presented in this paper performs better than [8] and [2]. 
Circuit C3 corresponds to  the layouts of Figure 3. 

The first test chip generated by means of the CATOEsys tem 
has been submitted for fabrication in a 2p n-well CMOS process'. 
Cell synthesis was performed using CELLO.  Figure 4 shows a 
section of 

. ... .. . . 
' the chip core. 

C 

b 

...... 

d 
Figure 3: Layout results using different algorithms; a)  transistor 
circuit; b) [8]; c) [2]; d) CELLO. 

c4 

Table 2: Width and height of layouts generated by 3 different 
algorithms . 

'System developed by the CATOEgroup (Computer Aided Tool 

'The chip i s  produced under the Nordic brokerage service NORCHIP 
Engineering) at Electronics Institute. 

Figure 4: Section of the first chip generated by the CATOE- 
system. The individual cells are generated from netlist descrip- 
tions by CELLO.  

6 Conclusion 

A new approach for optimal layout generation of CMOS complex 
gates has been presented. This approach handles global con- 
straints such as pin placement, given by a pre-place and route 
step, and timing considerations, by distinguishing between fixed 
and changeable netlists. Further, the approach has been used to  
implement a cell compiler CELLO,  which provides better solu- 
tions than previous algorithms. 
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