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NEW RESULTS IN DISCRETE-TIME LOOP TRANSFER RECOVERY

Hans Henrik Niemann and Per Sggaard-Andersen

Control Engineering Institute, Technical University of Denmark,

Building 424,

ABSTRACT

For discrete-time compensators incorporating
prediction observers asymptotic loop transfer
recovery is pot feasible. Instead loop transfer
recovery objectives must be satisfied via exact
recovery techniques. In this note the model-
based compensators which achieves exact recovery
are parametrized in terms of the system zeros
and the corresponding zero-directions. Full-
order as well as minimal-order observers are
treated. Further it is shown how exact recovery
is also applicable to non-minimum phase plants,
In this case the achievable performance is
parameterized explicitly.

1 INTRODUCTION

In recent years the LQG6/LTR feedback design
methodology for robust model-based compensation
has received much attention [see e.g. 1-61. This
procedure works for continuous-time systems -
and it is always effective for minimum-phase
plants. Unfortunately a similar procedure is not
generally feasible in discrete-time. If
filtering observers are used asymptotic recovery
(the LTR step) is often possible [11].
However,the application of filtering observers
require that the processing time of computing
the control signal is negligible in comparison
to the sampling interval. Very often such an
assumption cannot be satisfied in practice, and
prediction observers must be used. For compen-
sators based on prediction observers, however,
the asymptotic procedures will not be effective,
since in general the difference between a full-
state loop transfer (target design) and the
full asymptotic loop transfer remains finite
{4,11). A detailed discussion of the mechanisms
behind this fact is given in [41.

Loop transfer recovery is still possible,
however ,but different methods must be applied.
In [4,11] such methods are discussed - and
referred to as exact loop transfer recavery. In
[4]) the conditions for exact recovery for full-
order observers were outlined, and some
preliminary design considerations for minimum-
phase continuous-time systems based on full-
order observers were presented in [10]. In this
note a more general treatment of exact recovery
in discrete-time is provided. Exact recovery for
minimum-phase as well as non-minimum phase
plants based on full-order observers are
discussed. Further results on exact recovery
based on minimal-order observers are presented,
and it is shown that in certain - common - cases
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very powerful designs procedures are possible.
This is the first treatment of LTR for minimal-
order observers in discrete-time. Earlier
studies [16,17] were in continuous-time, but due
to the same problems as for full-order observers
the continuous-time methods cannot be generali-
zed to discrete-time. Hence new methods based

on exact recovery must be developed. Notice

that the issue of recovery for non-minimum phase
is particulary relevant in discrete-time since
the sampling proces often produces zeros outside
the unit-circle [13). An advantage of using the
exact recovery concepts presented here is that
the controllers are of finite gains, whereas

the usual continuous-time LQG/LTR method often
produces high-gain controllers.

The paper is organized as follows. In § 2-4 the
full-order observer case is treated, and in §
5-7 minimal-order observer results are presented
follow in § 8 by some examples.

2 EXACT LOOP TRANSFER RECOVERY

In the following square discrete-time minimum
phase systems S(A,8,C) are considered. It will
be assumed that the model is minimal. The plant
transfer matrix 6{z) and the model-based
compensator H(z) are given

Glz) = Ce(z)8, dim G{2) = mxm

#z) = (21 - &) dim #62) = n x n
-1

H{z) = K{zI - A + BK « FC} F,dim H(z}) = m xm

{2-1)

Here K is the full-state feedback gain and F is
the full-order observer-gain. Let the number of
transmission zeros be p. In order to formulate
the loop-shape robustness constraints the
uncertainties (disturbances,noise and model-
ling errors) are reflected to the plant input
mode [4,14]. The target loop transfer is then
the full-state loop transfer K¢B and the full
loop transfer is H6 [3,5). The difference be-
tween these two indicators is defined as the
loop recovery error EI(z):

EI(Z) = Ke(z)B - H(z)6(2) (2-2)

In order to have exact recovery it is required
that E_(z) = 0 for all z. For square systems
6oodman [4] has shown that

E (2) = M (21 + uI(z))'1(1 + Ké(z)B)  (2-3)

Mitz) = K(zl - A+ Fer s
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It is, however, straightforward to derive the
same results for non-square systems as well., Now
let HI(z) be rewritten in the residual form:

T
n K v wi 8 (2-4)
HI(z) H L
i=1 z - Ai

T
where v. and w., are right and left eigenvectors
associa%ed with the eigenvalue Ai of A - FC. It
is easy to show that

El(z) = 0 iff
Hl(zl = 0 iff {2-5a,b,c)
Kv, = 0 or wTB = 08, i=1,...,n

i i

if A - FC is non-defective. The latter
formulation of the exact recovery condition is
suitable deriving the associated compensators.

3 SOLUTION OF THE EXACT LTR PROBLEM

fFrom eigenstructure ass*gnnont it is known that
the left eigenvectors w. with the eigenvalue Ai
of A-FC are given by [97:

AT - A
[ v, zT,] [ * ] s 0,i=1,..,n
i i -C

F = - 2, {3-1})

T
The condition wis = 0 from (2-5) imply that

. - A B

[w 27 ] [ Hio! ] s 0 (3-2)
i0 “io - ¢ 0

Haximally p eigenvectors uT can satisfy this

condition, if A _ is soloc% d as a transmission

zero of S(A.R,C%oltl. Let these p eigenvalues/-

vectors Dbe selected from (3-2),it i3 then

straightforward to see that F is parameterized

by:

T -1 zT
¥ 1
F = - . : {3-3)
T ‘1
“n Zn
T T T .
zi s zia ' 'i . wio i=1,...,p
and (A.,zT, izpet,...,n) are free design

p rametort, since w, is determined by A, and
z.. The remaining n-p conditions in (2-5¢)
mist be satisfied by selecting K suitably.
Condition (2-Sc) imply

eereeaV = (] {3-4)
K[v’. an {Q 01
with dim Q= m x p but otherwise arbitrary. Now
T
¥10
k=12 0iv's o): t=0r {3-5)
T
"pd

with dim ' = p_x n. T consists of the left
eigenvectors w; comstrained in (3-2}),and is
thus a matrix og fixed elements. £q (3-3) and
{3-5) are therefore simple parameterizations of
the controller matrices which achieves exact
recovery,

A few important consequences of exact LTR are
discussed next:

* The parameterization of the state-feedback
imply that K must be selected as an output
feadback controller, where Q is the free
parameter output feedback matrix. I is the
equivalent output matrix with p independent
colums. Since p< n-m ,a= m+p-1 (< n)
eigenvalues can be assigned for such a pro-
blem [7). Consequently all of the close-loop
eigenvalues cannot be assigned freely, and no
stability guarantees are available. However,
in square discrete-time systems the rank{CB)
is often maximal. This ensures that 6{z) has
the maximum possible number of finite zeros.
Which in turn will result in maximal freedom
‘in selection of K.
The selection of F is only constrained by eq.
(3-3) and stability can always be achived.
Good input sensitivity and stability for plant
input modelling errors can only be achived if
psm. If rank(K]1< m {(p<m) the target loop
transfer KéB is rank defective and loop-
shaping is not feasible.
* Dual results apply for the plant output loop
breaking point.
* The structure of the controller H{z) can be
studied by looking at the system matrix for
the controller PH:

1z ~ A+ BK «+ FC F
P" = [ K 0 ] (3-6)

»

»

By us199 the transformation matrix T =
diag{vV ,1).eq.(3-6) can be transformed into:

1z - A 0 -2,
Py * 12 1z - Ao -2,
9 ] 0

where ¥, Z and Z_ has full rank. A are the
plant zeros and A"_ are the ronaingng n-p
poles of A - FC as3ibned in eq. (3-3). Notice
that A are the poles of Hiz} and A are
outputPdecoupling zeros of H(z). HeRcB the
resulting loop transfer HG will have n poles.

* 1t has been assumed that S(A,8,C) is minimal.
The results could be extended to non-mimimal
systems as well - although this issue is not
pursued here,.

* Further the treatment is also possible for
non-square systems. Sinceé this is strainht-
forward no details are given here.

* Notice that the exact recovery controllers
outlined above are of finite gains, whereas
the continuous-time LOG/LTR procedures usually
produceés a high-gain controller.

4 NON-MINIMUM-PHASE SYSTEMS

Sampling of a continuous-time system will often
result in a non-minimum phase discrete-time
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system [13]. If the LTR results from section 3
are used on a non-minimum phase system G(z), the
resulting controller will be unstable. It
is,however,still possible to achieve LTR for
non-minimum phase systems. In order to
facilitate exact recovery for non-minimum phase
plants note, that in selecting F only a subset j
of the eigenvectors constrained by eq. (3-2)
need to be chosen. In doing this, however,the
dimension of Q, the free parameters of K,is
reduced to m x j. Consequently such selection
are only advisible for non-minimum phase
systems. If only the plant’'s q minimum phase
Zeros are used in eq. {3-2), the equations for F
and K become:

J10r ST
1 1
F=- | : (4-1)
WT ZT
n n
2 =2 wl Wi
i T %0 M ig *2% tee-e9
J
_ 10
K = 2 i
q0

= Qr
where dim @ = m x q.

Some of the consequences of exact LTR for non-
minimum phase plants are:

* The following equation will be satisfied
K¢(z)B = H{z)6({z) (4-2)

The non-minimum zeros of G are not cancelled
out on the right hand side. Hence HGE and K¢B
are both non-minimum phase. This in turn
limits the achievable performance [12],and
“good” loop-shapes for K¢B are, of course,
difficult to achive., Notice how the achievable
loop-shapes - under the exact recovery
constraint - are parameterized explicitly in
eq. (4-1) by the constraints of K. This
results is in agreement with the results in
[18].

* The freedom in the selection of K will
decrease by the number of non-minimum phase
zeros in 6(z).

t The consequences of exact LTR from section 3
are still valid.

§ MINIMAL ORDER OBSERVERS

In the following the discrete-time system
S{A,B,C) will be partitioned as:

.. Ay A g . B, ]
Ay App |} nem By j L oo
L e I e 3
m n-m
¢ = I1 01 (5-1)
-, -
m n-m

There is no loss of generality in assuming that
Cs [I. 0] since any system can be transformed

into this form. The system is assumen to pe
minimum-phase, with p zeros.The minimal order
observer for {5-1) is {[15]:

z{k+1) = Dz(k} % Gulk) + Ey(k)

X (k) 1 o yik)
xik) = ! : m
x, (k) v, 11| zte
with {5-2)
D . - VA
22 212
6 < B, - VB
3 = A - VA +A NV -VAY
12 211 ez 2 212 2

and vz is the observer gain matrix.

The feedback law is:

E = - - 5-
ulk) Kx (k) K1x1(k) szz(k) (5-3)

It is assumed that (C,A) is observable, which
implies that (A,z.Azz) is observable [15].

It is known that the separation principle
applies for this feedback system. Hence
stability is achieved by making the full-state
and the minimal-order observer stable. The
condition for LTR for the minimal-order observer
based design is [16,17]}:

-1
Vz(IOA‘z¢22Vz) A12¢22(B2 - VzB1) = B2 - VZB1

(5-4)
where
-1
022 = (1z - AZZ)

This condition is similar to the continuous-time
version, but the design results from [16,17] can
not be generalized, and new methods for utilis-
ing (5-4) in discrete-time are derived in § 6.

If (5-4) is satisfied then:

-1 -1
KZ(O22 » V2A12| (Bz - vzai) = 0 (5-5)

is also satisfied [16,17]. Eq. (5-5) is a
necessary and sufficient condition for LTR with
minimal-order observers. If (5-4) is satisfied
the full-state loop transfer K¢B and the
minimal-order observer based loop transfer are
identical.

Let (5-5) be rewitten in the residual form:

T
n-m sziwi(az - vza‘)

(5-6)
1 zZ - A,
i

where v. and wT are right and left eigenvectors
associated witﬁ the eigenvalue A. of

A - va12 and from eigenstructuTe assignment
[3} it "is easily found that

T T .
v, = zi‘12’22(ki) , i=1...,n-m (5-7)
and
w?V = - zT (5-8)
12 i
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It is easy to show that eq. (5-8) is satisfied
if:

T R
K.,v. = 0 or wi(Bz - v281) = 0, i=1,...,n-m

(5-9)
The condition implies 3 different design cases
depending on the rank of B‘.

6 LTR SOLUTIONS FOR MININAL ORDER OBSERVERS

Case 1 r(B1) =g

The recovery condition (5-9) now becomes:

xzvi =0 or wiaz = 8 ,1i=1,...,n-m {6-1)
The second condition in {6-1) together with
{5-7) result in:

T
zl°A12022(Ainle = 0, i=z1,...,n-m (6-2)

This condition can be satisfied if A _ is
selected as the transmission zeros o* S(A,8,C),
see [6). Eq. (6-2) can be satisfied for
maximally p eigenvalues A _ [8). Let these
eigenvalues be selected riom (6-2), it is then
straightforward to see that V_ is parameterized

by: 2
-1
WT ZT
1 1 T
V2 =z - : : = -WZ (6-3)
i ‘T
w F 4
n-m n-m

T .

2% Zipr W3 T Zighyataa!Aig! E FTeeeewp
and A, z:.i = p+d,...,n-M are free design
parameters. The first equation in (6-1)
must be satisfied for the remaining n-m-p
conditions by selecting Kz as:

Ki{v,....v. 1 =« (2 8] (6-4)
2 1 n-m
with dim Q = m x p but otherwise arbitrary.
Now
-1

Kz : (@ 6]V

s Q ' = 9f (6-5)

with dim [ 2 p x {(n-m). " consists of the left
eigenvectors "0 constrained in (6-2).

Case 2. r(B‘) z m

The condition r{8 } = m indicate that the system
S{A,B,C) has p=n-m zeros. The recovery
conditions can now be satisfied only by V

‘Z is free to design.

The recovery condition is:

T
-V , iz 1, ....,0- -
wi(nz 2313 = 8, i 1 n-@ {6-6)

This equation can be rewritten as (by using eqs.
{5-7) and {5-8)):
T

z, 0( 12 ZZ(ALD)BZ . 8‘) =0 {6-7)

The n-m equations can be satisfied by selecting

Aio as the zeros of the system S(A,B,C),see [6].

The solution is:

wT - zT
1 1 -1
V., = = : . = -W 2
2 w 2! 16-8)
n-m n-m
T T T T
with wia z. °A12022lA ) and zi ] zio.

izt,....n-m

Notice that V_ is uniquely determined. A

different exprfession can be derived from (6-6):
-1

6-9
V2 : 3201 { )

Case 3. 0 < r(a') < =

The recovery condition (5-9) is:
T .
v, = -V e, P T ]
K.v.= 0 or wi(a2 2B‘) = i=1

i
{6-10)
The second recovery condition can again be
rewritten as:

(A ¢, (A _)B

128225018, + &) = O (6-11)

Maximally p, p <n-m, eigenvectors wl satisfy
this condition by selecting the eigenvalues Ai=
A.u as the zeros of the system S(A,B,C),and zI =
as the corresponding zerodirections ( see
[%?) The first equation in (8-10) must then
satisfy the remaining n-m-p conditions by
suitably selecting Kz

The solution in this case is similar to case 1.

'T -1 zT
1 1 -1
v = - . . = - W 2
? wl 2! (§-12)
n-m n-m
T T T .
with T, %2, 0 Wt zlo 12 22(A1g) , ist,...,p
'T
18
K = @0 : = QFT {6-13)
2 ‘7
-
p0

with dim " =z p x {n-m), dim Q = m x p but
otherwise arbitrary.

can be rewritten into a form which emphasizes
tﬁc fact that case 3 is inbetween case 1 and
case 2. To see this, we assume that 0 is
transformed into:

A [}

0 0
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where A is a diagonal matrix. The remaining n-m-p conditions in (6-10) must be

Let AIZ' Bz and V2 be partitioned as: satisfied by selecting Kz as before:

T
Ay ALY w

A = {6-14) 10
12 A122 I m - r(81) .

KZ = Q :T = QT (6-22)

w

= - 0

8, [ 821 B22 ] n-m P

with dim I = p x (n-m).
r(81) m-r(31)

A few important consequences of exact LTR for

VZ = [ v21 vzz ] n-m minimal-order observers are now discussed here:
a— — * If the system does not have any zeros, exact
r{B,) m-r(B ) recovery is still possible with the solution
1 1 K = 0, i.e, no feedback from the state
The second condition in (6-10)} can now be e%timates. However in square discrete-time
written as: system r(C8) is often maximal, which ensure
that r{B ) is maximal and that 6(z) has the
A0 maximum possible number of finite zeros,p=n-m.
Wil(B.. B..} - {V.. V.. 1:=0 In this special case exact LTR is possible
ittt T2z 21 22 o 0 only by selecting the observer gain V_. The
feedback gain K is free to choose, and it is
i=1,....,n-m (6-15) possible to use systematic design rules ( e.g.

LQG-designh ) for the K selection for stability

ecti v as: .
By sel ing 21 and loop-shape reqirements. This is a very

v - B A" (6-16) useful result for LTR design in discretg-time
21 21 systems because a full-state target design can
be recovered, without affecting this original
(6-15) will be reduced to: design,simply by choosing the minimal-order
T observer gain, whereas it is not possible with
w, B22 = 0, i=1,...,n-m (6-17) a full-order observer. Here the full-state

design is constrained. Note that by using a
minimal-order observer in compensators will

T
where the left eigenvectors w_ in (6-17} are . . - ;
1 require that the processing time of computing

given by: the control signal is negligible in compario-
WT . ZT A TN (6-18) son tg the.sampling‘interval. The processing
i i 122 22 i time in this case will, however, be reduced
- . -1 compared with the processing time when a
where 022(Ai) = (Iz - A22 ) filtering observer is used and therefore the
_ -1 minimal-order observer is more attractive than
and A = A - B_A A the filtering observer.
22 22 21 121 * The result in case 3 (6-21) is the general
T L es . result for exact recovery with minimal-order
w; B = 0 can 09 be sat1sf1eq for maximally p observer,since the solutizn constrains case 1
elgenvectors w, if A, = A _ in (6-18) are

and 2 as special cases.

* Good input sensitivity and stability robust-
ness for plant input modelling errors can
always be achived if the target loop K¢B has

T _ full rank. This is only guaranteed if p > m
z. A ¢ (A )B = 0, i=1,....p (6-19) in case 1 and 3. In case 2 K¢B has generi-

ip 12z 22 40 22 cally full rank, and therefore good feedback
L . . properties can be achieved.

Now it 1s‘stralghtforward to see that v22 is * Finally note that dual results for the plant

parameterized by: output cannot be invoked, due to the missing

duality of minimal-order observers.

selected as thé tran%mission zeros of
S(A ,Bz A )., which are equal to the

transmission zeros of S{A,B,C} [6].

wl 3 7 NON-MINIMUM-PHASE SYSTEMS
. ! _
vzz =T :T T ==W 'z {6-20) The results for LTR with minimal-order observers
w z o of § 6 were based on a minimum-phase assumption.
n-m n If this assumption is not valid some new results
T T can be obtained. In the following the tree usual
with 2. = zio cases will be discussed independently, but a
i T _ basic prerequisite will be the recovery
= i=t,..., conditions.
% 2022022 20! ¢ 27T P
. . -1
The resulting V2 is: Kz(lz - Azz + v2A12) (81 - vzaz) = 0 (7-1)
-1 -1
v = [ B_ A - W 2] {6-21) T
' n- K -
2 21 [ll Zviwi(81 vzaz\_ .
where -W 'Z is given in (8-20). i=1 z - A

2487
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where the symbols are defined in § 5,6.

Further let the number of plant zeros be p and
the number of minimum-phase zeros be q.

Case 1. r(B1) = 0
In this case the recovery condition becomes:
T
K,v. =0 orw. B, @0 ,i=1,....,n-m (7-2)
2'i i2

Due to the stability requirements only a subset
q_of the possible solutions to the condition

wiai = 0 can be selected, i.e. the q solutions:
zT A ¢ (A B = 0 {1-3)
i0 12 22 i0o 2
I A ] ¢t , i=1,......q
i0

where A_o are the zeros of S(A,B,C) - see [6].
i

The remaining n-m-gq conditions constrains K.
As in § ¢ the solution becomes:

-1

T ,T
* 1
vV, = : : (1-4)
2 T .7
wﬂ'. n-m
T T T T
wi s Zighiataathig) 0 F T %y eitee-d
T
K, = 0 : = OF
2 .
'qn

dim Q@ s mx g

Q is a matrix of free paranetefs. The
remaining n-m-q pairs | Ai . zi } are free
parameters.

Case 2,

Now the recovery condition becomes

r(B‘) = m

T
K.v.= 0 or wi(az - Vv_B8,} =0,iz1,..,n-m (7-5}

2i 21
As before only q solutions to the conditions
WI(.; = Vzbz) = 0 can be used, i.e.

A ¢ (A )8 )=0,i=1,...,q9
! 12 22( i0 2

FA_§ <1

(1-8)

and A__ is a zero of S(A,B,C) ( see (6] for
detailly.

The remaining n-m-q conditions must be satisfied
by selecting K_ appropriately. The expressions
for ¥, and K_ are similar to (7-4) with eq.
(T-G)ZsubstiEutod for eq. (7-3}.

Case 3,
In this case the recovery condition are as
(;-5). The q possible stable solutions to

w (B, -V D‘l are given by eq. (7-6). The

n-m-q constrains K, -~ and the expressions

and K, are similar“to eq. {7-4), with eq.

substituted for eq. (7-3).

0 < r(l1) <m

last
for v

(7-6)2

2488

A general comment for these results concerns the
selection of K,. In all three cases the matrix K
is not free to assign, hence stability-design
and loop-shape design are not as straightforward
as one would desire. Otherwise the comments from
§ 4 are also valid here. Notice again that the
achievable loop-shapes - subject to the exact
recovery constraint - are parameterized
explicitly in terms of K,i.e. the free parame-
ters Q and the left eigenvectors wiu(Kz) and K

8 EXAMPLES

x

Consider the plant

10 23 ) 1

2 + 0.8 + & s

G(s) =

108 s

Let the sampling time be 0.25 sec. The discrete-
time version €(z) then has zeros at:

z = 0.8825, z = - 0.2502, 2z = 3.3968

1 2 3
and G{z) is non-minimum phase. By applying the
exact recovery procedure for full-order
observers of § 3 the compensator becomes

wilz-2z) +wilz-2)
Hiz) . 1 2 2 1
{z - 21)(2 - zzl
Where w_and w_ are the 2 eslements of Q. The

resulting loop transfer is then:
K¢8 = Glz)H(2)

=z 0.019(203.3960)((w‘o vz)z-(w Z. +w z ))/d

12 21
Here d denotes the characteristic polynonium of
A.

As expected the non-minimum phase zero shows up
in K¢B. w, and w, are free design parameters
which determines the shape of K48 and stabili-
ty of the closed-loop system. Notice how the
performance for the non-minimum phase control-
loop is characterized directly by u1 and wz.

As the second example consider the plant:

[ 1.0044

-5.2447E-3 1.4029E-3 1.4436E-2
A= 5.1372€-5 1.000% 2.3995E-8 -5.6845E-1
-5.2161E-5 §5.5818€-3 9.9980E-1 2,2215E-2
|~1.7097E-4 -2.0729E-4 -1.2551E-7 9.8419E-1
3.5825E-3 -8.6189E-2 1.0 0
8 = §.9749€-4 2.4174E-5 cT= 0 1.0
=1.4399E-3 1.2011E-3 e 0
-3.4725€-3 -8.1578E-5 0 0

This is an example from [4] transformed into
form required for minimal-order observer design.
In [4) it was attempted to design a discrete
LAG/LTR regulator, but a finite recovery error
was obtained for all frequences. Here a minimal-
order observer will be applied. The system is
minimum-phase with zeros at (+0.99982, -
0.99468). The sampling-time is 0.01 sec.

A target feedback design is given by:

K = 3.3072E+2 1,.8503E+3 2.2942E+4 -9.2927E+3
“|-1.0656E+3 -4.2362E+3 -T.3194E+4 2.8251E+4
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A nominal observer is designed as V2 : - W 2
with eigenvalues at (5.32E-3, -l.&E-?).
A recovery trajectory is gefined from V to the
exact LTR value vV, = B_B by moving the
eigenvalues A ans zerg-&irections z. from the
nomimal to the LTR-values as functions of q, so
that
= = . A Rand = A,
A;taz0) TIRIL i,LTR

T -1
and equally for zi. And Vz(q* ») = 8281 .

The plot of the singular values of the full loop
transfer is shown in fig. !t and 2 for different
values of q. Clearly recovery is achieved. The
final value of Vz which achives exact recovery
is:

o -1.4326E-2 -1.3920
2 P ¢ -2.9920E-5 -3.4812
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