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LOOP TRANSFER  RECOVERY  WITH  MINIMAL-ORDER  OBSERVERS 

Per  SGgaard-Andersen 

Abstract 

Control  Engineering  Institute 
Technical  University  of  Denmark 

Building 424, 2800  Lyngby - Denmark 

A solution  to  the problerr of  loop  transfer  recovery 
with rrinimal order  observers  is  obtained  for  the  con- 
trol  loop  broken at the p1ar.t input.  Three  distinct 
cases  are  treated - dependir.g  on the  properties  of  the 
first  Markov  parameter  of tk.e plant  model.  For  two  of 
t’r.ese cases a LQG-type  desicn  method  is  outlined.  If 
tte  first  Markov  parameter is of full  rank  exact  loop 
transfer recover;. can  be  ack.ieved. 

1.0 Introduction. 

In  recent years a nm3er of new  tools  for  the de- 
sign  of  robust  nllltivariable  control  systems  have 
emerged.  Among  these is the  multivariable  singular- 
value  lcop-shaping  paradigm [Dl ,S21, based on the LQG/ 
LTR  design  approach  [Dl,Al].  In  this  ccntext  loop 
transfers  designed  to eet certain  stability robustness 
an2 loop performance  requirements can be  reccvered 
asmFtotically by  suitable (filter or  full state) de- 
signs. 

or. fcll-order observers, hence  the  resulting  compen- 
satgr  will  be  of  the  same  order  as  the  plant.  If  the 
plant  is of high  order  this rnay lead  to  compensators 
of very  high  orders.  In [A:] a reti-.od for  reducing 
the  order  of  the  conpensator  is  outlined.  Such  me- 
thods may, however, reeuce  tte  performance  of  the  con- 
trcl loop, cr  in  other  cases  it  is not applicable. As 
an alternative  reduced  order  observers  can  be em- 
ployed. 

Dowdle  [D2]  has  shown  that  it  is  not  generally 
feasible  to cse observers of reduced  order in LTR- 
schemes, but in  the  minimal-order  case (see EO11 for a 
precise 2efir.ition) a solutlon  is  possible.  Such cor.- 
pensators  have  been  studied  in  [D2,D3,M2].  In [D2,D3] 
it  is  required  that  the  first  Markov  parameter of the 
plant  mcdel  is  zero. This restriction  is not required 
in  [M2], instead it is  required that certain r.atrices 
are  of  full  rank  and  that a certain  subsystem  of 
S(A,B,C) is  minimum-phase. 

Ir. [Sl,Dl,Al] this  design  ap2roach  is  derived  based 

Such  restrlctions  are not imposed here, and a so- 

The paper  is  organized  as  follows.  In 52 the l oop  
lution  to  the  nininal-order  LTR  problem  is  derived. 

stape  philosophy  is  briefly outlined, and in 53 the 
notation  is  presented.  In 54 the  analysis  is  per- 
formed  and  the  design  issues  are  treated  in 9 5  fol- 
loved  in 56 by two exanqles, and in 9 7  by  sone  sum- 
marizing  remarks. 

2.0 The loop-shape  design  philosophy. 

(2-1) 

This representation  is known as  multiplicative  mo- 
delling  errors at the  plant  input.  If C(s) is a cox- 
pensator  the  closed-loop  system  is  stable  for L ( s )  if 
[Dl] 

F,xther let  the  performance  objectives  be  expressed 
as [Dl,Sl,M31 

a(I+CG ) > v ( j z )  L>O - 0  

Nctice  that  the  performance  objectives  should  be 
reflected  to  the  same  plant  node  as  the  uncertainties 
[S1,1.’3]. These  two constrair.ts  specify  frequency-de- 
pendent  bounds on the l oop  transfer CGC. If the  con- 
straints  are not contradictory a full  state  feedback 
desiqn  which  satisfies  these  bounds  can  be  achieved  by 
a suitable  LQ  weiqht  selection [Al,Dl]. The full state 
loop  transfer  can  be  recovered  asymptotically  by  an 
LTR observer desiqn, and  consequently  the  resulting 
xdel-based compensator  has  the  same  loop  properties. 
A dual  procedure  for  the  plant  output  node car. also  be 
outlined. 

been  considered  in [A2]. 

be satisfied.  The  issue  of  robust  perfcrmance  can  al- 
so  be  formulated  in  the  loop  shape  setting  for s0T.e 
problems.  Details  of this is discussed in [Sl,M3]. 

In  the  following it is  assumed  that a full  state 
feedback  has  been  derived  such  that  the  full  state 
loop  transfer  satisfies  the  design  inequalities (2-2, 
2-3).  Next  it  is  desired  to  recover  this (target) 
feedback l oop  with a mininal  order  observer. 

(2-3) - 

A detailed  practical  example of this  proced-Jre has 

Hence  robust  stability  and  noxinel  performance  can 

3.0 Minimal-order  observers. 

Let the FDLTI plant  model  be  represented  by a mini- 
mal  state-space  realization: 

= Ax + Bu  xERn  UERr (3-1) 

y = cx YER” 

with n=r, n>m and C,B of  full  rank.  Further let S ( A ,  
B,C) be  minimum-phase.  The  control  signal  is  given by 

Assume  that  the  physical  plant G ( s )  differs  from  where x is the  state  estimate. 
the  plant  model G ( 5 )  in  the  following  way 0 In  the  following  the notation of minimal  order ob- 

servers is briefly  introduced. This notation  is  simi- 
lar  to  the  notation  in  the  monograph  by O’Reilly 1011. 
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The  structure of the  observer  is  shown  in  figure 1. 
The  dimensions of the  signals  are  indicated in the 
brackets. 

-1 V2(I+A12@22V2) = B (B +A 0 B ) -1 2 1 12 22 2 (4-2) 

Let S(A,B,C) be  partitioned as: 

rn n-m (3-3) 

A  similarity  transformation  can  always be selected 
to  bring S(A,B,C) in this  form. 

With  this  partitioning - and  without loss of  gene- 
rality - the  minimal  order  observer  matrices  are [Ol]. 

G = B - V B  2 2 1 ' = A22-V2A12 (3-4) 

E = A21-V2A11 + A  V  -V  A  V 22 2 2 12 2 

This is the  necessary  and  sufficient  condition for 
LTR with minimal order observers, and  the  equivalent 
to  the  full-order  condition.  Unfortunately  the con- 
dition is not as simple, and  the  design  implications 
on V2 are  more  involved. 

plies 3 different design cases depending  om  the  rank 
of B1. The details of the analysis for  the  three 

cases are  treated in appendix  A 

To be  more  specific it turns out that eq. (4 -2 )  im- 

Case I - rank ( E  ) = 0 - In this case  the  recovery 
condition is: 

1 

V2(I+A12@22V2) = B (A 0 B -1 
2 12 22 2 

-1 
(4-3) 

which  is  similar  to  the full order condition. 
Therefore  the  gain V2 must  be  selected so that: 

O'Reilly refers to  this  class  of  minimal  order  ob- 
servers  as  a  "parametric  class"  of observers, since 
the  observers  are  completely  specified by the  arbi-  As q increases  the  poles  of  A22-V2A12,  which 
trary  gain  matrix V2., This matrix takes the  place of 
the  observer  gain in mmlmal-order design. 

The loop  transfer  for  the plant input  loop-breaking 

For some  nonsingular a. 

grovern  the  error dynamics, will  behave in the  fol- 
lowing  way: 

point  is: 

Lx(s) = K(I+POi2GK) -1 (V+P@i2E)G 

?A2(S)  = (SI-A 2 2  + V2A12)-l 

0 

G ~ ( s )  = c@(s)a 

(3-5) 

i) p  poles  move towards the zeros of S(A,B,C). 

ii) n-m-p poles  move towards infinity in m 
Butterworth patterns of orders deter-mined  by 
the  projected  Markov  parameters [Kl] of 
S(A22,B2,A12), or certain Toeplitz matrices 

[VI 1 . 
For this  feedback  system  the  separation  principle 

applies.  A  detailed derivation of  this result can  be  mally  have  n-2m  zeros [Ml]. 
found in [Ol]. This implies  that  the  full-state  and 
the  observer  design  can  be  carried out separately. Case 2 - rank ( E  = rn - The  recovery  condition is 

quires (C,A) to  be  observable.  If (C,A) is an observ- 
able pair, this  implies that (A A ) is observable 
[Ol]. It is therefore  assumed (C,A) is  observ- v2(I+A12~22v2)-1=B2Bl-1( 1+A12022B2B1 -1) (4-5) 
able. 

Since rank (B ) = rank (CB) such  systems can maxi- 1 

Arbitrary  pole-placement of the  error  dynamics  re- 1 
after  reordering: 

V2 = B2B1 -1 

4.0 LTR  with  minimal  order  observers and  V2 is uniquely  determined. 

The  condition  for  LTR  for  the  minimal order obser- The condition is rank(B.1 = rank(CB) = m, i.e. 
verbased  feedback  system is that the  loop  transfer 
L ( s )  equals  the full state  loop  transfer  KO(s)B. The 

I 
the  first  Markov  parameter is of full  rank.  There- 
fore  S(A,B,C) has n-m zeros [Ml]. With V, as in 

derivation  of  the  recovery  condition is lengthy but 
straightforward.  As  a  consequence  the  derivation is 
omitted  here. The condition is [M2]: 

L 

eq. (4-5)  the  eigenvalues  of  A22-V2A12  are  equal 

to  the zeros of S (A,B,C) . 
In this  special case it is therefore  possible 

to  achieve  perfect  recovery  for  an  observer-gain 
matrix with finite  gains. 

Case 3 - 0 < rankfBli < m - The  recovery  condition (4-1) 

now implies: 

A  number of straightforward  manipulations can bring V2 (q)  -B2B 
eq. (4-1) in the  form: +B2a , q + m  q 
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a E Ker(B1) (4-6) 

and B must  be  selected  as  B1+,  then eq. (4-6) re- 

sults  in 

i) p  poles  move towards the zeros of S(A,B,C). 

ii) n-m-p poles  move towards infinity  in  m-rank 
(B ) Butzerworth  patterns. 1 

Ai2 = T A12 , B; = B T , V2 = (v' +v  ')T-l -1 
2 20 2q 

In  the  following  it  is  assumed  that: 

+ 
V (q) = B B   + V  2 2 1  2q 

Let  A12,B2  and V be  partitioned  as: 
2q 

A12 = 

B2 = 

v =  
2q 

It is then found  that: 

n-m 

(4-7) 

is  the  recovery  condition.  If V is chosen as in 
eq. (4-8) the  following  applies: 2 

i) p poles move  towards  the  zeros of S(A,B,C). 

ii) n-m-p poles move towards  infinity in m-rank 
(B ) Butterworth  patterns  of orders deter- 1 
mined  by  the  projected  Markov paramters of 
S (A22, B22, A122)r  A22 = A22 - B21h-1A121 or 

certain Toeplitz matrices. 

If  rank(B ) = d  such systems can maximally  have  n- 
2m+d zeros [Ml]. 

If  B is not diagonal a  similarity  transformation 

1 

is need&. The corresponding  expressions  are: 

(4-11) 

Here  the  prime  indicates  the new coordinate  frame. 
If  B  is not diagonalizable  the  recovery  conditions 

still  apply but the  asymptotic  behaviour  is  more in- 
volved.  Notice that the first and  second case be  con- 
sidered as the limits of the  third case as  rank(B ) is 

either 0 or m. 
An important effect of  minimal order LTR  is  that 

max  n-m-p poles approach  infinity  (in  the  limit).  In 
the  fullorder  case  n-p  poles  approach  infinity. 
Clearly  the  number of infinite zeros is reduced.  The 
covery conditions are  similar to the  full order ob- 
server  case. The similarity is emphasized in table 1. 

condition is imposed on a  feedback  loop with the  ele- 
ments S ( x , x , x ) .  The similarity  will  be useful in fin- 
ding  simple  design  rules. 

In Case  2  V  is  uniquely given, so design will only 
be  considered  $or  the 2 other cases. 

1 

1 

The  term "subject to" indicates that the  recovery 

5.0 LQG-methods in minimal  order  LTR 

The recovery  conditions  found in 94 form  the  basis 
of  the  LTR-procedures  for  minimal  observers. 

Based on the  "parametric  class"  of  minimal order 
observers (§3) optimality  conditions  similar to the 
full-order  LQG-conditions can be  derived (e.9. see 
Dowdle [D 21). However, optimality in some  mathemati- 
cal  sense is not of  prime  interest in this  context. 
Here  the focus is on design methods  that  are  relevant 
in achieving  loop  transfer  recovery.  Hence  optimality 
in the strict mathematical  sense  will not be  pursued. 

In the  following two subsections  such  recovery  me- 
thods  will  be  considered  for Case 1 and  Case 3 .  The 
methods  are  based on suitably chosen Riccati-equations. 

Minimal order LQG/LTR - Case 1 

The recovery  condition is given by: 

v2 (q) 
--+ B a subject to S(A22,B2,A12) 
q 2 

Now consider  the  filter  Riccati-equation: 

A s +  SA^^ + r -  SA^^ c A s = o T 
2 2  

T -1 
12 

V2 = SAl2 C 
T , c>o 

with  the weights selected  as: 

(5-1) 

r = r  0 + ~ B v B ~ > o , v > o , ~ + -  2 ( 5 - 3 )  2 2  

If  S(AZ2,B2,Al2) is minimum-phase  (A12,A) is ob- 

servable  and  (A22,r4) is stabilizable  the  solution  to 

eq. (5-2) asymptotically (q + m) behaves as: 

With 0 as some  orthonormal  matrix.  Clearly  the re- 
covery  condition is met. Further the  Riccati-equation 
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implies  that  the  eigenvalues of A22-V2A12 (i.e. the 

minimal-order  observers  dynamics)  are  stable for any 

q., if (A22 ,A,2T,r') is minimal.  Hence - due to  the 

minimal-order  observer  separation  principle - the 
overall  closed-loop  system  will  be  stable  and  recovery 
is  achieved  simultaneously. 

The  only  serious  restriction  imposed  here is that 
S(A22,B2,A12) must be  minimum-phase. However, the ze- 

ros of S(A22,B2,A12) are  equal  to  the  zeros of S(A,B, 

C) [S3]. Hence  no new constraints  are  imposed on the 
original  system. 

T 

Minimal-order  LQG/LTR - Case  3 

In this case  the  recovery  condition is: 

V 
+ B 2 2 ~  subject to 

- 
9 S(A22'  B22' A122) 

V = [B21i!-1 , V2q2]T-1 
2 1  

(5-5) 

To achieve  this  condition  consider  the  Riccati- 
equation: 

F, s + SA + r -  SA^^^ c A ~ ~ ~ s  = o T -1 
2 2  22 (5-6) 

V = SA TC , x>O 2q2 122 

with the weight-selection: 

r = r  + q ~  VB T > o ,  v>o , q + -  2 
0 22 22 (5-7) 

- 
Constrained  only  by  S(A22, B22, A122)  being  mini- 

mumphase, (A22,r ) stabilizable  and  (A122, ) be- 

ing  observable. 

behaves  as: 

- f  
22 

As  q  approach  infinity  the  solution  to eq. (5-6) 

which  shows  that  the  recovery  condition is satisfied 
with  observer  dynamics  given  by: 

hi[A  -V A 1 = Xi 22 2 12 ' "2q21 - 

(5-9) 

Due to  the  Ricaatti-equation all observer  eigen- 
values  are  stable  for  any q. Hence the  overall  system 
is stable. The minimum-phase constraint does not im- 
pose  any new restrictions on S(A,B,C)  since  the zeros 
of S(A,B,C) are  equal to the  zeros of S(A 2 2 '  B22' 
A122) 

Apart  from  the  nice  properties  of  Riccati-equation 
based methods, these  results  provide  computationally 
simple approaches  to  LTR-designs. 

6.0 Examples. 

Two simple  examples  are  considered  to  illustrate 
case 2 and 3. 

Case 1 is illustrated in [D3]. 

Let -2 1 1 

A = [ -3] B = [-2 

G ( s )  = (s+2) (s+3) 
(s+l) 

K = (-6 -5) 

This selection of K imply  that  the full state  loop 
transfer is 

L(S) = 4s+14 

(s+2) (s+3 

The loop  transfer  with  the  minimal-order  observer 
in the  loop is - after  some  algebra: 

L ( s )  = - s (6+5V,) + (25VL+96V,+78) . (s+l) 
1 "s+13+6V2 (s+2) (s+3) 

with V =B B = -2 inserted  thes  reduces to L(s) 
2 2 1  

-1 

and  LTR  is  achieved  exactly - as expected. 

- - -  Example 2. 

Let 

A =  

2 0 1 0 0 1 1  
- 1 2 0 0 0 0 0  
3 2 - 1  0 0 - 2  1 
2 -2  0 -4 2 0 -1 
0 2  3 0 - 2  1 - 1  
1 0  2 - 3  2 2 0 
-1 -1 1 0 0 -1 1 

c = [I 3  O3X43 

2 
1 
1 

B =  0 
0 
0 
0 

0 0  
0 0  
0 0  
2 0  
3 0  
0 1  
.1 0 

S(A,B,C) has  two  transmission zeros at (-2,-4). The 
full state  feedback is an LQ-design with  weights Q=I 

and R=10 I -3 7 

3' 
Since rank(CB)=l, this  example  belongs  to case 3. 

Now V2(q) is determined by: 

V2 = V2'*T 

T = [:/2 1 01 - 0 -2  5 4  -7/4 

-1 , V2' = [B,,'*A-l V '1 
2q2 

1 3 -  1 0 0  --4 2 - /2 - /2 

/2 0 1 ' A22 = -3  2  7/4 - 5 4  

0 0 - 1  1 

V ' is determined  by  the  Riccati-equation  (5-6). 
2q2 

In figure 4 singular  value  plots of the full state 
loop  transfer  and  the  minimal-order  observer  loop 
transfer is shown for different q-values. For q  even 
larger  better  recovery can be achieved. 

7.0 Summarizing  remarks. 

The miminal-order observers are  of order n-m, 
whereas  full-order  observers  are of order n. Since the 
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LTR  synthesis  imply  that  p  poles  move towards the 
plant zeros, respectively  n-m-p  and  n-p  observer  poles 
must be  moved  towards  infinity.  Clearly  the  number of 
asymptotically  fast modes are  reduced  by  m  when mini- 
mal-order  observers  are  applied. This fact enhances 
the  applicability  of  the  minimal-order  LTR  concept. 
Further  this fact imply  that  if  the  number  of plant 
zeros is  n-m  asymptotically fast nodes are not needed 
in the observer, and  exact  recovery can be  achieved. 
If  p<n-n;  only  asymptotic  recovery  is  possible  and  two 
cases  emerge.  For rank(CB)=O the results given  here 
are  equivalent  to  those in [D2,D3]. 

In  the  last  case  tne  resulting  observer  gain  will 
contain  a  high  gain an8 a low gain ?art.  In  the limit 
this  may  cause  numerical  problems.  Therefore - for 
practical problem - the  q-values  are  linited.  Notice 
tnat  this  case  requires  the  number  of inputs to  be  lar- 
ger  than  or  equal  to 2, hence  tnis  is  a  multivariable 
phenonenon. 

In  this  paper  a  LQG-type  of  synthesis  is  proposed. 
In  [S3]  it is stown that eigenspace  methods  are  also 
applicable. 

The  loop-shape  formulation  used  here  require  that 
the  uncertainties  and  perforzance  specifications  are 
reflected  to  the  plant  imput.  Unfortunately  similar 
results for  the  plant output can not be  derived  since 
the  niniaal-order  observer  and  the plant model are  not 
dual.  The  results  are  therefore  linited  to  asymptotic 
filter  designs. 

For non-minimum-phase  plants  tne  synthesis  results 
still applies, but  LTR  is not quaranteed over the en- 
tire frequency-range (see [S2]  for  more  details  on 
this  issue.) . 
nulacion are only well-suited for certain  classes  of 
problems, as discussed  in [Sl,M3]. In  more  involved 
robust  design  problems  more  refined  tools - like  the 
structured  singular  value ID41 - are  required. 

Finally  notice  that  the  loop-shape robustness for- 
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APPENDIX A. 

Analysis  of  the  recovery  condition  for  minimal  order 
observers. 

The  general  condition  for  LTR  with  minimal  order 
observers  is: 

-1) 
The  analysis  of  the  condition  is  divided  into  three 
cases. 

z s se  2 riE:) : r - By inspection  the resu;ting  LTR 
condition  is  equivalent  to  the  full-order  recovery 
condition.  Hence  the  gain V2 must  be  selected so that: 

The  eigenvalues  of A22-V2A12 as  q + 33 are  the  roots 

of  the  closed-loop  characteristic  polynomium  (CLCP) 

with  OLCP  as  the  open-loop  characteristic polynoniurr.. 

Ey combining (A-3) and  The  Schur  determinant  formu- 
la : 

where  the  last  convergence  follows  from  the  structure 
of c. 

It is thus  clear  that  CLCP = 0 if  the  closed-loop 
eigenvalues  approach  the  p  zeros of S(A,B,C) as  q + m ,  

since  B1 = 0. The remaining  eigenvalues go to  infini- 

ty  in  m  Butterworth  patterns. The results of [S3]  im- 
ply  that  the order of approach is determined  by  the 
projected  Markov  parameters of S(A22,B2,A12) [Kll. 

Case 2 r(B1) = m - The condition is now: 
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V 2 (I + A12@22V2) -' = -1) -1 

(A-5 1 

and V =B B . V is  thus  uniquely  determined by B. 

The  resulting  eigenvalues  of A22-V2A12 are  the  roots 
2 2 1  2 

-1 Here V21 is  uniquely given, and the  condition on 

V22 is  equivalent  to  the  full-state  LTR  condition, 

hence : of: 

CLCP = 

- - 

= B21A-1 ( A - 1 3 )  

V 
2q 

q + B22" 
, q + m , det(a) 9 0. 

With  this  selection of V2 the p finite  roots of 

A22-V2A12 are equal  to  the  zeros  of S ( A , B , C ) ,  and  the 

remaining  n-m-p  eigenvalues  approach  infinity. 
A detailed  exposition of this analysis is given  in 

[s31. 
Clearly the roots  of CLCP are  the zeros  of S ( A . B . C ) .  
Since  rank (CB)  = m S ( A , B , C )  has n-m zeros [ M l l .  A l l  

. . .  

the  n-m roots  of CLCP are  thus  equal  to a zero  of S ( A ,  
B t C )  

Case 3 - 0 < rfBli < m - The  recovery  conaltion  can be 
ordered as: 

Vi(., + A 1 2 @ 2 2 B 2 )  = (I + V 2 A 1 2 @ 2 2 \ B 2  1 (A-7)  

Now let 8 1  be  given  as: 

B1 = [ o  OJ 
A 0 1  T-l (A-8 )  

where A is a diagonal  matrix.  The  new  transformed  mi- 
nimal-order  observer  parameters are: 

(A-9)  

FIGURE 1 X 

1 A i l  = A21T , A i 2  = A22 , V '  = V T 2 2  

A i 2  = T A12 , E '  = ET , B; = B2T 
-1 

. ................ . 

-20  - FULL-STATE LOClF TPklSFE? - 

F' = T-lF , G' = GT 

In  the  following  the  prime  is  suppressed,  but  the 

system  is  assumed  to  be  in  the  transformed  form. 

V can  be written as: 2 

-KO ~ 

\ 
I I I 

1, CE-01 l,OE+lO 1 ,OE+31 lIOE+02 1,3E+03 

, 

[v21JL + V 2 1 A 1 2 1 @ 2 2 B 2 1  + V 2 2 A 1 2 2 @ 2 2 B 2 1  ' TABLE 1 
V 2 1 A 1 2 L @ 2 2 B 2 2  + V 2 2 A 1 2 2 @ 2 2 B 2 2 1  

= [B21 + V 2 1  A 1 2 1 @ 2 2 %  + V 2 2 A 1 2 2 Q 2 2 B 2 1  ' 

V 2 1 A 1 2 1 0 2 2 B 2 2  + B 2 2  + V 2 2 A 1 2 2  0 22 B 22 1 ( A - 1 1 )  

Observer-type 

Full-order 

Minlnal-order 
r(B,) = 0 Where A12 and B2 are  partitioned  compatibly  with V2.  

Eq. ( A - 1 1 )  implies  that: 
Minlmal-order 
0 < r(B,) c m 
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