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ROBUST GEOMETRIC CONTROL OF A DISTILLATION COLUMN

Mogens Kummel and Henrik Weisberg Andersen

Chemical Engineering Department
Technical University of Denmark

DK-2800 Lyngby, DENMARK

ABSTRACT

A frequency domain method, which makes it
possible to adjust multivariable controllers with
respect to both nominal performance and robust-
ness, is presented. The basic idea in the approach
is that the designer assigns objectives such as
steady-state tracking, maximum resonance peaks,
bandwidth, minimum stability margin, steady-state
sensitivity and maximum sensitivity to modelling
errors. For a given control structure the para-
meters are found which minimize an objective func-
tion consisting of the weighted sum of deviations
between desired and obtained values of these ob-
jectives. This method is used to examine and im-
prove geometric control of a binary distillation
column.

INTRODUCTION

Distillation column control is an important
operation in many chemical plants, partly because
it is so energy intensive. Consequently, the topic
has received much attention over the last many
years.

The control of both top and bottom product
compositions is clearly a multivariable control
problem due to the coupling between the control
loops. Thus, advanced modern control strategies,
such as optimal control, modal control and geomet-
ric control have the potential of improving the
performance compared to classical control schemes.

Takamatsu et al. (1979) designed a geometric
controller for a binary distillation column. This
controller yields total nominal disturbance rejec-
tion in the top and bottom compositions towards
disturbances in the feed composition and total
nominal disturbance rejection in the top compo-
sition towards disturbances in the feed flow rate.
However, the design of geometric controllers relies
heavily on the linear time invariant state space
model, which is only an approximate description of
the real plant. Thus, it is uncertain how well
this controller will perform when it is imple-
mented on the real plant. This causes the need of
a method for analysis and design of multivariable
controllers with respect to robustness as well as
nominal performance.

Doyle and Stein (1981) presented a multivari-
able frequency analysis of the output sensitivity
to modelling errors and the stability margin.
Arkun et al. (1984) used this method to analyse
different decoupling schemes in distillation con-

trol. Palazoglu and Arkun (1985) presented a
multivariable frequency analysis of nominal set-
point tracking. In KUmmel and Andersen (1986,a),
these ideas were used to develop a multivariable
frequency analysis of nominal disturbance attenua-
tion. Thus, the analysis contains the following
items:

- Nominal setpoint tracking
- Nominal disturbance attenuation
- Output sensitivity to modelling errors
- Stability margin

Moreover the nominal stability is analysed by eva-
luation of closed-loop eigenvalues.

In KUmmel and Andersen (1986), this analysis
was used to compare the nominal performance and
robustness of geometric control, optimal control
and PI control applied to distillation column con-
trol.

In this paper we will treat both the analysis
and the design problem. To be more precise, this
paper addresses the problem: "Given a control
structure. It is desired to assign values of the
control parameters which will give a satisfactory
trade off between nominal performance and robust-
ness'. Note that this is a local optimization
since the control structure is predetermined. In
order to perform this control adjustment, the
items in the analysis are quantified. This is done
mainly by the use of classical frequency domain
terms such as steady-state error, bandwidth, re-
sonance peaks and minimum stability margin. Based
on the designer's knowledge of the control objec-
tives, he can specify desired values of these
terms. An objective function is then evaluated as
the weighted sum of the squared deviation between
desired and obtained objectives. The designer de-
fines the structure of the controller. Moreover,
the control parameters must be initialized so that
the nominal closed-loop system is stable. He might
assign some of the control parameters in order to
predetermine desired properties of the controlled
system. For example some of the control parameters
could be fixed in order to obtain complete nominal
disturbance rejection through geometric control
(Takamatsu et al. 1979). The objective function is
then minimized by adjustment of the unassigned
control parameters. The following analysis will
show to which extent the desired objectives have
been achieved. If some performance items need to
be improved, the designer might choose to weight
these higher in the objective function or to de-
velop a new control structure which can be adjust-
ed to achieve the desired objectives.
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This method has been used to adjust selected
control parameters in order to improve the robust-
ness of basic geometric control. This can be done
without changing the nominal disturbance rejection
provided by the basic geometric controller. Thus,
the scope of this method is that we can obtain a
geomtric controller with improved robustness prop-
erties and at the same time preserve the attrac-
tive nominal performance.

ANALYSIS

This section is a review of the frequency
analysis described in Kummel & Andersen (1986). We
have used the following standard state space nota-
tion:

K(t) c Ax(t) + Bu(t) + Dq(t)
y(t) = Cx(t)
u(s) = G(s)(HCT(CCT)-l ry(s)-f(s))
f(t) = Hx(t) + v(t)

Nominal per formance

The first objective is to obtain satisfactory
nominal performance. Here we will focus on how to
evaluate setpoint tracking and disturbance rejec-
tion in the frequency domain.

Setpoint tracking. The continuous time closed-
loop frequency response between the outputs y(iw)
and their corresponding setpoints r (iw) is given
as: Y

y(iw) c C(iwI-A+BG(iw)H)-1BG(iw)HCT(CC ) r (iw)
y

(1)= Tl(iw)ry(iw)
Since Tl is a square matrix we have:

cx(Tl(iW)) < y(iwjj11 F

< (Tl(iw))_ - J1r (iW)Tl - cy
where a, a respectively denote the maximum and the
minimum singular value.

Disturbance rejection. The closed-loop frequency
response between the outputs y(iw) and the exter-
nal disturbances q(iw) is given as:

y(iw) = C(iwI-A+BG(iw)H) Dq(iw)
= T2(iw)q(iw)

(3)

Depending on the dimension of y (in) and q (d) we
have the following vector gain bounds:

jly(iw)lm>d a (T2(iw)) K K a (T2(iw)) (4)
_ -~~~1jq(iw)j11 -

m<d 0 <K < a (T2(iw))
- Jq(iw)JJ -

Robustness

Output sensitivity to modelling errors. This anal-
ysis is based on results from Cruz and Perkins
(1964). The sensitivity is a relative measurement
between a closed-loop error and an open-loop error.

This is a reasonable approach since the purpose of
using closed-loop control is to obtain a lower
sensitivity than that of open-loop control. The
following relation exists between the closed-loop
and the open-loop error:

ecx(s) (I+P'(s)G(s)HY1 eox(s) (6)

where xC(s) = x0(s) and P'(s) = P(s) + AP(s).

Thus the closed-loop error in the outputs can be
expressed as:

e (s) = C(I+Pt(s)G(s)H) e (s)=S'(s)e (s) (7)
Cy ox ox

Here we will only evaluate the nominal sensitivity:

eCy(s) c S(s)eOX(s) (8)

The open-loop error in the outputs can be expres-
sed as:

eoy(s) a Ceox (s) (9)

Using singular values we can express the vector
gain between ecy (iw) and eOx (iw) as:

It eC (iw) ||
-Y-e -- < C (S(iw))
lloxiwf

and the gain between eoy(iw) and eox(iw) as:

e0y(iw)II K<- (C(iW))

lieox(iw) 11

(9)

(10)

Selecting the worst case open-loop output error
yields:

(2) c < a (S(iw))/cy (C)

leoy (iw) 11-
(11)

Stability. The stability margin is calculated for
input multiplicative errors (Doyle & Stein, 1981).

P'(s) = P(s) (I+-AP(s)) (12)

Thus, the stability margin is calculated as:

I (w) < a (I + (G(iw)HP(iw)) I)
mr __ (13)

This stability margin does only examine the influ-
ence of input multiplicative errors. Thus, it
might be too optimistic since output and input
multiplicative and additive errors might occur si-
multaneously. Moreover, it might be too conserva-
tive since the error is only described as norm-
bounded regardless of its structure. Improved cal-
culation of the stability margin might be obtained
by structured singular values as suggested by
Doyle (1982).

DESIGN OBJECTIVES
Normal performance
From the classical Bode gain analysis it is well
known that terms such as steady-state error, band-
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width and resonance peaks contain important infor-
mation about the transient response of the con-
trolled system. A similar procedure can be used in
multivariable frequency analysis. In the following
is described how these terms can be quantified.

Setpoint tracking. We can measure a bound for the
steady-state setpoint tracking error by evaluation
of the gain at a suitable low frequency w1:

cspl (Tl(iw1)) (14)

c a (Tl(iw1)) (15)

A conservative indication of the overshoot and
oscillation can be found by evaluation of the
maximum resonance peak (if present):

csplmax = max C (Tl(iw)) (16)
w

To measure the response time of the closed-loop
system we will use the classical concept of band-
width:

Max.bandw. w1: a(Tl(iw ))-a(T1(iw )) = 3dB (17)

Min.bandw. wc2: u(Tl(iw1))-(Tl(iwc2)) = 3dB (18)

Disturbance re>jection. A conservative bound for
the steady-state error can be evaluated at a suit-
able low frequency:

cdl c a (T2(iw1)) (19)

The maximum peak (if present) indicate the maximum
possible disturbance in the output signals:

cdlmax = max a (T2(iw)) (20)
w

Robustness

Output sensitivity to modelling errors.

The steady-state sensitivity can be evaluated at a
suitable low frequency:

c = a (S(iw ))/c (C) (21)

The maximum peak (if present) determine the maxi-
mum possible sensitivity:

cslmax = max (a (S(iw))/a (C)) (22)
w

Stability. The critical margin (if present) is
calculated as:

c . mmin a (I+(G(iw)HP(iw) )- (23)
w

Above a certain frequency the stability curve will
draw off towards infinity. This is an important
point, since above this region in frequency we can
tolerate large modelling errors. We define a sepa-
ration between the two regions from:

a (I+(G(iwff)HP(iwff) ) )

- a (I+(G(iw1)HP(iw1)Y1) = 3dB (24)

ADJUSTMENT OF CONTROL PARAMETERS

In order to shape the closed-loop frequency
response, desired values and weights can be as-
signed to the different design objectives. Thus,
we can evaluate an objective function consisting
of the weighted difference between the actual and
desired values of the individual objectives. The
individual objective functions fall into three
categories.

In order to evaluate the low frequency set-
point tracking we will use an objective function
of the following form:

Fi = vU (log(d.) - log(c ))2 (25)

This selection is reasonable in the case where we
have selected a desired low frequency setpoint
tracking to be 1. In this case both a positive and
a negative deviation will result in an error. The
same objective function is used to evaluate the
obtained bandwidth.

To evaluate the high and low frequency dis-
turbance attenuation we will use the following
objective function:

If c. < d. then F. = 0
1 1 1

else F. a v. (log(d) -log(c2)) (26)
1 1 1

This is relevant since a better disturbance atten-
uation than specified will always be desirable.
The same objective function is used to evaluate
the high frequency setpoint tracking, the high and
low frequency sensitivity to modelling errors and
the draw off.

To evaluate the high and low frequency stabi-
lity margin we will use the following objective
function:

If c. > d. then F. n 0
1 1 1 2

else Fi = vi (log(dI)-log(ci)) (27)

This is reasonable since a higher stability margin
than specified is always desirable.

The total objective function is now calculat-
ed as the sum of the individual functions. By as-
signing the structure of the controller we can
minimize this objective function through adjust-
ment of the control parameters.

This optimization is clearly a nonlinear
minimization. In this work an IMSL subroutine
named ZXMIN (The IMSL Library, 1982) has been ap-
plied. The complete program package used in the
solution is presented in (Andersen, 1986).

One problem in this optimization is whether
the nominal closed-loop stability of the initial
controller guarantees convergence to a stabilizing
controller. When shifting from a stable to an un-
stable closed-loop system there exists an inter-
midiate controller which yields poles on the imag-
inary axis.
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For this controller we will have unbounded objec-
tive function. An exeption from this occur when we
have pole-zero cancellation on the imaginary axis.

Performing the optimization in finite steps
will make it possible to cross this unbounded bar-
rier. However, in practise we have not experienced
problems of this type. A safe approach would be to
check the eigenvalues in each step and then de-
crease the step length if the resulting closed-
loop system has unstable poles.

GEOMETRIC CONTROL OF A DISTILLATION COLUMN

Distillation column model. We use the binary
distillation column model of Takamatsu (1979). The
column consists of 9 plates, reboiler, and total
condenser. The feed, liquid at its boiling point,
is entered at plate 5 (state 6). Output variables
are the composition in the condenser (state 1) and
in the reboiler (state 11). Manipulated variables
are the reflux flow and the vapour flow. Distur-
bances occur in the feed flow and the feed compo-
sition. The state space model is shown in table 1.
For further details, see Takamatsu et al. (1979).

Basic geometric control. The geometric controller
was designed by Takamatsu et al. (1979). Nominal-
ly, this controller yields total disturbance re-
jection at the top and bottom composition towards
disturbances in the feed composition. Disturbances
in the feed flow rate are completely rejected at
the top composition, but not at the bottom compo-
sition. According to the control law u = -GHx, the
feedbacks and gains are given by:

rate. The steady-state error is around 0. 2%' and
there is no resonance peak.

Design objectives. In order to adjust the con-
troller we will select the desired frequency do-
main properties of the controlled system. At w =
0.01 we have chosen the desired upper bound on the
low frequency sensitivity to be 1%. The desired
maximum sensitivity is chosen to 100%. Since the
sensitivity curve approach 100% for high frequen-
cies, this selection corresponds to a desired eli-
mination of the maximum on the sensitivity curve.

The desired low frequency stability margin
(at w=O.01) and the desired minimum stability
margin are both selected to 100%. The desired draw
off point is chosen to be at w c 1.

The desired low frequency setpoint tracking
(at w=0.O1) is chosen to 100% for both the upper
and the lower curve. The desired maximum value is
also selected to 100%, (this corresponds to a de-
sired elimination of the resonance peak). The de-
sired minimum and maximum bandwidths are both se-
lected to be at w=l.

The desired low frequency disturbance rejec-
tion (at w=0.O1) and the maximum disturbance re-
jection are both chosen to be less than 0.1%.

Improvements by constant gain feedback.

The following structure is obtained for the geo-
metric controller by KUmmel and Foldager (1986):

H = I lG [a a f O O 0 O O f r
=11 = a a f O Q O O O O f rj (29)

H 0 1 0 0 0 0 0 0 0 0
O O O 0 1 0j

(28)
330.06 -470.17G 251.47 -632.04J

This controller is denoted Gl.
The results of the analysis for Gl are shown in
table 2 and in Figs. 1, A-D.

The sensitivity can be shown to be above 1
for all frequencies. This is clearly unacceptable
since this sensitivity is equal to that of an
open-loop controller.
From Fig. lB it is seen that there is no critical
frequency where the stability margin reaches a
minimum. In fact, the stability margin is greater
than 100% for all frequencies. Thus, basic geomet-
ric control of this distillation column should
have excellent stability robustness properties.

Since there is no feedback from the outputs
(states 1 and 11), both setpoint tracking curves
are zero (Fig. 1C).

The nominal disturbance attenuation is shown
in Fig. 1D. The basic geometric controller is only
represented with one curve. This is due to the
fact that nominally the top and bottom concentra-
tions are completely decoupled from disturbances
in the feed composition and consequently, the cor-
responding transfer functions are identical to
zero. The top concentration is decoupled from dis-
turbances in the feed flow rate, but the bottom
composition is not. Thus, the curve in Fig. 1D
corresponds to the transfer function between bot-
tom composition and disturbances in the feed flow

a: The control parameter can be assigned an arbi-
trary value without affecting the nominal dis-
turbance rejection provided by the basic geo-
metric controller.

f: The control parameter is fixed by the basic
geometric controller.

0: The control parameter is fixed to zero by the
basic geometric controller (i.e. no feedback
is allowed from these states).

r: The control parameters must satisfy the fol-
lowing relation:

(30)gl=j (b292lb211)929j
where g is an element in G, and b is an element in
B.

In order to reduce the worst case sensitivity
of Gl (Fig. 1A) below 1, it is necessary to in-
clude feedback from at least states I and 11 (the
outputs). G2 makes use of all the feedback gains
that can be used without affecting the disturbance
rejection provided by the basic geometric control-
ler. The gains have been adjusted in order to
minimize the described objective function.

l
0

H:=0
0
0O

0
1
0
0
0

0 0
0 0
1 0
0 0
0 0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

o 0
0 0
00
0 0
0 0

0
0
0
1
0

0
01
01
0
1 _j (31)

F 12560 875 330.06 -470.17 -4558]
G= L10190 731 251.47 -632.04 -6077j
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91,5 and 92 5 have been adjusted under the re-
striction (3d).

The results of the analysis of G2 is shown in
Figs. 1,A-D and in table 2. The output sensitivity
(Fig. IA) has been improved significantly for G2
compared to G1. The steady-state sensitivity has
been reduced from 120% (G1) to 16% (02).

The minimum stability margin (Fig. 1B) has
been reduced from 100%4 (01) to 70% (G2) indicating
a trade-off between nominal performance, output
sensitivity and stability robustness. The draw off
point has been slightly increased from 1.85 (G1)
to 3.63 (02).

Opposite to G1 the setpoint tracking problem
of states 1 and 11 is addressed by G2 (Fig. 1C).
For G2 the steady-state gain is 87% for the upper
curve and 86% for the lower curve. The upper band-
width 1.46 (G2) and the lower bandwidth 1.19 (G2)
is close to the desired value 1.

The steady-state disturbance attenuation
(Fig. ID) has been improved from 0.2% (G1) to
0.02% (G2), thus the design objective of 0.1% is
satisfied for G2.

Transient simulations for G1 and G2. To illustrate
the disturbance attenuation the transient response
of a step change in the feed flow rate (ALF = 1.5
mol/min) was simulated. Figures 2 and 3 show the
nominal as well as a perturbed response of states
1 and 11 for G1 and G2.

The perturbed responses were simulated for a
perturbation in the obtained vapour flow rate.
This perturbation is described by:

AV(obtained) = E*AV(set) (32)

where AV(set) is the vapour flow ordered by the
controller. In Fig. 2 the perturbed response was
obtained for E= 0.9.

Nominally, both G0 and G2 yield complete dis-
turbance rejection in state 1 (Fig. 2). However,
the sensitivity of G1 is clearly larger than that
of G2.

State 11 is not decoupled from disturbances
in the feed flow rate (Fig. 3). The nominal
steady-state error for G1 is 0.19% and 0.027% for
G2 (compare with Fig. 1D). Again, it is seen that
the sensitivity of G1 is larger than that of G2.

Improvements by inteqral action.

The selected design objectives impose high demands
on the low frequency behaviour of the controlled
system. These will be better addressed by combin-
ing the geometric controller with integral action
in the feedback loops from states 1 and 11. Since
the gains in the feedback from state 1 can be as-
signed arbitrarily without affecting the nominal
disturbance rejection, we can immediately intro-
duce integration in the loop from state 1 to con-
trol signal 1. The gains in the feedback from
state 11 should obey equation (30). Thus, we have
to select the same integral time in the feedback
from state 11 to control signal 1 and in the feed-
back to control signal 2. The following controller
was selected as an initial geometric controller
with integration:

1 0 O 0 0 0 0 0 0 00
00 1 0 0 0 00 0 0

H: O 0 0 0 0 0 0 0 1 0
Lo0 0 0 0 0 0 0 0 0 1j (33)
3000(1+1/3s) 330.06 -470.17 -750(l+1/8s)
L0 . ° 251.47 -632.04 -1000(1+1/8s)

This controller is denoted GPI1.
Note that 91,4 and 92,4 satisfy restriction (30).
The results of the analysis for GPIl is shown in
Figs. 1, A-D and in table 2.

Figure 1A shows the output sensitivity. The
integration in the feedback from both outputs eli-
minates the steady-state sensitivity. At the low
frequency 0.01 the sensitivity is 10%. The curve
has an undesired maximum of 268%.

From Fig. 1B it is seen that the stability
margin has a minimum of 41%. The draw off point is
at w = 3.64.

Figure 10 shows the setpoint tracking. The
upper curve has an undesired maximum of 250%. The
minimum and maximum bandwidths are 1.105 and 1.952
respectively. As for basic geometric control we
have only one disturbance attenuation curve (Fig.
1D). As for basic geometric control this curve
represents the transfer function between dis-
turbances in the feed flow rate and state 11. Due
to the integration the steady-state error has been
eliminated.

Adjustment of gains and inteiration times. Using
the control parameters of GPIl as initial values
and the design objectives as described for basic
geometric control, we arrive at the controller
GP12 after adjustment of the control parameters.
The adjusted controller GPI2 contains the follow-
ing control parameters:

L1 0
0 1

H = 0 0
0 0
00

G =

0
0
1
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0 0
0 0

1 0
0 lj (34)

F5916(l+1/8.Os) 671 330.06 -470.17 -2654(l+1/1.5s]
L4282 513 251.47 -632.04 -3539(1+1/1.5s)j
Note that 91,5 and 92,5 have been adjusted under
the restriction (30).

The results of the analysis of 0PI2 are shown
in Fig. 1, A-D and in table 2.

The low frequency sensitivity (w = 0.01) has
been reduced from 10% (GPIl) to 1.3% (GPI2). The
maximum has been reduced from 268%A (GPIl) to 132%4
(GPI2).

From Fig. lB it is seen that the minimum sta-
bility margin is increased from 41% (GPII) to 59%
(GPI2). Moreover, the draw off point has been re-
duced from 3.64 (GPIl) to 1.9 (GPI2).

The maximum on the upper setpoint tracking
curve (Fig. 1C) has been reduced from 250% (GPII)
to 140% (G0I2). The maximum and minimum bandwidths
are 1.19 and 0.67 respectively. Even though the
performance towards external disturbances are in
the desired range for GPII, it has been improved
by the adjustment (Fig. 1D).
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Simulation of geometric control with integration.
Figures 4 and 5 show the nominal and perturbed
responses of states 1 and 11 towards a step dis-
turbance in the feed flow rate for GPII and GPI2.
From Fig. 4 it is seen that state 1 is nominally
decoupled and that the sensitivity is equal for
the two controllers. Figure 5 shows that the nomi-
nal disturbance attenuation and the sensitivity of
state 11 has been improved by the adjustment.

Figure 6 shows the transient responses of
states 1 and 11 for a setpoint change (0.05) in
state 1 for the controllers G2, GPII and 0PI2. As
expected G2 exhibits an offset in state 1. GPI
eliminates this offset, however, it has an unde-
sired overshoot and oscillation. The adjustment
(GP12) has significantly improved the setpoint
tracking. As expected the overshoot and oscilla-
tion have been reduced, so that the transient re-
sponses are satisfactorily damped.

Figures 7 and 8 show the nominal and perturb-
ed responses of states 1 and 11 towards a step
disturbance in the feed flow rate for Gl, G2, and
GPI2. The major improvements obtained by introduc-
ing integration is that the steady-state sensiti-
vity of state 1 has been eliminated (Fig. 7) and
that the steady-state error of state 11 has been
eliminated (Fig. 8).

CONCLUSION
The attractive property of geometric control

is the complete nominal disturbance rejection.
However, the basic geometric controller has an
output sensitivity which equals that of open-loop
control, and this controller is likely to fail
when it is implemented on a real distillation
column. In order to improve the robustness we have
presented a multivariable frequency domain analy-
sis and design approach. The problem is solved by
local optimization; for a given control structure
values of the control parameters are chosen which
minimize the objective function.

The first step in the design is the selection
of closed-loop properties in the frequency domain.
The formulation of these objectives is well known
from classical frequency analysis. The variety of
objectives should not be considered as an unneces-
sary complication of the design problem. On the
contrary, they enable us to include detailed in-
formation about the desired performance and ro-
bustness, which again is believed to yield a con-
trol system design with reliable desired proper-
ties.

The weighting of the different objectives in
the evaluation of the objective function enables
the designer to impose mandatory demands on the
control design. These should be thought of as
design parameters which can be adjusted in paral-
lel with the adjustment of a given control struc-
ture in order to get close enough to the mandatory
properties. Selecting other control structures is
another approach to the problem of getting close
enough to our defined objectives. The step by step
approach used in this paper illustrates the feasi-
bility of this method. Starting out with a simple
control structure, which typically provides some
desired nominal performance, and then include pos-
sible extensions in a discrete fashion, we can
evaluate which extensions are necessary in order
to satisfy our objectives.

By the use of this method we have obtained geomet-
ric controllers with significantly improved set-
point tracking and robustness behaviour. Note that
these controllers preserve the attractive nominal
disturbance rejection properties of basic geomet-
ric control. These properties of the extended geo-
metric controllers allow us to expect that these
controllers will yield improved performance on
industrial distillation columns compared to con-
ventional control.
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