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COMPUTER-AIDED DESIGN OF TUBULAR TRAVELLING-WAVE ARRAYS

Jens Arnbak

Laboratory of Electromagnetic Theory
Technical University of Denmark, DK-2800 Lyngby

SUMMARY

Tubular antennas derived from arrays of gaps in circular waveguide can
be designed by a computer program operating on the gap interspacings and
gap widths, and taking into account realistic features like external mutual
coupling and finite tube wall thickness. Linearly polarised radiation makes
these antennas candidates for radax applications and for microwave televi-
sion transmitters.

1. INTRODUCTION

Radar detection of targets in a sea clutter environment can often be
improved by ensuring strictly horizontal polarisation. With the common
inclined-slot array in rectangular waveguide, this is impossible to ap-
proach satisfactorily without applying an additional polarisation filter.
No extra means are, however, necessary with slot arrays milled in dielec-
tric-filled circular or coaxial waveguide, if the slots are extended along
the entire circumference of a guide operated in a rotation-invariant TM-
mode. Suitable directive properties in the elevation plane of this linear
gap array can be obtained from a cylindrical reflector behind the line
source, as shown in Fig. 1 for an X-band radar antenna.

Fig. 1 X-band radar antenna with tubular feed.

The present paper suimmarises a computer-aided design procedure for a
class of linear travelling-wave arrays based on circular waveguide excited
in the TM -mode. Owing to their geometrical simplicity, theoretical design
of these Thbular arrays can embrace mutual cQupling between gaps, finite
wall thickness, and other realistic features not easily included in conven-
tional slot-array designs without resorting to empirical slot data, lengthy
try-and-tune procedures, or repeated bench tests.
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2. PRINCIPLE OF DESIGN

Various design procedures realising a prescribed aperture field by a
sequence of small matched or unmatched microvave radiators on a common wave-
guide have been given in the last twenty-five years. The novel feature is
application of an elemental radiator whose electrical properties can be
precisely theoretically related to its physical dimensions, namely, the
circumferential gap in a circular wavegukide - Fig. 2. Its radiation effi-
ciency and scattering parameters can be controlled by variation of the gap
width. In this way, the prescribed amplitude distribution along the aper-
ture can be set up by an array of gaps of individually chosen widths.

The proper phase progression along the aperture is achieved by locating
the gaps suitably along the tube. Being neither matched nor purely resist-
ive, the gaps must have variable interspacings even for a linear phase di-
stribution over the aperture. Therefore, the array is profitably designed
by a computer iteration procedure, which may fully exploit the accurate
scattering matrix available for the radiating gap [1], and take into ac-
count internal reflections in the waveguide as well as external mutual
coupling in the aperture.

3. DESCRIPTION OF GAP PROPERTIES

The inhomogenous integral equation for the gap field caused by an in-
cident TM -mode in the structure shown in Fig. 2 was solved by an asymp-
totic metRid relating the gap to the planar slit configuration indicated in
Fig. 3. From the gap field, scattered and radiated fields can be derived[2].

Fig. 2 Elemental radiator: Gap in Fig. 3 Corresponding planar
tube loaded with dielectric slit backed by semi-
of permittivity 5r infinite dielectric

It was found that accurate results for a range of moderate gap widths
can be calculated using planar-slit admittance formulae corrected with a
perturbation function 6(k a,s ) which is independent of the gap width 2b.
Once 6 has been numericaliy evaluated for a given feeding waveguide at a
fixed design frequency, the coupling parameters belonging to any array of
gaps in this guide can be speedily sampled from the planar configuration.
This simplifies the iteration procedure in array design considerably.

Fig. 4 shows calculated and measured variations of complex reflection
coefficient of a gap in Teflon-loaded tube, for gap widths in the interval
Ocb/a<0.2. With the reference plane in the symmetry plane of the gap, and
time factor exp(-iwt), the gap is seen to be capacitive in this interval.
The arising phase shifts of a wave traversing the gaps can be met by small
individual increments in gap interspacing.

For a realistic thick-walled tube, the radiated power is nearly pro-
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portional to the gap width over a wide range. Thus b/a proves to be a very
accurate parameter for coupling control in array design, if only the asso-
ciated variations of reflection and transmission coefficients are-taken
into account.

Fig. 4 Complex reflection coefficient of gap in Teflon-
loaded tube. Gap widths in interval O<b/a<0.2.
Curve is theoretical, and points are measured in
X-band

4. DESCRIPTION OF COMPUTER PROGRAM

Array design can be directed on a computer performing changes and
translations of the gaps, until the aperture field is in accordance with a
prescribed envelope function. The interior transmission-line problem is in
principle a standard one, since the scattering parameters for the lossy,
mismatched gaps are known functions of the geometrical parameters. A recent
discussion of the general constraints involved in the interior problem of
travelling-wave arrays may, for instance, be found in [3].

In the present geometry, it is also possible to calculate the exter-
nal wave travelling along the conductor from a gap [4] and, consequently,
mutual coupling between the gaps. The interior coupling problem can thus be
solved subject to additional explicit constraints imposed by coupling in
the aperture; these effects need not be implicitly included as experimen-
tally found increments in slot conductances.

For a narrow-beam, non-resonant antenna, the design runs as follows:
An aperture field envelope is prescribed together with the waveguide para-
meters k a, h/a and C , the number of gaps in the desired array, and the
normalised width b/a of the edge gap next to the terminal load.

The deviations from a uniformly spaced array being moderate, the it-
eration starts by calculating the external contribution to the gap fields
from all other gaps when kept at their proper excitations in an equispaced
array. Next, the gap widths are determined recursively from the load end,
so as to satisfy the prescribed amplitude distribution and the transmission-
line constraints of an equispaced array. Computation time for this step is
reduced by the above-mentioned application of formulae belonging to the
structure shown in Fig. 3, whenever changes of gap width are involved.

Relaxing then the requirement of gap equispacing, but retaining the
found gap widths, the computer translates the radiators along the guide un-
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til the prescribed enevelope of the phase curve has been obtained. Small
translations have but little influence on the amplitude realisation previ-
ously performed. This is checked by repeating the entire procedure with the
newly found array as the starting configuration instead of the uniformly
spaced array. Convergence towards a configuration realising the prescribed
aperture distribution is very fast. Finally, performance parameters, such
as squint angle, power dissipation in terminal load, input SWR, band width,
and radiation pattern, are computed for comparison with prescribed antenna
specifications. If the result is unsatisfactory, another iteration is exe-
cuted with different starting data. Otherwise, a workshop write-up with
machining instructions appears.

5. DESIGN EXAMPLE

The feeding array in the X-band radar antenna displayed in Fig. 1 was
designed by an early version of the FORTRAN program in less than 10 seconds.
Results for this 15-gap antenna have been reported elsewhere [5i; an upper
cross-polarisation level of 34 dB below the main beam could be realised
without field-discriminating structures. Therefore, the sidelobe level
(-21 dB) of the desired pattern was very far from being violated by spurious
cross-polarised lobes, contrary to most experiences with unfiltered radia-
tion patterns of inclined-slot arrays in rectangular waveguide.

6. CONCLUSION

A dielectric-filled metal tube with a sequence of gaps, excited in
the TM -mode, is a natural microwave extension of the familiar concept of01linear antennas so extensively treated for k a<<l. Practical designs of
tubular microwave antennas, with their inherently linear polarisation and
omnidirectional H-plane patterns, may be carried out on a computer.

Prospective use of these antennas, besides narrow-beam feeds for ra-
dar antennas, may be for microwave beacons, airfield transmitters, vertical-
ly polarised television transmitters, and similar applications, where omni-
directional horizontal coverage should be combined with a directive eleva-
tion pattern.
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