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Coupled flexural-longitudinal wave motion in a finite periodic
structure with asymmetrically arranged transverse beams

Lars Friisa� and Mogens Ohlrichb�

Acoustic Technology, Ørsted•DTU, Technical University of Denmark, Building 352,
DK-2800 Kgs. Lyngby, Denmark

�Received 17 February 2005; revised 26 September 2005; accepted 26 September 2005�

A companion paper �J. Acoust. Soc. Am. 118, 3010–3020 2005� has examined the phenomena of
flexural-longitudinal wave coupling in a practically undamped and semi-infinite periodic waveguide
with structural side-branches. The effect of structural damping on wave coupling in such a
waveguide is examined in the first part of the present paper, and the damping-dependent decrease in
wave coupling is revealed for a structure with multiresonant side-branches. In the second part, the
simplifying semi-infinite assumption is relaxed and general expressions for the junction responses of
finite and multicoupled periodic systems are derived as a generalization of the governing expressions
for finite, mono-coupled periodic systems �Ohlrich, J. Sound Vib. 107, 411–434 �1986��. The
present derivation of the general frequency response of a finite system utilizes the eigenvectors of
displacement responses and wave forces that are associated with the characteristic wave-types,
which can exist in a multicoupled periodic system �Mead, J. Sound Vib. 40, 19–39 �1975��. The
third part of the paper considers a finite specific test-structure with eight periodic elements and with
structural terminations at the extreme ends. Audio-frequency vibration responses of this tri-coupled
periodic structure are predicted numerically over a broad range of frequencies and a very
good agreement is found with the measurement results obtained from an experiment with a
nominally identical, periodic test-structure which is freely suspended. © 2005 Acoustical Society of
America. �DOI: 10.1121/1.2126928�

PACS number�s�: 43.40.At, 43.40.Cw, 43.20.Bi �MO� Pages: 3607–3618

I. INTRODUCTION

Flexural-longitudinal wave coupling in a periodic wave-
guide with structural side-branches was examined in a com-
panion paper.1 For a specific choice of side-branches in the
form of relatively short transverse beams attached at regular
intervals the coupling phenomena were clearly demonstrated,
and it was found that the long-range transmission of struc-
tural wave motion was significantly enhanced in broad fre-
quency bands due to this wave coupling between flexural and
longitudinal motion. Such coupled motion in spatially peri-
odic structures can be “provoked” in various ways but is
most often a result of geometrical asymmetry as is the case
for rib-stiffened plates or building columns with beams and
floors attached at regular intervals as in multi-story build-
ings. A simple model of such a transmission path is shown in
Fig. 1 as a periodic assembly of beam-type components, or
as an idealized plane-wave, normal incidence model of a
similar plate assembly; the transverse beams are attached
asymmetrically—to one side only—on an otherwise continu-
ous waveguide, that is, a continuous beam, column or plate
structure. It is this type of asymmetrical periodic structure
that is the subject of the present investigation.

The wave propagation characteristics of a practically un-
damped and semi-infinite periodic structure of this type were
examined in Ref. 1. Numerical results for a system with rela-
tively short-length transverse beams �lt= l /8�, which were

still resonant within the frequency range considered, showed
that the flexural-longitudinal wave coupling has a drastic ef-
fect on the wave propagation properties in comparison to
those of a corresponding system with symmetrically attached
cross beams, which are known to generate significant broad-
band attenuation of flexural waves.2 Although the asym-
metrical system1 was excited by an external point moment—
that was anticipated to excite a predominantly flexural wave,
which is governed by a broad “stopband” at mid-
frequencies—the inherent wave coupling resulted in a highly
enhanced wave transmission with very little attenuation of
flexural motion from element to element. This enhanced
transmission is caused by another wave-type, which is pre-
dominantly longitudinal and propagates with significant
components of both flexural and longitudinal displacements.
So, the wave conversion implies that both flexural and lon-
gitudinal wave-energies are transported by whichever wave-
type that is able to propagate, and that wave transmission is
only effectively reduced in frequency bands where all the
wave-types present are sufficiently attenuated. Whether this
also applies for periodic structures with extended �long� and
multiresonant side-branches and for systems with typical val-
ues of structural damping �as opposed to undamped systems�
is examined in this paper. An understanding of this type of
transmission path is of considerable practical interest, for
example, in the prediction of structureborne sound transmis-
sion in web-stiffened panels, in ship hulls that have decks to
one side only, and in supporting column-structures in
building-skeletons.
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Periodic structures have been studied for many years but
only a few authors have considered the problem of wave
coupling and the effect of structural damping thereon. In an
experimental investigation Gösele3 measured the structure-
borne sound transmission in a model structure representing
the outer wall and flanking columns of a building structure,
which was loaded asymmetrically with thick floor plates,
causing a significant characteristic mobility-mismatch in the
order of 1:70. It was shown that stiffening of the wall by two
flanking columns significantly enhanced the wave transmis-
sion, as vibrational energy was transported through the col-
umns rather than the wall. Presumably flexural-longitudinal
wave coupling or flexural-torsional wave coupling or combi-
nations thereof caused this. Mead and Markus4 studied
flexural-longitudinal wave coupling in a simple multisup-
ported beam loaded eccentrically with single degree-of-
freedom oscillators on levers, and they demonstrated that a
high value of structural damping in the wave-carrying beam
resulted in a very substantial decrease in the coupling be-
tween flexural and longitudinal motions. Whether such a de-
crease occurs in a moderately damped engineering structure
like that sketched in Fig. 1 is examined in the present paper.

A. Fundamental relations for periodic structures

Periodic structure theory is briefly summarized in a
companion paper,1 so it is only the most basic relations that
will be given here. Wave propagation in infinite periodic
structures can be determined from knowledge of the dynamic
properties of just a single “periodic element.” Consider har-
monic wave motion in an undamped and infinite periodic
structure composed of repeated elements that are coupled
with one another through the smallest possible number of
motion coordinates n. The response of such a structure is
governed by n characteristic free, harmonic wave-types,
which can exist simultaneously and independently at any
frequency.5–7 These wave-types occur in n pairs of positive
and negative-going waves, with the corresponding propaga-
tion characteristics being described by a pair of complex and
frequency-dependent characteristic “propagation constants”
�= ± ��R+ i�I�. Usually, �R is called the “attenuation con-
stant” and �I the “phase constant;” both quantities are de-
fined as being positive. So, if only a single positive-going
characteristic harmonic wave with propagation constant �
and angular frequency � travels through the system, then the
complex displacements q�x�=q��� and q��+ l� at identical
positions � in adjacent elements of length l are related by

q��+ l�ei�t=e�q���ei�t. Hence, if the solution of � takes on
negative values the wave is progressing in the positive direc-
tion. These relationships show that free wave motion is pos-
sible only in frequency bands where � is purely imaginary,
that is, �= ± i�I. These bands are known as “propagation
zones” or “passbands.” For negligible structural damping a
wave thus propagates throughout the system without change
in amplitude. The frequency bands in which � is real, that is,
�= ±�R or �= ±�R± i�, are called “attenuation zones” or
“stopbands,” since no transport of vibrational energy is pos-
sible and the wave amplitude is attenuated �reduced� from
element to element.

B. Background and outline of paper

The paper examines wave propagation and response in
asymmetrical periodic structures of the type shown in Fig. 1,
which exemplifies a tri-coupled periodic structure with mul-
tiresonant point loadings caused by continuous cross-
members �or side-branches�. Damping loss factors in build-
ing structures, for example, typically take values in the range
of 0.01–0.05, and this cannot be neglected in a prediction of
wave transmission. The influence of structural damping on
wave propagation and flexural-longitudinal wave coupling in
a semi-infinite periodic structure is therefore examined nu-
merically in Sec. II by using the expression derived in a
companion paper.1 The simplifying assumption behind the
use of infinite or semi-infinite periodic systems is well justi-
fied for such analyses of wave propagation phenomena.
However, most engineering structures consist of a relatively
small number of periodic elements, which are only moder-
ately damped. This means that reflections from the ends of a
periodic system cannot be ignored and the system thus has to
be treated as a finite periodic system, which, for a multi-
coupled periodic system, complicates the analysis consider-
ably. A derivation of the frequency response functions of
such finite periodic structures is of course very important,
but has not been done before to the authors’ knowledge.

Section III therefore presents an extensive derivation of
a general expression for the junction-response of finite and
multicoupled periodic systems. This is derived as a generali-
zation of the governing expression for finite, mono-coupled
periodic systems.8 Together with a set of generalized wave
coordinates the present derivation also utilizes the eigenvec-
tors of displacements and wave forces that are associated
with the characteristic wave-types, which can exist in a mul-
ticoupled periodic system;9 the present analysis is based on

FIG. 1. �a� Periodic structure with asymmetrical side-
branches in the form of transverse beams; �b� corre-
sponding periodic element that is symmetrical with re-
spect to its center x= l /2.
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the receptance approach to the periodic structure theory.7,9,10

Basically, this approach utilizes that harmonic displacements
and forces at the terminals of a single periodic element are
related by its dynamic receptances—or mobilities if these are
preferred. With the harmonic time variation omitted, and by
denoting the left- and right-hand ends of a periodic element
by indices l and r, respectively, these relations between dis-
placements q and forces F read ql=�llFl+�lrFr and qr

=�rlFl+�rrFr, where �ll and �rr are the direct receptances of
the periodic element and �lr and �rl are the transfer recep-
tances. Now, relationships between displacement amplitudes
in adjacent periodic elements and between corresponding
forces were given in Sec. I A; evaluating these at the left-
and right-hand ends of a single periodic element yield qr

=e�ql and Fr=−e�Fl. So, by substitution, the propagation
constant � is readily expressed in terms of the element
receptances.1

Finally, in Sec. IV the derived junction-receptance is put
into use in response predictions of a specific test-structure
with eight periodic elements and with structural terminations
at the extreme ends. Audio-frequency vibration responses of
this tri-coupled periodic structure are predicted numerically
over a broad range of frequencies and the results are com-
pared with experimental measurements on a nominally iden-
tical periodic test-structure.

II. NUMERICAL INVESTIGATION OF THE EFFECT OF
DAMPING

A wave analysis and numerical parameter study have
been conducted for investigating the effect of structural
damping on wave coupling and response of asymmetrical
periodic structures that undergo flexural and longitudinal vi-
bration. We consider a semi-infinite periodic structure similar
to that depicted in Fig. 1, albeit extending toward infinity in
the positive x-direction. This free or semidefinite system is
driven by an external forcing vector F0ei�t that represents
both longitudinal and transverse force excitations as well as
moment excitation. Note that application of any single one of
these force components will generate a coupled or mixed
response comprising both longitudinal and flexural motions
because of the structural asymmetry. The vibration response
of the wave-carrying components �and elsewhere� is gov-
erned by three motion degrees-of-freedom, comprising dis-
placements u�x , t�, w�x , t�, and ��x , t� in the longitudinal,
transverse, and rotational directions.

The periodic element of the structure, shown in Fig.
1�b�, consists of a wave-carrying beam or column component
of length l, and two multiresonant load components in the
form of transverse beams of length lt. For convenience in
analysis the periodic element is chosen to be symmetrical
about the middle of the column component, which means
that the element can be rotated 180° about the y axis without
changing its dynamic properties. This symmetry of the peri-
odic element is achieved by halving each transverse beam in
the z direction into beams of half-width. Thus, when every
second periodic element is rotated 180° about its vertical
center axis and periodic elements are physically connected to
one another, then the transverse beams of half-width become

sideways interconnected to form transverse beams of full
width.

The structural properties and dimensions of the compo-
nents used in the present simulations are identical to those
used in the predictions and experimental investigation in Sec.
IV. The wave-carrying component has length l=235 mm,
thickness h=15 mm, and width b=20 mm, whereas the ap-
pended transverse beam has length lt=380 mm �i.e., lt

�1.6· l�, thickness-parameter ht=h, and width-parameter bt

=b. The structure is made of acrylic with Young’s modulus
E=5.4·109 N/m2 and density �=1200 kg/m3. Material
damping is modeled by letting Young’s modulus become
complex as E� =E�1+ i��, where � is the damping loss factor.
Calculations have been made for three values of damping
loss factor �, namely 0.001, 0.01, and 0.056, where the high
value is identical to the experimentally determined loss fac-
tor for an acrylic test beam sample.

The semi-infinite structure considered is similar to the
one investigated in a companion paper,1 except for dimen-
sions of the transverse beam components. Hence, the expres-
sions used in the present numerical simulations for calculat-
ing the required quantities like element receptances,
propagation constants, associated force and displacement
vectors, energy ratios and vibration responses, can all be
found in Ref. 1 and will not be repeated here. It should be
mentioned that the element’s components are modeled using
Bernoulli-Euler beam theory, albeit with correction for shear
deformation,11 and that the computations have been done us-
ing MATLAB.

A. Propagation constants

Since the periodic structure is tri-coupled, asymmetrical,
and semi-infinite, its response thus results from the sum of
contributions from three positive-going characteristic waves,
which all include components of the displacements u�x , t�,
w�x , t�, and ��x , t�. The wave-field in each wave-carrying
beam component is of course composed of both positive and
negative-going waves; these waves result in the positive-
going characteristic waves. Note that for the finite system
studied later on, one also has to include three corresponding
negative-going characteristic waves due to reflections from
boundaries. Accordingly, the waves-types in the periodic
structure are associated with three pairs of propagation con-
stants �i= ± ��i,R+�i,I� where i=A ,B ,C. Here �i,R and �i,I

are defined as positive and thus the three positive-going
waves are associated with the values �i,+=−�i=−��i,R

+ i�i,I�, �and the three negative-going waves are associated
with �i,−=�i=�i,R+ i�i,I�.

The calculated wave characteristics for the semi-infinite
structure are presented in Fig. 2. This shows the frequency
variation of the real and imaginary parts of the propagation
constants, that is, the attenuation constants �R and the phase
constants �I, associated with the three pairs of wave-types.
In Fig. 2�a� results are shown for a very low damping value
of �=0.001; this shows that for frequencies above 35 Hz one
wave-type, say type C, is governed by a very high attenua-
tion constant and this wave can thus be regarded as a flexural
near-field.1 The two other wave-types, say A and B, which
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alternate between being either propagating or attenuated,
must be regarded as being of both longitudinal and flexural
nature. The very complicated pattern of propagation zones
and attenuation zones shown here are to a large extent caused
by the various modes of the transverse beams; the occurrence
of both smooth and resonant type attenuation zones is ex-
plained in detail in Ref. 1. Still, it should be mentioned that
no direct crossing of the phase constants of wave-type A and
B occurs; the phase constants either �i� diverge or �ii� merge,
so that the propagation constants become almost complex
conjugates with nonzero attenuation constant. The first phe-
nomenon is most pronounced at 1066, 1330, and 2175 Hz; at
these frequencies the phase constant of each wave “jumps
to” the slope of the other wave and the flexural-longitudinal
wave coupling is found to be particularly strong. Usually the
steeper phase characteristic is associated with a flexural-type
wave whereas the more gradual and nearly linear phase char-

acteristic is associated with a longitudinal-type wave. The
second phenomenon occurs at several frequencies but may
be seen to be most apparent in the bands around 560, 1860,
2580, 2830, 4755, and 5125 Hz. In these bands the wave
with strongly coupled longitudinal-flexural motions is at-
tenuated as it progresses through the periodic structure.

With a “moderate value” of structural damping of �
=0.01, the results in Fig. 2�b� show that this increased damp-
ing causes a weak widening of the attenuation zones into
previous propagation zones as well as a decrease in magni-
tude of the attenuation constants at peak attenuation frequen-
cies. Furthermore, the attenuation constants and phase con-
stants slightly separate in the frequency bands, which were
previously assigned as complex conjugate zones in Fig. 2�a�.
This indicates that flexural-longitudinal wave coupling de-
creases when structural damping is increased, and this is
clearly demonstrated in Fig. 2�c�, which shows results for a
damping value of �=0.056; in contrast to the results in Fig.
2�a� the phase constants are now seen to cross-over directly
and become almost linear in certain frequency bands. This is
the case in the frequency range from 0 to 1066 Hz for wave-
type A and from 1066 Hz and upwards for wave-type B. As
mentioned before, this almost linear phase characteristic is
typically associated with a longitudinal wave. Figure 2�c�
also reveals that the predominantly longitudinal wave is able
to progress through the structure with relatively little attenu-
ation in wave amplitude, since the associated attenuation
constant is less than 0.3 in most parts of the frequency range
considered. The predominantly flexural wave, however,
which is associated with the steeper phase characteristic, is
more significantly attenuated in nearly the whole frequency
range.

Now, a more quantitative characterization of the wave-
types than inspections of the propagation constant curves can
provide, requires a determination of the displacement contri-
butions and associated energies in the different wave-types.
Such a characterization can be revealed by computing the
normalized displacement vector associated with each wave-
type and from this the corresponding wave energy.1,4

B. Nature of wave-types

The relative amounts of flexural and longitudinal mo-
tions contained in each wave-type can be quantified by the
associated kinetic energy ratio �Ekin,F /Ekin,L�, being the ratio
between maximum kinetic energies of flexural and longitu-
dinal motions in the wave-carrying column component. Fig-
ure 3 shows these energy ratio levels corresponding to the
propagation constants given in Fig. 2. From Fig. 3�a�, where
�=0.001, it is readily seen that wave-types A and B must
both be classified as being longitudinal-flexural, since each
of them alternates in a complicated manner between being
either predominantly longitudinal or flexural, or occasionally
fully mixed, with approximately equal contributions. Wave-
type C, however, has an energy ratio level of more than 70
dB in almost the entire frequency range and thus can be
regarded as a flexural near-field. In complex conjugate zones
the energy levels of the two mixed wave-types are seen to be

FIG. 2. Frequency variation of the real and imaginary parts of the propaga-
tion constants �i=�i,R+�i,I for the three wave-types: �---� flexural-
longitudinal wave A; �—� flexural-longitudinal wave B; �-·-� predominantly
flexural near-field C. Damping loss factors: �a� �=0.001; �b� �=0.01; �c�
�=0.056.
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equal. The crossing of the energy ratios occurs only in the
earlier mentioned regions where the phase constants of Fig.
2�a� diverge from one another.

When the loss factor is increased to �=0.01, Fig. 3�b�
shows that the two mixed wave-types A and B separate in the
frequency bands, which were formerly complex conjugate
zones. Furthermore, peaks and troughs are smoothed espe-
cially at high frequencies. The pattern of the energy ratios,
though, is the same as in Fig. 3�a�, but a further increase of
the loss factor to �=0.056 drastically changes this, as the
two wave-types become almost completely separated, see
Fig. 3�c�. Now, the two energy ratios cross only at 1066 Hz,
which is the region where the two phase constants in Fig.
2�c� diverge from one another. Consistent with earlier state-
ments it is seen that the linear parts of the phase constants in
Fig. 2�c� are associated with a predominantly longitudinal
wave, whereas the steeper phase characteristic is associated
with a predominantly flexural wave.

C. Junction responses

Finally the effect of damping on the response of the
semi-infinite structure is investigated. For a harmonic mo-
ment excitation of unit magnitude Fig. 4 shows the maxi-
mum flexural displacement responses of the column compo-
nent in the first eight periodic elements. For a loss factor of
�=0.001, it is seen from Fig. 4�a� that flexural waves are
propagating with practically no attenuation from element to
element in approximately half the frequency range consid-
ered. A closer inspection reveals that some of the attenuation
bands in Fig. 2�a� have little or no influence on the response.
This phenomenon, which is due to flexural-longitudinal

wave coupling, is readily seen in the frequency bands around
1200, 3750, and 6000 Hz, and occurs whenever one wave-
type is propagating and the other wave-type is strongly at-
tenuated and their energy ratio levels in Fig. 3�a� are less
than, say, 20 dB apart. Nevertheless, because of the moment
excitation the predominantly flexural wave will dominate the
response once the energy ratio levels are more than 20 dB
apart; this evidently occur in the bands around the frequen-
cies 150, 310, 875, 1595, 3440, 4010, 4450, and 5440 Hz. In
complex conjugate zones, e.g., around 1860, 2580, and 2830
Hz, both wave-types are attenuated and the flexural re-
sponses and longitudinal responses are thus both reduced
from element to element.

Figure 4�b� shows the flexural responses for a high loss
factor of �=0.056. This increase of structural damping dras-
tically affects the junction responses of the semi-infinite pe-
riodic structure; at all frequencies from about 1600 Hz and
upwards the flexural responses are significantly reduced from
element to element. This is because the flexural motion is
dominated by wave-type A, which is considerably attenuated.
However, in frequency bands where wave-type A is strongly
attenuated, e.g., around 1200, 2000, and 4600 Hz, this wave
becomes insignificant after just a few elements and the less
attenuated wave-type B then takes over and dominates the
flexural response of the elements that follows. Gösele3 ob-
served a similar wave conversion behavior and Mead and
Markus4 also discussed this phenomenon.

For a harmonic longitudinal unit force excitation Fig. 5
shows the maximum longitudinal displacement responses of
the column component in the first eight elements. For a loss
factor of �=0.001, Fig. 5�a� shows that longitudinal waves
are propagating in almost the whole frequency range. Up to
3400 Hz and from 4500 Hz and upwards, this wave propa-
gation is only interrupted by narrow bands of attenuation
arising mostly from complex conjugate zones. In the fre-
quency band from 3400 to 4500 Hz wider attenuation zones
occur, as the predominantly longitudinal wave is signifi-

FIG. 3. Energy ratios Ekin,F /Ekin,L for the three wave-types: �---� flexural-
longitudinal wave A; �—� flexural-longitudinal wave B; �-·-� predominantly
flexural near-field C. Damping loss factors: �a� �=0.001; �b� �=0.01; �c�
�=0.056.

FIG. 4. Maximum transverse displacements wmax in column component of
the first eight elements of semi-infinite periodic structure. Excitation by a
harmonic point moment of unit amplitude. Damping loss factors: �a� �
=0.001; �b� �=0.056.
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cantly attenuated and the energy ratio levels in Fig. 3�a� are
more than 20 dB apart.

In the present case of relatively light modal point load-
ings posed by the transverse beams, it can be shown that the
longitudinal displacement responses—apart from minor
deviations—follow closely the asymptotic response of a
simple continuous and semi-infinite column structure of the
same cross-sectional area S. Essentially, this implies that the
corresponding longitudinal velocity responses of the system
are almost independent of frequency in the range considered.

Figure 5�b� shows the longitudinal responses for the
high loss factor of �=0.056. This increase of damping en-
hances only the attenuation slightly at higher frequencies.
Furthermore, the damping enforces no particular change in
the response pattern as attenuation occurs at the same fre-
quencies as in Fig. 5�a�. As the predominantly longitudinal
wave-type has the lowest value of attenuation constant at all
frequencies, then this is governing the longitudinal responses
at all junctions of the structure.

III. FINITE PERIODIC STRUCTURES

Engineering structures that are spatially periodic often
consist of relatively few periodic elements; this means that
reflections from the extreme boundaries cannot be neglected
and the periodic structures must therefore be treated as finite.

Ohlrich8 derived governing expressions for the response of
finite, mono-coupled periodic systems in terms of the sys-
tem’s junction-receptances. The same derivation procedure is
generalized herein and used for determining the junction-
receptances of finite and multicoupled periodic systems. A
general expression for a n	n junction-receptance matrix is
derived for a system with arbitrary terminations. In this deri-
vation use is also made of a wave-reflection technique devel-
oped by Mead,9 and this was outlined and extended in the
companion paper.1

Figure 6 shows schematically a finite system with N
periodic elements and arbitrary terminations A and B at junc-
tions O and N, respectively. These terminations may be de-
fined by their n	n receptance matrices �A and �B. It is
assumed that the structure is excited at junction j by an ex-
ternal harmonic force vector F je

i�t, which introduces a dis-
continuity. In order to determine the harmonic response at an
arbitrary junction of the total system, it is expedient8 to ana-
lyze the system as being composed of two subsystems in
parallel, as shown by the block diagram in Fig. 6�b�. The
motions generated in each subsystem can be represented by n
characteristic positive-going waves and n characteristic
negative-going waves, of which each wave is associated with
the propagation constants �i,+=−�i and �i,−=�i, respec-
tively, and where i=1,2 ,3 ,… ,n. The effect of the termina-
tions can be taken into account by determining the corre-
sponding reflection matrices.

A. Reflection from system boundaries

A relationship between the n waves incident on a bound-
ary and the n waves being reflected by this is derived in the
following. Consider the ith positive-going wave at angular
frequency � impinging on boundary B. This wave has the
propagation constant �i,+=−��i,R+�i,I� and is associated
with an n-element force eigenvector Fi,B+ given by

Fi,B+ = fi,+
i,B+, �1�

where fi,+ is a normalized force vector with n entries and

i,B+ is a generalized wave coordinate at boundary B. This
force vector fi,+ only depends upon the receptances and
propagation constants of the periodic element, whereas 
i,B+

is also a function of the position in the structure and the type
of external excitation. The normalized force vector fi,+ is an
eigenvector obtained for each wave-type as described in a

FIG. 5. Maximum longitudinal displacements umax in column component of
the first eight elements of semi-infinite periodic structure. Excitation by a
harmonic longitudinal point force of unit amplitude. Damping loss factors:
�a� �=0.001; �b� �=0.056.

FIG. 6. �a� Block diagram of a finite multicoupled pe-
riodic structure with arbitrary terminations A and B. �b�
Free body diagram for interior junction excitation.
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companion paper.1 Corresponding to the force eigenvector
there is a displacement vector given as

qi,B+ = �i,+
i,B+, �2�

where �i,+ is a normalized displacement vector.
The relationship between the normalized force vector fi,+

and the corresponding displacement vector �i,+ yields1

�i,+ = �llfi,+ − �lrfi,+e−�i, �3�

where �ll and �lr, respectively, are the direct and transfer
receptance matrices of the periodic element. At boundary B
this particular positive-going wave causes n characteristic
negative-going waves to be reflected back into the periodic
system. So, if not only one but n characteristic waves im-
pinge on the boundary B, then each of these is reflected into
n negative-going waves. These n	n reflected waves form n
negative-going waves, each of which consists of n wave con-
tributions. Associated with each of these n negative-going
waves there is a propagation constant �i, a force eigenvector
Fi,B−, and a corresponding displacement vector qi,B− that are
given by

Fi,B− = fi,−
i,B−, qi,B− = �i,−
i,B−, �4�

respectively. By analogy to Eq. �3� the normalized displace-
ment vector and force vector are related as

�i,− = �llfi,− − �lrfi,−e�i. �5�

Now, the total force vector FB at boundary B is a sum of
2n force eigenvectors from n impinging waves and n re-
flected waves, which yields

FB = �
i=1

n

fi,+
i,B+ + �
i=1

n

fi,−
i,B− = f+�B+ + f−�B−, �6�

where f+ and f− are n	n element matrices containing n nor-
malized force eigenvectors and �B+ and �B− are column vec-
tors containing n generalized coordinates associated with the
positive and negative-going waves, respectively. In a similar
manner the total displacement vector at boundary B can be
expressed as a sum of contributions from n impinging and n
reflected waves giving

qB = �
i=1

n

�i,+
B,i,+ + �
i=1

n

�i,−
B,i,− = �+�B+ + �−�B−, �7�

where �+ and �− are matrices with n	n entries containing
normalized displacement vectors of the n positive and
negative-going waves, respectively. Using Eqs. �3� and �5�
these can be written as

�+ = �llf+ − �lrf+ed
−�, �8�

�− = �llf− − �lrf−ed
�. �9�

Here, the notations ed
−� and ed

� represent diagonal matrices
containing all values of e−�i and e�i, respectively. The
boundary condition at B is given by qB=�BFB, and inserting
Eqs. �6� and �7� into this gives

�+�B+ + �−�B− = �B�f+�B+ + f−�B−� . �10�

This yields a relationship between the generalized wave co-
ordinate vectors of the reflected waves �B− and the incident
waves �B+:

�B,− = − ��Bf− − �−�−1��Bf+ − �+��B+, �11�

where superscript −1 denotes a matrix inversion. This may
be expressed in short form as

�B− = rB�B+, �12�

where rB is the matrix of reflection factors at boundary B.
The reflection matrix of boundary A can be found simi-

larly by noting that the incident waves on A are negative-
going and the reflected waves are positive-going. Thus, let
the force vectors of the incident and reflected waves be given
by

Fi,A− = fi,−
i,A−, Fi,A+ = fi,+
i,A+, �13�

respectively. The total force vector at boundary A is a sum of
force eigenvectors corresponding to n incident and n re-
flected waves, i.e.,

FA = − f+�A+ − f−�A−, �14�

and the total displacement is given by

qA = �+�A+ + �−�A−. �15�

Now, the boundary condition at A is qA=�AFA, and substi-
tution of Eqs. �14� and �15� into this finally yields a relation-
ship between the generalized wave coordinate vectors of the
reflected waves �A+ and the incident waves �A−:

�A+ = − ��Af+ + �+�−1��Af− + �−��A−. �16�

In short form this reads

�A+ = rA�A−, �17�

where rA is the reflection matrix of boundary A.

B. Matrix of direct receptances of j-element subsystem

An expression for the n	n direct receptance matrix of
the left-hand subsystem with j elements in Fig. 6�b� will now
be derived. The displacement vector qO at junction O is a
sum of contributions from displacement vectors associated
with n positive-going and n negative-going waves. This can
be expressed as

qO = qO+ + qO− = �+�O+ + �−�O−. �18�

Further, the generalized wave coordinate vectors for the
positive and negative-going waves at the other end of the
subsystem, j junctions to the right, yield

� jl+ = ed
−j��O+, �19�

� jl− = ed
j��O−, �20�

respectively. Here the notation ed
−j� and ed

j� represent diago-
nal matrices containing all values of e−j�i and ej�i, respec-
tively. By utilizing these expressions the total displacement
vector q jl at this position reads
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q jl = q jl+ + q jl− = �+� jl+ + �−� jl−

= �+ed
−j��O+ + �−ed

j��O−. �21�

Now, �O,+ and �O,− are related through the reflection matrix
rA of boundary A given by Eq. �17� and utilizing this yields

q jl = ��+ed
−j�rA + �−ed

j���O−. �22�

In a similar way the corresponding force eigenvector F jl is
obtained as

F jl = F jl+ + F jl− = − f+� jl+ − f−� jl−

= − f+ed
−j��O+ − f−ed

j��O−, �23�

and further use of the reflection matrix rA gives

F jl = �− f+ed
−j�rA − f−ed

j���O−. �24�

Solving for �O,− and substitution in Eq. �22� finally yields a
relationship between the displacement vector q jl and force
vector F jl at junction j,

q jl = � j jF jl, �25�

where the direct receptance matrix � j j of the j-element sub-
system is given by

� j j = ��+ed
−j�rA + �−ed

j���− f+ed
−j�rA − f−ed

j��−1. �26�

C. Matrix of transfer receptances of „N− j…-element
subsystem

Consider the subsystem with �N− j� elements lying to
the right of the external force discontinuity in Fig. 6�b�. For
this subsystem driven at j the transfer receptance matrix �mj

of junction m can be derived using a procedure similar to that
above. So, the displacement vector q jr at the excited junction
j is expressed as a sum of contributions from n positive-
going waves and n negative-going waves, that is,

q jr = q jr+ + q jr− = �+� jr+ + �−� jr−, �27�

and the total force vector F jr at junction j reads correspond-
ingly

F jr = F jr+ + F jr− = f+� jr+ + f−� jr−. �28�

Further, the displacement vector at junction m, that is �m
− j� junctions to the right, is

qm = �+ed
−�m−j��� jr+ + �−ed

�m−j��� jr−. �29�

At boundary B, which is �N− j� junctions to the right, the
generalized wave coordinate vectors �B+ and �B− of the in-
cident and reflecting waves are given as

�B+ = ed
−�N−j��� jr+, �B− = ed

�N−j��� jr−, �30�

respectively, and since these two vectors are related in Eq.
�12� by the reflection matrix rB of boundary B, the following
identity is obtained:

ed
�N−j��� jr− = rBed

−�N−j��� jr+. �31�

Rearranging this gives

� jr− = ed
−�N−j��rBed

−�N−j��� jr+, �32�

which by substitution in Eqs. �28� and �29� yields

qm = ��+ed
−�m−j�� + �−ed

�m−j��ed
−�N−j��rBed

−�N−j���� jr+ �33�

and

F jr = �f+ + f−ed
−�N−j��rBed

−�N−j���� jr+, �34�

respectively. From Eq. �34� a relation between the external
force vector F jr and � jr,+ is obtained

� jr,+ = �f+ + f−ed
−�N−j��rBed

−�N−j���−1F jr. �35�

Finally, substituting this into Eq. �33� gives the displacement
vector qm at junction m resulting from the force vector F jr at
junction j, that is

qm = �mjF jr, �36�

where we have introduced the transfer receptance matrix �mj

of the right-hand subsystem:

�mj = ��+ed
−�m−j�� + �−ed

�m−j��ed
−�N−j��rBed

−�N−j���

	�f+ + f−ed
−�N−j��rBed

−�N−j���−1. �37�

Thus, the corresponding direct receptance matrix � j j is ob-
tained by letting m= j, so that

� j j = ��+ + �−ed
−�N−j��rBed

−�N−j���

	�f+ + f−ed
−�N−j��rBed

−�N−j���−1. �38�

D. Matrix of junction-receptances of total
system

What remains is the determination of the junction-
receptances of the total system in terms of the receptance
matrices � j j, �mj, and � j j of the two subsystems. Since the
two subsystems are in parallel the externally applied force
vector F j must be in equilibrium with the internal forces
acting on the subsystems, that is, F j =F jl+F jr. Continuity of
displacements at the excitation point furthermore yields q j

=q jl=q jr.
Inserting Eqs. �25� and �38� into the last part of this

continuity condition gives

F jl = � j j
−1� j jF jr, �39�

and substituting this into the stated force equilibrium condi-
tion leads to

F j = �I + � j j
−1� j j�F jr, �40�

where I is the unity matrix. Now, F jr can be eliminated by
combining Eqs. �36� and �40�, and solving for qm finally
gives

qm = �mjF j , �41�

where �mj is the matrix of transfer receptances of the total
system:

�mj = �mj�I + � j j
−1� j j�−1. �42�

Substituting the expressions derived above for � j j, �mj,
and � j j in Eq. �42� results in a rather complicated expression
for the transfer receptance �mj. Nevertheless, the solution of
this can be implemented numerically and receptances have
been calculated without computational difficulties for the
limited number of cases studied.
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IV. RESPONSE PREDICTION AND EXPERIMENTAL
VERIFICATION

Responses in all three junction coordinates of the eight-
element periodic structure in Fig. 1�a� were predicted nu-
merically using calculated propagation constants and the
junction-receptances calculated from Eqs. �26�, �37�, �38�,
and �42�. Since the transverse beams of each periodic ele-
ment are taken to be of half-width to sustain element sym-
metry, the end terminations of the finite periodic structure are
in this case also modeled as transverse beams of half-width
in order to form the full-width physical beams at the ends of
the structure in question. This implies that the boundary re-
ceptance matrices �A and �B are given by those of the trans-
verse beam components as can be found in Ref. 1. Other end
terminations complying with motion in the xy plane may
readily be included.

In order to verify the theoretical model an experimental
investigation was performed on a nominally identical peri-
odic structure; Fig. 7 shows the experimental arrangement.
The structure was made of acrylic, and was suspended in
elastic wires so it could vibrate freely in all directions. The
structure was forced at the end by an electro-dynamic vibra-
tion exciter �Brüel & Kjær Type 4809� fed by a white noise
signal. A force transducer �B&K Type 8200� measured the
input force and junction responses in all three motion coor-
dinates were measured by using 2.5 g accelerometers �Brüel
& Kjær Type 4393�. The data acquisition and analysis were
performed by a dual-channel FFT analyser �Brüel & Kjær
Type 3160 C, “Pulse-System”� using a frequency resolution
of 1 Hz in the band from 0 to 6400 Hz.

For ease of comparison the propagation constants from
Fig. 2�c� are shown in Fig. 8 with a logarithmic frequency
axis. In the following the numerical predictions for the finite

periodic structure are compared with the measured junction-
mobilities.

A. Response to longitudinal „axial… force excitation

The finite periodic structure was first examined for ex-
citation by a longitudinal force F0�t� acting at junction 0 as
shown in Figs. 1 and 7. Longitudinal velocity responses u̇j�t�
were determined at all junctions j=0–8, giving the complex
transfer mobilities Yu,j0= u̇j /F0. As examples of predicted
and measured mobilities Fig. 9 shows results for junctions 0
and 8, in terms of magnitude and phase spectra. These results
clearly reveal that there is a very good agreement between
the predicted and measured mobilities. It is only at very low
frequencies, below 50 Hz, that predicted and measured re-
sults deviate slightly. This is because the experimental struc-
ture oscillates to and through like a pendulum in its thin
wire-suspensions, which were not sufficiently resilient at
such low frequencies. Thus, below 50 Hz the experimental
periodic structure cannot be regarded as being truly semidefi-
nite, that is to say, totally free in space. The same phenom-

FIG. 7. Experimental arrangement. Point force excita-
tion in longitudinal direction at junction 0.

FIG. 8. Wave propagation constants; as in Fig. 2�c�, but with logarithmic
frequency axis.

FIG. 9. Junction longitudinal mobility of finite periodic structure with eight
elements; the system is driven at junction 0 by a longitudinal �axial� point
force: �—� measurements; �- - -� numerical prediction using Eq. �42�; �···�
numerical prediction for a corresponding semi-infinite periodic structure. �a�
Direct mobility Yu,00= u̇0 /F0, and �b� transfer mobility Yu,80= u̇8 /F0.
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enon also causes calculated mobilities to be slightly higher
than measured results at frequencies below 20 Hz, where the
structure vibrates as a rigid mass, i.e., with a negative slope
in magnitude and a phase of −� /2.

Also shown in Fig. 9 are calculated junction-mobilities
for a corresponding, but semi-infinite periodic structure. By
comparison with the calculated mobilities of the finite peri-
odic structure, it is evident that this mostly behaves strongly
resonant despite its relatively high damping loss factor. In
frequency zones of sufficiently high attenuation constant �R,
however, it is also apparent that the finite periodic structure
can be treated approximately as being semi-infinite. In Fig.
9�b� this is seen around 1900 Hz and from 2800 Hz and
upwards, where �R�0.25 and the mobilities of the semi-
infinite and finite periodic structure are close to being iden-
tical. This is in agreement with the “10%-limit-condition”
N�R�1.5 for applying the valuable semi-infinite-structure-
assumption that was derived in Ref. 8 for maximum allow-
able response deviations of 10%, albeit for the case of mono-
coupled periodic structures.

According to Sec. II and Fig. 3�c� the longitudinal mo-
tion is controlled mainly by wave-type A up until 1066 Hz.
Thus, below this frequency, up until N=8 natural frequencies
are expected8,9 to occur within each propagation zone asso-
ciated with wave-type A, provided that there is a full
�-change of the phase constant �I. However, �I varies only
little at frequencies below 1066 Hz because the finite peri-
odic structure is significantly damped, and it is therefore very
few of these resonances of the “eight-mode groups” that are
visible in Fig. 9. The first, second, and third propagation
zones, for example, lie in the bands from 0 to 32 Hz, 41 to
205 Hz, and 224 to 540 Hz, respectively. These bounding
frequencies occur at the peaks and troughs in the dotted re-
sponse curve for the semi-infinite structure. The peaks,
which identify the lower bounding frequencies, correspond
to the natural frequencies of a single periodic element when
its longitudinal and rotational motion coordinates at junc-
tions are free whereas transverse coordinates are locked. Up-
per bounding frequencies are identified by the troughs, which
occur at the natural frequencies of an element with longitu-
dinal and rotational junction coordinates being locked and
transverse coordinates being free.9 The mode of vibration at
the lower bounding frequency of 41 Hz, for example, is
strongly influenced by the transverse beams, which all vi-
brate in-phase virtually in their fundamental sliding-free
mode. All junction longitudinal responses are also in-phase.
The upper bound at 205 Hz is controlled by the “resonating”
transverse beams vibrating in their second, virtually
clamped-free mode. Longitudinal motions at junctions are
thus virtually locked, and in the absence of damping the
transverse beams will all vibrate in anti-phase with one an-
other, because the junction-to-junction phase change is �.
This influence of the transverse beams corresponds to the
action of multiple dynamic neutralizer—or “absorbers”. The
same pattern is repeated in the next propagation zone from
224 to 540 Hz, just with increasing mode order, i.e., basically
governed by the second sliding-free mode and the third
clamped-free mode of the transverse beams.

Figure 10 shows calculated and measured cross mobili-

ties Y�,j0= �̇ j /F0 relating rotational velocities �̇ j�t� at junc-
tions to the longitudinal driving force F0�t� at junction 0.
These rotational velocities, which were measured using the
finite difference from two accelerometers placed concentri-
cally with respect to the column’s neutral axis, are caused
exclusively by longitudinal-flexural wave coupling in the
structure. Disregarding results below 50 Hz, we find good
overall agreement up until about 1200 Hz between predic-
tions and measurements for these cross-coupled responses.
Especially the peak values are almost the same at the fre-
quencies 65, 185, 224, 420, 600, and 1100 Hz. These peaks
are caused mainly by the strong longitudinal responses,
which couple into rotational responses. The broadband and
low-valued troughs centered around 100, 300, and 750 Hz
are also in agreement. These are caused mainly by the low
energy ratio of the predominantly longitudinal wave-type,
that is, wave-type A from 0 to 1066 Hz and wave-type B
from 1066 to 6400 Hz, see Fig. 3�c�. Finally, with an overall
level difference of about 5 dB the agreement is less good in
the range from 1200 to 3000 Hz.

B. Response to offset force excitation

In a second investigation the periodic structure was
driven by an offset force F0,off�t� in order to excite primarily
flexural-type waves. Figure 1 shows how the force was ap-
plied perpendicular to the first transverse beam, at a vertical
distance of 183 mm from the previous driving point. This
excitation resulted in a combined force and moment excita-
tion at junction 0, of which the effect of the moment excita-
tion was anticipated to dominate. For the prediction, this
combined excitation was determined by calculating the trans-
fer responses of the driven transverse beam and then using
reciprocity between the offset point and junction 0.

For this forcing Fig. 11 shows an example of numerical
predictions and measurements, in the form of junction rota-
tional velocities per unit offset force, that is, the rotational

cross mobilities Y�,j0,off= �̇ j /F0,off. These single point junc-
tion mobilities are largely representative descriptors for the

FIG. 10. Junction rotational mobilities Y�,j0= �̇ j /F0, for j=0–8, of finite
periodic structure with eight elements; the system is driven at junction 0 by
a longitudinal point force. �a� Numerical predictions using Eq. �42�, and �b�
measurements.
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flexural vibration in both the transverse beams and the wave-
carrying column components. The responses are here seen to
be governed by relatively narrow propagation zones, which
are separated by strong, broadband attenuation zones. There
is a fine agreement between predicted and measured results
from 50 to about 1400 Hz. At the higher frequencies, how-
ever, discrepancies are noted particularly at the deep trough
in the attenuation zone at about 1500 Hz. These deviations
probably originate from finite-difference measurement prob-
lems associated with small rotational responses at high fre-
quency troughs. Several moderate peaks from finite-system
resonances can be observed especially in the bands from ap-
proximately 50 to 115 Hz and from 350 to 540 Hz. Further-
more, at most frequencies from 1066 Hz and upwards, where
the attenuation constant of the predominantly flexural wave-
type A takes values of �R�0.35, the vibrations are attenu-
ated by more than 20 dB from junction 0 to junction 8. In the
band from 3300 to 4800 Hz this attenuation is even 40 dB or
more. This is again in accordance with the strong attenuation
constant of wave-type A in Fig. 8, and this complies also
with the predicted responses of the corresponding semi-
infinite structure in Fig. 4�b�.

Below 1066 Hz the rotational motion is expected to be
controlled by the predominantly flexural wave-type B. How-
ever, since this wave-type is strongly attenuated in some
bands, the contributions from the less attenuated and pre-
dominantly longitudinal wave-type A “takes over” after a
few periodic elements and then dominates the transmission
in the remaining parts of the periodic structure. This flexural-
longitudinal wave coupling, which results in a spatially dual-
rate decrease in magnitudes occurs in several narrow bands
in Fig. 11, but is most clearly observed from 200 to 250 Hz
and around 1200 and 2000 Hz, as is also seen in Fig. 4�b�.

V. CONCLUSIONS

Periodic structure analysis has been further developed in
this study of multicoupled periodic structures of both semi-

infinite and finite extent. Specifically examined are propaga-
tion characteristics of flexural and longitudinal-type waves in
tri-coupled periodic structures with multiresonant side-
branches in the form of asymmetrically appended transverse
beams. The fundamental understanding obtained for this type
of transmission path is of considerable practical interest, if
generalized to represent a plane-wave, normal incidence
model of a similar plate assembly such as web-stiffened pan-
els, ship hulls with decks, and floor-loaded columns in build-
ings.

Numerical results for semi-infinite and tri-coupled peri-
odic systems show that the wave transmission is governed by
a complicated pattern of propagation zones �passbands� for
the two wave solutions which can carry energy, and that
these zones are intervened by many stopbands of both mod-
erate and high-valued attenuation. It is revealed that flexural
and longitudinal motions are coupled in such systems with
multiresonant side-branches, but a parameter study also
shows that structural damping has a significant influence on
this phenomenon. The otherwise strong coupling between
flexural and longitudinal motions occurring in lightly
damped structures decreases when structural damping is in-
creased. For a tri-coupled periodic structure it is found that
this damping-dependent decrease in coupling takes place at
most frequencies for a damping loss factor value of, say, 0.01
or higher. This results in a separation of the wave-field into a
primarily longitudinal wave-type and a primarily flexural
wave-type, of which the latter is attenuated in approximately
half the frequency range considered.

By relaxing the simplifying semi-infinite-structure as-
sumption, a general expression for the junction receptances
of finite and multicoupled periodic systems is derived as a
generalization of the governing expression of mono-coupled
periodic systems.8 This new expression is used for predicting
audio-frequency vibration responses of an eight-element, tri-
coupled periodic structure to two types of point excitations
applied at its end. These predictions are compared with mea-
surements from a freely suspended and nominally identical
finite test-structure. In the case of longitudinal force excita-
tion a very good agreement is found with measured results of
the longitudinal velocity responses at junctions. Moreover, a
comparison with calculated responses for a corresponding,
but semi-infinite periodic structure, shows that the finite pe-
riodic structure behaves strongly resonant in most propaga-
tion zones despite its relatively high damping loss factor of
0.056. A good correspondence is also achieved from 50 to
3000 Hz for junction rotational velocities caused by either
the longitudinal force or a combined moment and force ex-
citation. For the longitudinal excitation these junction rota-
tional velocities are caused exclusively by the predominantly
longitudinal wave-type and hence by the coupling between
longitudinal and flexural motions. The combined moment
and force excitation is found to generate strong rotational
responses in a low frequency band from 80 to 400 Hz. How-
ever, at the higher frequencies the rotational responses are of
the same order of magnitude as those resulting “indirectly”
from pure longitudinal force excitation. Further, with the
combined excitation it is found that the junction rotational
velocities are controlled by a predominantly flexural wave-

FIG. 11. Junction rotational mobilities Y�,j0,off= �̇ j /F0,off, for j=0–8, of fi-
nite periodic structure with eight elements; the system is driven by an offset
harmonic point force F0,off acting on the first transverse beam at 183 mm
below junction 0. �a� Numerical predictions using Eq. �42�, and �b� mea-
surements.

J. Acoust. Soc. Am., Vol. 118, No. 6, December 2005 L. Friis and M. Ohlrich: Coupled longitudinal-flexural wave motion 3617



type. However, since this wave is strongly attenuated the
motion contributions from the significantly less attenuated
and predominantly longitudinal wave-type “takes over” after
a few periodic elements, and hence dominate the transmis-
sion and responses in the remaining parts of the periodic
structure. This type of coupling is observed in narrow fre-
quency bands for the examined structure, and this phenom-
enon would explain the spatially dual-rate exponential de-
crease in vibration magnitudes, observed in nominally
periodic multi-story buildings.
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