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Whereas standard boundary element calculations focus on the forward problem of computing the
radiated acoustic field from a vibrating structure, the aim in this work is to reverse the process, i.e.,
to determine vibration from acoustic field data. This inverse problem is brought on a form suited for
solution by means of an inverse boundary element method. Since the numerical treatment of the
inverse source reconstruction results in a discrete ill-posed problem, regularization is imposed to
avoid unstable solutions dominated by errors. In the present work the emphasis is on Tikhonov
regularization and parameter-choice methods not requiring an error-norm estimate for choosing the
right amount of regularization. Several parameter-choice strategies have been presented lately, but
it still remains to be seen how well these can handle industrial applications with real measurement
data. In the present work it is demonstrated that the L-curve criterion is robust with respect to the
errors in a real measurement situation. In particular, it is shown that the L-curve criterion is superior
to the more conventional generalized cross-validation~GCV! approach for the present tire noise
studies. ©2003 Acoustical Society of America.@DOI: 10.1121/1.1529668#

PACS numbers: 43.20.Fn, 43.35.Sx, 43.60.Cg@MO#

I. INTRODUCTION

Our objective in this work is to compute the unknown
surface velocity distribution on a complex acoustic source
from measured acoustic field data. Hence, we are faced with
an inverse source problem to be solved, which involves
forming a transfer matrix relating the pressure at every field
point to the normal component of the surface velocity. In the
present work this forward modeling is done by means of a
boundary element method~BEM!. Several developments in
the area of source reconstruction involving arbitrarily shaped
geometries have been presented in the past.1 Earlier work
presented the basic concept of using BEM~mainly the direct
formulation! in reconstruction problems for setting up a
transfer matrix, while the singular value decomposition
~SVD! routine is part of the matrix inversion.2–4 More recent
work also deals with the reconstruction process based on
indirect BEM for selecting optimum field points from a set
of candidates.5 Applications involving inverse source prob-
lems based on BEM can be found, for example, within the
automotive and aerospace industry. Both interior and exterior
noise problems have been studied.6–9

Some parts of the sound field radiated by a vibrating
structure die out very quickly away from the source and
therefore contribute very little at the field microphone posi-

tions; these sound field components are often referred to as
the evanescent waves. The reconstruction of the particular
vibration patterns that create the evanescent waves will in-
volve a strong amplification of very small signal compo-
nents, and as a consequence, the inverse problem is very
sensitive to the noise and errors in the measured data. The
inverse problem is therefore said to be ill-posed.

As a consequence of the inverse problem being ill-
posed, the transfer matrix computed by the BEM is ill-
conditioned, thus requiring special treatment. In that respect,
the SVD is the preferred tool toward regularizing the ill-
posed problem. Whereas setting up the transfer matrix and
making use of its SVD is well documented, the final step of
choosing the correct amount of regularization is not fully
understood. The discrepancy principle, which usesa priori
knowledge of the measurement errors, has been used in con-
nection with Tikhonov regularization7 and Landweber
iteration.10 The generalized cross-validation~GCV! method
has also been used by several researchers in conjunction with
Tikhonov regularization, and it has been shown to produce
useful results for cases where spatially white noise contami-
nates the field data.11,12 Recent work compares several itera-
tive and direct inverse methods for near-field acoustic
holography,13 and among these we find a modified Tikhonov
approach with the discrepancy principle and the GCV used
as the parameter-choice method.

In the present work we describe an approach to the in-
verse problem based upon an indirect BEM formulation in
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conjunction with Tikhonov regularization, and using the
SVD as an analysis tool. The influence of the regularization
parameter and the filtering process associated with Tikhonov
regularization is investigated by means of the L-curve, which
is a log–log plot of the solution’s norm versus the norm of
the residual vector. The L-curve,14 which is not used too
often in connection with sound source reconstruction, seeks
to determine the optimal amount of regularization, and this
method is compared to the more popular GCV method. A
practical case using a car tire and real test data demonstrates
the performance of both parameter-choice methods. In addi-
tion, a comparison with planar near-field acoustic holography
is made in order to compare the different source reconstruc-
tions.

Since the setup of the inverse acoustic source problem
uses the BEM as a workhorse, some general boundary ele-
ment issues will be discussed in Sec. II. In Sec. III we intro-
duce inverse methods based on SVD and Tikhonov regular-
ization, and different parameter-choice methods will be
introduced. Implementation issues are discussed in Sec. IV,
including how to set up the discrete ill-posed problem and
bring it on Tikhonov form. In Sec. V we demonstrate the
performance of the GCV and L-curve methods for a couple
of inverse problems involving measurement data. Two differ-
ent applications are studied; a stationary tire structure excited
by a shaker and a tire rolling at constant speed.

II. BOUNDARY INTEGRAL FORMULATIONS
OF THE FORWARD PROBLEM

An exterior acoustic forward problem is considered, that
is, only the fluid outside a vibrating source surface having an
arbitrary shape is addressed. No secondary sound sources or
obstacles exist in the exterior region. The acoustic pressure
in the fluid must satisfy the Helmholtz equation, and when
subject to the Sommerfeld radiation condition and a Neu-
mann boundary condition on the source surface, boundary
integral formulations can be found. These express the acous-
tic pressure at field points in terms of the source surface
velocity. Boundary integral equations provide a complete
formulation of the acoustic problem, thus making these equa-
tions an obvious choice in connection with radiation and/or
scattering problems involving arbitrarily shaped structures.
Moreover, they have the advantage that the infinite nature of
the exterior region is implicit in the surface representation.

The formulations are often classified as either direct or
indirect—where the direct formulation corresponds to a
Helmholtz integral equation and the numerous indirect for-
mulations are based on layer potentials. The direct formula-
tion is used more often, but it has some built-in limitations. A
serious shortcoming is the failure when it is applied to bodies
of thin shape or regular bodies with thin appendages. This
thin-shape breakdown of the direct formulation was investi-
gated extensively by Martinez15 and recently by Cutanda
et al.,16 and remedies ensuring a meaningful formulation for
thin shapes were proposed.

In this work we focus on the indirect formulations,
where the exterior acoustic field is expressed in terms of
single layers, double layers, or combined single and double

layers17–19 on the source boundaryS. For a pointP lying
strictly in the exterior region, we can express the pressurepf

by the single-layer formulation,

pf~P!52E
S
s~Q!G~P,Q!dS~Q!, ~1!

wheres(Q) is the source strength atQ on S, and subscriptf
denotes a field quantity.G(P,Q) is the free-space Green’s
function satisfying the Sommerfeld radiation condition, i.e.,
G(P,Q)5e2 jkR/4pR, where R is the distance betweenP
andQ, andk is the acoustic wave number. This formulation
can be viewed as a distribution of simple sources~mono-
poles! on the surface. The only remaining issue when solving
the exterior Neumann problem is to determine the unknown
source strengthss(Q) by matching them to the prescribed
normal surface velocitynn . While the surface pressure is a
continuous function acrossS, the surface velocitynn exhibits
a jump property and thus we can write the unknown source
densities as

s~Q!52 j vr„nn
1~Q!2nn

2~Q!…, ~2!

wherenn
1(Q) andnn

2(Q) are the velocities on the two sides
of the surface at the pointQ. Once the source strengthss(Q)
are known, we are able to find the pressure on the surface or
in the exterior by means of surface integration.

Another possibility is to express the field pressure by a
double-layer formulation,

pf~P!5E
S
m~Q!

]G~P,Q!

]nQ
dS~Q!, ~3!

wherem(Q) is the source density. This representation of the
exterior field can be viewed as a distribution of double
sources~dipoles! over S. In the double-layer representation,
the source density represents a pressure jump acrossSwith a
continuous surface velocity, and the density functionm is
written for P on S as

m~Q!5ps
1~Q!2ps

2~Q!, ~4!

whereps
1(Q) andps

2(Q) are the pressures on the two sides
of the surface at the pointQ.

A third alternative is to make use of a combined ap-
proach by mixing the two layers, ending up with a general
jump formulation that is able to model both a pressure jump
and a surface velocity jump. This jump formulation is de-
scribed in the literature as an alternative to formulations
based on the Helmholtz integral equation, and it is applicable
to thin structures frequently appearing in studies of real
structures.20,21 We can consider the mixed layer formulation
as based on vibrating thin shells with general impedance
boundary conditions on both sides of the shells.22 The versa-
tility of this general jump formulation, with the ability to
handle complex structures, has led to the implementation in
many commercial BEM codes, and it is used to study real
industrial applications. Furthermore, this formulation is at-
tractive because it can overcome the serious difficulty asso-
ciated with irregular frequencies, where the equations fail to
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provide correct and meaningful results. However, the imple-
mentation is not as straightforward as one based on the
Helmholtz integral equation.

In the present work we have chosen to work with a hard
thin-shell formulation, i.e., the same normal velocity on each
side of the surface. We thus end up with the double-layer
formulation in Eq.~3!. In order to establish the forward mod-
eling problem, we must derive a complete procedure for
computing the field pressure in the exterior region, given the
normal surface velocities everywhere on the surface. This is
done in two stages; first, the necessary ‘‘intermediate’’ source
densitym must be determined from the known normal sur-
face velocity, and then the acoustic field exterior to the sur-
face is determined from straightforward integration. In this
work we use a variational approach23 to provide the link
between the surface parameters. This link between normal
surface velocities and jump pressures is provided by consid-
ering the normal derivative ofpf on the surface. This deriva-
tive, in turn, is equal to2 j vrn̄n(P), and we obtain

2 j vrn̄n~P!5E
S
m~Q!

]2G~P,Q!

]nP ]nQ
dS~Q!, ~5!

where the surface velocityn̄n is known. Using the variational
approach, the unknown pressure jump can be evaluated
from23

2 j vrE
S
dm~P!v̄n~P!dS~P!

5E
S
E

S
dm~P!m~Q!

]2G~P,Q!

]nP ]nQ
dS~P!dS~Q!, ~6!

wheredm(P) denotes a variation in the pressure jump. Here
the hypersingularity associated with Green’s function must
be reduced to a weak singularity before the numerical inte-
gration.

Another problem occurring with BEM techniques in
practice is the mathematical breakdown of the formulation at
specific so-called critical or irregular frequencies. These spe-
cial frequencies are related to eigenfrequencies of the interior
region and will be present if an interior BEM problem is
analyzed, but they will also affect the results of an exterior
BEM analysis if no effort is made to remove their influence.
Since meaningless results can occur at the irregular frequen-
cies, we assume throughout this work that such frequencies
are avoided. A modified formulation24 based on both jump
terms, which incorporates impedance boundary conditions
on the inner surface, can be used to avoid the problems with
irregular frequencies; this feature is not included in the
present work.

III. THE INVERSE PROBLEM

Whenever a sound source reconstruction problem is
discretized—by means of BEM or other discretization
methods—a so-called discrete ill-posed problem arises. In
this section we describe how to deal with such problems.

The discretized problem can be written in general
matrix–vector form as

Ax5b, ~7!

whereA is a complex transfer matrix of dimensionm3n,
i.e., m rows andn columns. Hence, the complex vectorsx
andb are of dimensionn andm, respectively. In the follow-
ing we assume that the system is either square or overdeter-
mined, i.e.,m>n. The matrixA represents a model of the
system under investigation whileb is a data vector of known
measured values. In our work the system under study is the
radiation process from a source to a number of receivers,b
represents the response at the position of the receivers, and
the model represented byA should be ‘‘inverted’’ in order to
deduce the source descriptors inx. We will only consider
errors e on the right-hand side, while errors inA are ne-
glected. When Eq.~7! arises from discretization of an inverse
problem, A will be very ill conditioned. Consequently, a
straightforward solution of the discrete inverse problem is
not satisfactory, and special regularization techniques should
be employed in order to solve Eq.~7! in a nearby sense.

A. Singular value decomposition

Solving discrete ill-posed problems via a direct solution
approach should preferably be combined with tools that pro-
vide some kind of analysis of the specific problem at hand.
Such tools do not solve the problem itself, but will often
provide the necessary information before any next step to-
ward a useful solution of the problem is taken. When it
comes to ill-conditioned matrices, the ultimate analysis tool
seems to be the singular value decomposition~SVD!. Given
the transfer matrixA, we can write the SVD of this matrix
as25

A5USVH, ~8!

whereU is a matrix of dimensionm3n, V is n3n andS is
a diagonal matrix containingn non-negative singular values
s i in nonincreasing order. The superscriptH in Eq. ~8! de-
notes the complex conjugate transposed.

The two matricesU andV are written in the form

U5~u1¯un!, V5~v1¯vn!, ~9!

whereui ~dimensionm! andvi ~dimensionn! are called the
left and right singular vectors. An important property of
these vectors is their orthonormality, i.e.,UHU5VHV5In ,
with In the identity matrix of ordern.

The condition number~based on the 2-norm! of A can
be expressed as the ratio of the largest and the smallest sin-
gular value,25 i.e., cond(A)5s1 /sn . This quantity measures
a solution’s sensitivity to perturbations in the matrix itself as
well as on the right-hand side. When we are dealing with
ill-conditioned matrices, the range of singular values span
many orders of magnitude andA is very ill conditioned.
Some kind of filtering of the singular values must be added
to the original problem before any solution step makes sense.

The behavior of the left and right singular vectors de-
serves special attention, because any filtering relies on this
behavior. Hansenet al.26 demonstrate that the left and right
singular vectors tend to have more oscillations as the indexi
increases when the transfer matrix arises from discretization
of an inverse problem. Thus, we will assume that high-
frequency spatial information is linked to left- and right-
singular vectors having high indexi. Likewise, the vectors
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with a small index represent slowly varying functions having
few sign changes over the source surface. These consider-
ations have not been proven, but for practical problems de-
rived from integral equations they appear to be valid.

B. Tikhonov regularization

If all SVD components are taken into account, a very
oscillating solution with a huge norm is obtained due to the
error componente of the right-hand sideb. One way of
suppressing the disastrous influence of these errors is to
solve the initial ill-conditioned problem in a nearby sense
with a constraint on the size of the sought solution. The
solution size is linked to the solution smoothness, because
ignoring components with a high index will lead to a smooth
solution with reasonable size as measured by an appropriate
norm.

In mathematical form, we can write this as a minimiza-
tion problem, where the functional to be minimized involves
a residual norm and a discrete smoothing normiLx i2 acting
on the solution vector:

min
x

$iAx2bi2
21l2iLx i2

2%. ~10!

This form of regularization is known as Tikhonov regulariza-
tion, which is discussed at length, e.g., in Hansen.27 The
regularization parameterl is the only input when a suitable
smoothing norm has been defined. A possible implementa-
tion is described in Sec. IV B. Ifl50 we obtain the least-
squares problem and the unregularized solution is computed.
A large l favors a small solution size at the cost of a large
residual norm. Hence,l controls the degree to which the
sought regularized solution should fit to the measured data in
b or have a small solution size. Clearly, solving Eq.~10!
involves a trade-off between the residual norm and the solu-
tion size, and this is determined by the single parameterl.
We return to our choice ofL later.

For the choice ofL5In , the Tikhonov regularized solu-
tion can be written conveniently in terms of the SVD ofA
as27

xl5(
i 51

n s i
2

s i
21l2

ui
Hb

s i
vi . ~11!

The filtering is described by the filter factorsf i5s i
2/(s i

2

1l2). In practice, the regularization parameter is chosen to
lie between the highest and smallest singular value. Hence,
the filter gradually dampens singular values smaller thanl.

C. Parameter-choice methods

The main difficulty with regularization methods is that a
proper choice of the amount of regularization is not easily
found. Choosing the continuous parameterl in Tikhonov
regularization is not straightforward. Ideally, we would like
to determine the optimal regularization parameter such that
the computed regularized solution provides the best possible
estimate of the exact solution. The difficulty is that the exact
solution is not available. Regularization parameters that are
good approximations to the optimal ones can, however, be
estimated by means of parameter-choice methods. Williams13

used the discrepancy principle and its compensated version,
which require estimating the error normiei2 to determine
the regularization parameter. The error norm can be esti-
mated from the measurement data using the left-singular
vectors, however, a very good estimate of the error norm is
usually needed in order for the discrepancy principle to be
robust, cf. Sec. 7.7 in Ref. 27.

Hence, there is a need for parameter-choice methods that
do not require information about the error normiei2 . Here
we consider twoiei2-free methods for extracting an optimal
regularization parameter. The first method, which is very
popular, is called generalized cross-validation~GCV!. It is
based on the philosophy that an arbitrary elementbi of the
right-hand side should be predicted well by the regularized
solution, when this element is left out of the inverse problem.
This method works well if the noise is spatially white, i.e., if
the elements of the noise vector are unbiased and have the
same variance. Useful reconstructions were obtained by
Nelson11,12 for a couple of inverse source problems with ran-
dom errors representing measurement noise and using,
among other techniques, the GCV as a parameter-choice
method.

Anotheriei2-free approach to estimating the regulariza-
tion parameter in Tikhonov regularization is the so-called
L-curve criterion.14 The idea behind the L-curve is to plot the
discrete smoothing norm of the regularized solution versus
the residual norm in log–log scale, for all valid regulariza-
tion parameters. The generic form of the L-curve is plotted in
Fig. 1. The smoothing norm here isiLxli2 and the residual
norm isiAxl2bi2 , i.e., the two terms occurring in the func-
tional to be minimized in Tikhonov regularization. The shape
of the L curve can be explained by considering its different
sections. The horizontal part of the curve is characterized by
solutions that have been smoothed too much~over-
regularized!, whereas the vertical part is characterized by
solutions dominated by the effects of errors~under-
regularized!. In between these parts, we find solutions repre-
senting a balance between fitting the solution to data and
keeping the solution’s smoothing norm small. The optimum

FIG. 1. The generic L-curve form; a plot in the log–log scale of the discrete
smoothing norm versus the residual norm as a function of regularization
parameterl. From Ref. 27.
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value of the regularization parameter defined by the L-curve
criterion is at the corner of the curve, where we find a solu-
tion that has a reasonably small residual as well as a reason-
ably limited smoothing norm. We note that this is only pos-
sible in a plot in log–log scale.28 A number of simulated case
studies29 dealing with simulated noise/error sources revealed
that the L-curve criterion is more robust than the GCV
method, especially when the added noise is non-white. This
is an important finding before studying real applications,
where the noise component of the field data cannot be con-
sidered to be white.

IV. IMPLEMENTATION OF THE INVERSE SOURCE
PROBLEM

Integral formulations are usually implemented numeri-
cally by a boundary element method where the surface of the
boundary is replaced by a number of interconnected ele-
ments. These surface elements can typically be either tri-
angles or squares, and the associated interpolation functions
for the source values are typically linear or quadratic. In the
present study triangular linear elements are used for describ-
ing the geometry as well as the acoustic variables on the
surface. Hence, linear interpolation is used throughout for
the geometry as well as the acoustic parameters, and the
elements are therefore isoparametric, i.e., the same order of
shape function is used in both cases. We note the general rule
of thumb that the element size should not exceed one-fourth
of the shortest wavelength for the linear elements.

First we derive the set of matrix equations needed to
formulate the inverse problem, and we define the transfer
matrix associated with the problem. The matrices are easily
computed by means of the developed indirect BEM imple-
mentation. Subsequently, we will establish a functional ame-
nable to Tikhonov regularization that will be the type of
regularization imposed on the problem. Since the modeling
of the inverse problem is linked to the BEM in acoustics, we
will use the term Inverse Boundary Element Method~IBEM!
or inverse BEM.

A. Formation of the inverse BEM transfer matrix

We will consider the surfaceSof a closed or open struc-
ture, and normal vector on the surfaceS points into the ex-
terior. We assume thatm microphones are situated in the
exterior region of the source. Basically these microphones
can be located anywhere in this region, but some locations
may be preferred over others.5,32 For every microphone po-
sition we will then measure an acoustic pressure.

The goal of the discretization of Eqs.~3! and ~6! is to
link the m measured field pressures to an acoustic quantity
on the source surface. From the indirect formulation we first
establish the relation between the field pressurespf and the
pressure jumpm on the source surface by discretization of
the integral representation, Eq.~3!. For each boundary ele-
ment we introduce the vectorsNi and mi , which represent
the shape function for linear triangles and the nodal values of
the pressure jump distribution, respectively. This leads to the
discretized problem

pf~P!5(
i 51

e E
Si

Ni
T~Q!mi

]G~P,Q!

]nQ
dSi~Q!, ~12!

wheree is the number of boundary elements.
For each measurement point we now use Eq.~12! to

express the measured fieldpf in terms of the nodal values of
the pressure jumps. The integrals in Eq.~12! can be evalu-
ated using standard Gauss quadrature, as long as the pointP
is not too close to the source surface. Otherwise, singularities
involved in the integral formulation should be removed forP
in the very close near-field. A modified boundary element
formulation based on Helmholtz integral equation has been
reported to overcome such problems.30,31 In our case the
minimum distance between field points and source surface
for BEM calculations is set to one-half an element length.
Expressed in matrix-vector form, the discretized problem be-
comes

pf5Gm, ~13!

wherepf is a complex vector containing them field pressure
values at a specific frequency, andm is a vector with the
pressure jump values on the discretized surface containingn
nodes. Them3n transfer matrixG is notoriously ill condi-
tioned.

Rather than solving Eq.~13! for m given a known vector
pf , we will relate the field pressure vector to the normal
surface velocity vectorvn . This is done by means of the
relation between pressure jump and normal surface velocity
from the indirect boundary element formulation Eq.~6!
which, when discretized, takes the form

2 j vrdmTS E
S
N"NT dS~P! D vn

5dmTS E
S
E

S
N

]2G~P,Q!

]nP ]nQ
NT dS~P!dS~Q! D m, ~14!

or in matrix–vector form,

2 j vrBvn5Qm. ~15!

The two matricesB and Q are symmetric, i.e.,B5BT and
Q5QT.

Combining Eqs.~13! and ~15! we then obtain

pf52 j vrGQ21Bvn5Hvn . ~16!

Here, we have introduced them3n rectangular transfer ma-
trix, H52 j vrGQ21B, which is further analyzed in our
IBEM problems. A similar way of assembling a transfer ma-
trix using indirect BEM has been done by Zhanget al.5,32

SinceG is ill-conditioned for measurement points lying
strictly in the exterior, this property is carried over to the
transfer matrixH that relates the normal surface velocity at
nodes to acoustic pressure at measurement points. Note that
the assembly ofH necessitates the inverse ofQ, which will
not cause trouble as long we avoid irregular frequencies~in-
terior Neumann eigenfrequencies! for a closed structure.
Consequently, Eq.~16! represents a discrete ill-posed prob-
lem of the form studied in Sec. III. Treating irregular fre-
quencies in inverse BEM were discussed in Ref. 32 based on

118 J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003 Schuhmacher et al.: Sound source reconstruction

Downloaded 29 Jun 2010 to 192.38.67.112. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



the same considerations as in Sec. II. How to solve Eq.~16!
in the nearby sense by formulating a Tikhonov problem is
discussed next.

B. Tikhonov problem

The regularization imposed in this investigation is based
on Tikhonov’s method with a parameter-choice method to
estimate the optimal regularization parameter. In general
form, the minimisation problem for Tikhonov regularization
is written as

min
vn

$iHvn2pf i2
21l2iLvni2

2%. ~17!

The discrete smoothing normiLvni2 must be chosen to pref-
erably reflect some physical quantity to be penalized, that is,
to have limited size. One such quantity could be some type
of energy associated with a vibrating thin shell since the
model is based upon shells. The equivalent kinetic energy of
the entire shell structure makes sense, since the size of this
quantity will increase dramatically if the nonradiating com-
ponents have too large an influence on the regularized solu-
tion.

The ‘‘kinetic energy smoothing norm’’ is derived by
considering the squared surface velocity over the shell sur-
face. Since we only have access to the normal component of
surface velocity, the equivalent total kinetic shell energy is
written as

E
S
unnu2 dS5E

S
nnnn* dS, ~18!

where the asterisk denotes a ‘‘complex conjugate.’’ We can
discretize this quantity using standard Gaussian quadrature
and the discretization of Eq.~18! is written as

E
S
vn

HNNTvn dS5vn
HBvn , ~19!

with the shape function vectorN, andB is similar to the one
defined via Eq.~14!.

To simplify the calculations in the Tikhonov regulariza-
tion, we may approximate the total surface functionnnnn* as
a linear function. Consequently, we end up with a diagonal
matrix D that can be considered as an approximation toB.
Using this approach, the surface integral is written as

vn
HS E

S
diag~N!dSD vn5vN

H Dvn . ~20!

Here the integrand is a sum of element areas weighted by the
shape functions. Hence, only one Gauss point for each ele-
ment integration is required. For each element integration
over Si , the value1

3Si is added on the diagonal of the area
matrix for each node participating in elementi. As a result,
the diagonal element ofD corresponding to a node in the
BEM model will contain one-third of the total area of all
elements of which the node takes part. Thus, the kinetic en-
ergy smoothing norm simply introduces an area weighting of
the nodal values. The discrete smoothing norm is now writ-
ten as

vn
H Dvn5iD1/2vni2

2, ~21!

where the regularization matrixD1/2 is found by taking the
square root of all the diagonal entries. Had our matrix not
been diagonal, Cholesky factorization would have been nec-
essary. Notice that if the element size is almost constant over
the entire mesh surface,D will be close to the identity ma-
trix, except for a multiplication constant. In that case, the
standard form (L5In) of Eq. ~17! could just as well be used.
However, for a general meshD1/2 should be used instead of
the identity matrix. Hence, the general form Tikhonov regu-
larization is rewritten in standard form and solved.29

V. CASE STUDIES

In order to demonstrate the capabilities of inverse BEM,
some real-life applications have been studied.29 The sound
sources considered and modeled are based on a real tire
structure mounted on a rim and loaded onto a drum surface.
The tire is a standard tire for passenger cars and its charac-
teristics as a source were studied as a stationary tire excited
by a shaker as well as a rolling tire with a constant speed of
80 km/h on the dynamometer.

A. Tire measurements

The measurements were recorded using a planar micro-
phone array for the side measurement, and a curved array for
close-up measurements at the front and the rear of the tire.
Moreover, four reference microphones were distributed
around the tire in order to allow the use of a scan technique
and to derive a principal component description of the sound
field. In this way, the problem of limited coherence between
individual sources is addressed. Two of these four reference
microphones were placed on the ground in front of and be-
hind the tire, while the other two microphones were located
in the air above the tire. When dealing with cross-spectral
holography techniques and sound radiation from tires, four
reference microphones seem to be sufficient.33 For the tire
side, a 636 microphone array was scanned across a plane
area with dimensions 1.730.9 m. The microphone spacing
in the horizontal and vertical direction was 0.05 m, giving a
total of 665 measurement points in the plane, which was
located 0.07 m from the sidewall of the tire. In addition, a
curved array of 12 microphones scanned the rear and front of
the tire. The curved array was scanned across the curved
surface in 13 steps with a step size of 0.05 m, thus giving
156 measurement points. The distance between the curved
array and the curved part of the tire was about 0.07 m. The
front of the tire was not measured during the standing tire
measurement, as the shaker occupied part of the space there.
In total, 821 measurement positions were made for the
shaken tire and 977 for the rolling tire. In addition to the
IBEM reconstructions, we processed the data recorded at the
tire side using Near-field Acoustic Holography as imple-
mented in the Bru¨el & Kjær STSF34,35 system. This allows
for a comparison of the transformed sound fields obtained
using IBEM and STSF. For example, we can compare the
sound field reconstructions close to the tire side obtained by
the two methods.
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In order to model the acoustic environment, a boundary
element mesh of the complete tire was made and the hard
ground is taken into account via an infinite rigid plane lo-
cated 0.05 m below the tire. The tire boundary element mesh
consists of linear triangles of maximum length 0.05 m, re-
sulting in 1052 elements and 526 nodes. The tire mesh in-
cluding meshes of the side measurement and the rear mea-
surement is shown in Fig. 2.

B. Stationary tire excited by a shaker

First, we study the inverse BEM problem for the shaken
tire at a low frequency, 100 Hz, the cross-spectral measure-
ment being made with a frequency bandwidth equal to 20
Hz. The field pressure information from the measured 821
points close to the tire surface will now be used to establish
an inverse problem, where the normal surface velocity at the
526 boundary nodes is sought. The transfer matrix is thus
overdetermined and of size 8213526. As a result of the prin-
cipal component description of the sound field, we can con-
sider each principal hologram as a field pressure distribution
and we can process the holograms individually, since they
are mutually independent~incoherent!. That is, for each prin-
cipal hologram we determine a regularized surface velocity
distribution by means of the SVD and Tikhonov regulariza-
tion, where the optimum regularization parameter is chosen
by either GCV or the L-curve criterion. The total surface
velocity level is obtained by summing the principal compo-
nent contributions on a power basis, subject to a Wiener filter

controlled by the principal autopowers. In our case the filter
has a dynamic range of 15 dB with a smooth cutoff, which
means that the first and the second principal component are
unaffected by the filter, whereas the third and the fourth prin-

FIG. 3. GCV functions processed for each principal hologram for shaker excited tire at 100 Hz.

FIG. 2. Tire mesh~1052 elements, 526 nodes! and field point mesh~821
points! for stationary tire application.
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cipal component are attenuated. In the chosen frequency
band, the autopowers of the second, third, and fourth princi-
pal component were 10, 16, and 19 dB, respectively, below
the autopower of the first principal component. Since there is
only one source mechanism~the shaker!, one would expect
only a single dominating principal component. A major rea-
son for this not happening is the rather large measurement
bandwidth. If within the measurement bandwidth the source
vibration pattern changes a lot as a function of frequency, the
different patterns will be seen to some degree as independent
sources. This could explain the existence of the principal
component, which is only 10 dB below the highest one.
Other reasons for nonzero principal components are finite-
averaging time, nonstationarity and nonlinear dynamic be-
havior of structural components.

An inspection of the SVD components~not shown here!
reveals that a regularization parameterl of the order 100 is
appropriate for each principal component. First the GCV
method was used to determine the optimuml for each prin-
cipal component, and the GCV functions are shown in Fig. 3.
It is clear that the estimated regularization parameters are too
small, thus resulting in undersmoothed solutions completely
dominated by measurement errors. Hence, the regularized
surface velocity solution obtained by this method will be
meaningless. This is surprising in the sense that the station-
ary tire excited by a shaker is the simpler one of the two
applications. The probable cause is that the measurement er-

rors are not spatially white, as assumed by the GCV method.
We mention two error types.

~1! Transducer mismatch. These errors ‘‘follow’’ the ar-
ray transducers during the scanning, and the resulting errors
in the measured sound pressure will therefore be correlated
with the true sound pressure.

~2! Transducer position errors. The measurement posi-
tions are never exactly known in the coordinate system of the
BEM model. The resulting errors in the measured pressure
will also tend to be correlated with the true pressure.

Further errors may occur as a result of the drum and as
a result of a large obstacle located close to the tire side,
which was not scanned. This obstacle was mounted to the
rim of the tire but just like the drum it is not part of the
acoustic boundary element model for the inverse analysis.

When the same problem is analyzed using the L-curve,
we get the four curves shown in Fig. 4. Especially the first L-
curve exhibits the generic shape of Fig. 1 with a well-defined
corner. Furthermore, the computed regularization parameters
are all close to 100, which agrees very well with our SVD
analysis. The dynamic range of the applied Tikhonov filters,
i.e., 20 log(s1 /lL), is 37, 33, 28 and 33 dB for principal
component one to four, respectively; herelL is the optimum
regularization parameter computed by the L-curve criterion,
and s1 is the largest singular value. The solutions obtained
by the GCV are seen to be located on the upper of the ver-

FIG. 4. L-curves corresponding to each principal hologram for a shaker excited tire at 100 Hz. The regularization parameter is marked on the curve.
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tical part of each L-curve and thereby illustrating the differ-
ences obtained for this case.

The reason for the success of the L-curve criterion is
that it does not rely on the noise being spatially white as
GCV does; also colored/correlated noise gives rise to a dis-
tinct corner on the curve. The GCV function, on the other

hand, may fail to have a suited minimum when the noise is
not spatially white.

The computed regularised surface velocity solution for
each principal component represents a principal source re-
lated to the vibrating tire structure. This total surface velocity
distribution is shown on the tire model in Fig. 5. Note that

FIG. 5. Reconstructed surface velocity for shaker excited tire at 100 Hz.

FIG. 6. Reconstructed normal particle velocity and sound pressure on a calculation plane 2 cm from the tire side of the shaker excited tire at 100 Hz. Results
for STSF~top! and IBEM using L-curve criterion~bottom!.
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only the highest 20 dB of the available data are plotted.
Since we can observe the tire from any position, we can look
at the spot where the shaker excites the tire~front!. This
reveals a significant hot spot associated with a maximum
vibration level. Further sources of vibration are found on the
rear part of the tire close to the ground and on the tire side-
wall. This surface velocity reconstruction will now be used
as boundary condition in a forward BEM problem for com-
puting the sound field close to the tire.

In order to compare the sound field reconstructions ob-
tained by IBEM and STSF, the sound pressure and the par-
ticle velocity was computed on a plane close to the tire side-
wall. Using STSF, this was done by processing the
measurement data from the plane array measurement at the
tire side, and then backward propagating the acoustic field
0.05 m onto a plane close to the tire side. A similar filtering
~15 dB dynamic range, smooth cutoff! of the individual prin-
cipal components was done, but for the regularization part a
fixed dynamic range of 30 dB was used for every principal
component. This is simply because no automatic detection of
a useful dynamic range is implemented in the current STSF
application and 30 dB is the maximum allowed range. When
using IBEM with the L-curve criterion, the principal holo-
grams were processed independently in order to obtain a set
of principal sources. These sources were then processed as
part of a forward BEM problem for computing the normal
component of the particle velocity and the acoustic pressure
over the same plane as in the STSF computation. The par-

ticle velocity and pressure distributions obtained are shown
in Fig. 6 together with the result of the STSF calculation.
Both the sound pressure level distributions and the particle
velocity distributions obtained by STSF and by IBEM~L-
curve!, see Fig. 6, are in good agreement. The levels are
almost identical and are shown using the same color bar with
the same step size. Clearly, the L-curve criterion applied to
each principal component leads to a useful reconstructed par-
ticle velocity distribution judged from the STSF calculations.
However, it would be more convincing to have the actual
measurement data for the calculation plane when doing com-
parisons.

As mentioned previously, the frequency bandwidth is
probably the major reason that we do not see only a single
nonzero principal component. Nonzero components arising
because of the bandwidth represent real sound fields and real
sources. The only error in our IBEM equations will be in the
transfer matrix and arise from the fact that we have assumed
all sound field components to be at the center frequency of
the band. But beyond the frequency bandwidth, there are
other causes for a nonzero principal component, which have
no relation to real sources. The two components dominated
by noise and errors represent a challenge to the applied regu-
larization schemes. From the computed L-curves it is clear
that the noisy principal components should be discarded
since there is nearly only a vertical part, which can easily
lead to very small regularization parameters and thus solu-
tions with a significant norm. For that reason a lower limit on

FIG. 7. GCV functions processed for each principal hologram for rolling tire at 120 Hz.

123J. Acoust. Soc. Am., Vol. 113, No. 1, January 2003 Schuhmacher et al.: Sound source reconstruction

Downloaded 29 Jun 2010 to 192.38.67.112. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



the regularization parameter could be imposed or a sharp
principal component filter should be used. The solutions of
Fig. 6 obtained by STSF and by IBEM are dominated by the
first principal component with the highest principal auto-
power.

C. Rolling tire

A similar analysis is carried out for the rolling tire case.
One major difference between the two measurement cases is
that the rolling tire measurement includes a curved array

FIG. 8. L-curves corresponding to each principal hologram for rolling tire at 120 Hz. The regularization parameter is marked on the curve.

FIG. 9. Reconstructed surface velocity for rolling tire at 120 Hz.
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scanning of the tire front, thus providing more information
about the total sound field around the rolling tire. Again, this
curved array was located 0.07 m from the tire and scanned
with a step size of 0.05 m. By adding these front measure-
ment positions to the plane and curved array measurement
positions from the shaken tire setup, we end up with a total
of 977 measurement points.

Using the same set of four reference microphones, a
principal component description of the sound field was de-
rived. Again, we use a low frequency, this time correspond-
ing to a band of width 20 Hz centered at 120 Hz. For the
analysis, this gives us a 9773526 transfer matrix for the
rolling tire. Each of the four principal holograms at 120 Hz is
again associated with an inverse problem. Compared to the
shaken tire measurement, we will now for the rolling tire
expect some additional errors arising from the rotating drum
producing background noise, as well as wind noise induced
in the microphones due to wind from the fast rotating tire.
However, these additional error components will be rather
uncorrelated with the noise radiated from the tire, so pro-
vided they are not too large they are not expected to cause
major additional problems. A major difference from the case
of the shaked tire measurement is that now we will have four
significant principal components—all four containing infor-
mation about the noise due to tire vibration. The autopowers
of the second, third, and fourth principal component was 5,
10, and 15 dB, respectively, below the autopower of the first
principal component.

Similar to before, a SVD analysis reveals that the regu-

larization parameters for this case should be about 50. The
GCV function for each of the four right-hand sides is shown
in Fig. 7 and the computed minimum is marked. Again, the
GCV leads to severely undersmoothed solutions, as the esti-
mated regularization parameters are all far too small. It is
also noted that the GCV functions in this case start increas-
ing slowly followed by a more rapid increase, which results
in minimums on the left part of the curve. This is simply a
consequence of the noise and errors in the measurement data
and the resulting computed surface velocity distribution will
also in this case be completely meaningless.

The L-curve analysis gives the four curves shown in Fig.
8, where each curve has a distinct corner, even for this com-
plicated case. The vertical part of each curve is not strictly
vertical, indicating that the errors are far from being spatially
white. For small regularization parameters we see that the
residual norm continues to decrease when regularization is
turned further down, explaining why the GCV functions be-
have as in Fig. 7. Furthermore, the computed regularization
parameters are all close to 50 in case of the L-curve criterion,
which agrees very well with a SVD analysis. The dynamic
range of the applied Tikhonov filters is in this case 46, 46,
44, and 38 dB for principal component one to four, respec-
tively. The higher dynamic ranges for the rolling tire is be-
cause the surface velocity distribution is made up by more
SVD components as long as they are not dominated by noise.
The difference in solution between the two test cases can be
seen from Fourier coefficients; for the shaker excited tire, the

FIG. 10. Reconstructed normal particle velocity and sound pressure on calculation plane 2 cm from the tire side of the rolling tire at 120 Hz. Results for STSF
~top! and IBEM using L-curve criterion~bottom!.
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Fourier coefficientsuui
Hpf u decay more rapidly than for the

rolling tire case until they both hit a noise level.
The total surface velocity distribution on the tire model

is shown in Fig. 9, where only the highest 20 dB of the
available data are plotted. From the front and the rear of the
tire we find the strongest vibration on the tire tread, espe-
cially close to the leading~front! and the trailing edge~rear!
of the tire. Further vibration is associated with the tire side-
wall.

As with the foregoing case, we compare with results
from STSF. The reconstructed surface velocity data are fed
into a forward BEM calculation for computing the sound
field on the STSF calculation plane. The STSF calculations
are again done with a fixed dynamic range of 30 dB for each
principal component. The obtained results for particle veloc-
ity and pressure are shown in Fig. 10. In this case, there is a
slight difference in level for the particle velocity calculation,
which is due to higher dynamic ranges for the IBEM recon-
structions. On the other hand, both methods show the same
regions of maximum level. For the pressure distribution, we
obtain comparable results from the two methods. This is be-
cause the pressure distribution does not require as many high
spatial frequencies as the particle velocity distribution. The
higher dynamic ranges therefore do not have the same im-
pact. These considerations illustrate how useful is the auto-
matic (iei2-free! detection of the applicable dynamic range.

VI. CONCLUSIONS

A model of an inverse acoustic source problem was
made using the indirect variational BEM formulation de-
scribed in the first part of the paper. A transfer matrix relating
field pressures to surface velocities was formed to take part
in a Tikhonov regularization problem. The crucial part asso-
ciated with choosing the optimal amount of regularization
was discussed in the context of error-free parameter-choice
methods. The optimal amount of regularization was esti-
mated using the L-curve criterion as well as the popular
GCV method for two different tire applications. In both cases
we compared reconstructed acoustic field quantities on a
plane surface close to the tire side with data from near-field
acoustic holography~STSF!. In all our experiments, the
L-curve criterion provided realistic source reconstructions.
The reconstructed source distributions computed by means
of GCV were incorrect as a result of the complicated error
distributions contaminating the measured data. While the
GCV method is well established for reconstruction in the
presence of spatially white noise, the cases investigated in
this work demonstrate that the L-curve method may be a
better choice for practical measurements, where spatially
correlated measurement errors such as transducer phase and
position errors are present. As a consequence, the L-curve
criterion seems to be more robust than the GCV for estimat-
ing the optimal amount of regularization.
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