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Numerical methods based on the Helmholtz integral equation are well suited for solving acoustic
scattering and diffraction problems at relatively low frequencies. However, it is well known that the
standard method becomes degenerate if the objects that disturb the sound field are very thin. This
paper makes use of a standard axisymmetric Helmholtz integral equation formulation and its
boundary element methdBEM) implementation to study the behavior of the method on two test
cases: a thin rigid disk of variable thickness and two rigid cylinders separated by a gap of variable
width. Both problems give rise to the same kind of degeneracy in the method, and modified
formulations have been proposed to overcome this difficulty. However, such techniques are better
suited for the so-called thin-body problem than for the reciprocal narrow-gap problem, and only the
first is usually dealt with in the literature. A simple integration technique that can extend the range
of thicknesses/widths tractable by the otherwise unmodified standard formulation is presented and
tested. This technique is valid for both cases. The modeling of acoustic transducers like sound
intensity probes and condenser microphones has motivated this work, although the proposed
technique has a wider range of applications. 2801 Acoustical Society of America.

[DOI: 10.1121/1.1350399

PACS numbers: 43.20.HARNN]

I. INTRODUCTION paper, which has been motivated by numerical modeling of
sound intensity probes and condenser microphdfiée be-

Phenomena where the physical setup contains very clogavior of sound fields inside narrow gaps plays a central role

domain boundaries are not uncommon in practice. Typicaj, these devices. Therefore, the performance of BEM formu-

cases are fins or appendages from bulky structures, tigsions in such situations must be understood in order to
plates, and shells. All of them have parts that are very thinyp-iq meaningful results.

compared to the overall dimensions. It is well known that the The conventional BEM has two difficulties whenever

conventional boundary element method has difficulties MNwo parts of the surface are very cldsEirst, the coefficient

Qeallng with such t‘.”lSkS' ConSIderal?Ie effort has t?ee” pLHﬁatrix becomes ill-conditioned as the distance gets smaller,
into this so-called thin-body problem in recent years in order

to make it tractable with BEM, and different formulations and second,_ the integrals are near singular and difficult to
. olve numerically. The methods proposed to get around these
have been proposed that can alleviate or remove such

e 14 difficulties in the thin-body variant fall into two groups: mul-
difficulties. id . thod q -derivati i thod
There is a second family of cases that shares many fedidomain methods and normal-derivative equation methods.

tures with thin bodies. This may be named the narrow—gaﬂn multidomain methods an Imaginary surface i.S constrL_lcted
problem. Examples are coatings, lubricant layers, cracks, ant as to reP'ace, the original .pro-blem of a th,'n body in a
some acoustic transducers. The domain of interest in thesindle domain with bulky bodies in two domains or more,

cases is situateetweerthe close boundaries, and very often COUPIed at an imaginary surfateSuch methods are advan-
a two-dimensional simplification cannot be used if the trans!@geous for certain problems such as muffler analysis, but for
versal variations are of physical relevance. other cases the imaginary surface may be quite large and will

BEM formulations that can deal effectively with thin therefore give rise to considerable computational work. The

techniques remain that can provide results in practical engitielmholtz integral equatioHIE). A popular implementa-

neering work. One of these techniques is described in thi§on is a combination of the HIE with its normal derivative,
since this combination also can be shown to overcome the

“Electronic mail: veutanda@bksv.com nonuniqueness problem of the standard FikE strategy of-
YElectronic mail: pmjuhl@itf.sdu.dk ten chosen is to apply the combined equation on the midsur-
®Electronic mail: flac@oersted.dtu.dk face of the thin body:® Another procedure, which does not
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assume the approximation of an infinitely thin body, applies
the HIE on one side of the thin body and its normal deriva-
tive on the othef.

For a plane narrow gap a multidomain strategy could be
used in which the gap could be modeled as a two-
dimensional problem coupled to an exterior three- |  __.--77"
dimensional problem. However, this approach is only ap-
proximate for any finite gap width, and not suitable for
problems where the sound field details inside the gap are
important. As to the combined formulation in Ref. 4, the
regularizing effect seems to rely on a medium being present "
outside, as in the case of inclusions.

Since complete removal of the ill-conditioning in the
gap case is problematic, it is interesting to examine whether
the conventional formulation can still provide correct results
for practical cases under such circumstances. As pointed out ] i
in Ref. 4, adequate treatment of the near-singular integral&he factorC(P) is the geometrical constant and represents
can prevent a breakdown due to poor integration, but ith® exterior solid angle &. It is calculated by
leaves the ill-conditioning. We will show in this paper how a 911
simple numerical integration strategy can extend the range of C(P)=4m+ f n ﬁ) ds ()
aspect ratiogsmaller dimension/overall dimensiphy sev- s
eral orders of magnitude despite ill-conditioning, thus plac-The expressiof3) is valid for exterior problems; for interior
ing most practical gap problems within reach of the standargroblems 4r should be subtracted. In the present study only
BEM. Besides, the proposed numerical integration only rescattering by rigid bodies is considered; thp§P) is the
quires a very small increase of computing resources. excitation andrv(Q)=0, making Eq.(1) simpler. However,

The nature of the problem of close boundaries is rethe coefficient matrix obtained from the BEM numerical
viewed in the next section, with emphasis on the features aimplementation of1) will be the same as for radiation prob-
the gap case. An explanation of the numerical integratiodems, and therefore the conclusions discussed below will still
technique developed follows. The remainder of the paper ibe general. The standard collocation formulation will be
dedicated to thin-body and narrow-gap test cases. An axised.
symmetrical formulation is used, which is outlined along
with de'EaiIs of the study methodology. The b(_ehavior of theB_ The thin-body problem
method’s convergence towards the solution is analyzed on
the test cases, as well as the ill-conditioning of the coefficient ~ The case of a thin planar body has been discussed ex-
matrix. The influence of frequency, mesh density, and aspedensively in the literature, and hence the results are merely

—_———

———fom e

~~
-
-

A A

FIG. 1. Generic integration domain and boundary surface.

ratio is investigated. listed. For a thin disk using constant elements and unmodi-
fied numerical integration, the coefficient matrix of the BEM
becomes

Il. THE PROBLEM OF CLOSE DOMAIN BOUNDARIES I -0

A. The standard Helmholtz integral equation  (HIE) 277( 0 ) (4)

where| is the identity matrix and~0 is approximately a

The BEM approach to acoustic radiation and scatterinqn . . o -
: . . atrix of zeros. This matrix is perfectly conditioned, but
problems is based on the Helmholtz integral equation that

relates the pressur(Q) and normal velocitys(Q) on the does not lead to the correct solution of the probfefrhe

. . problem is grounded in the nonhandling of the near singular-
surface of.a body of any shageee Fig. J‘Wlth. the pressure ity of the integral as the integration poi@tto the surfaces,
at any pointp(P) and the pressure of an incoming wave

| 7 C ot ; passes the collocation poiRton the near surfacs (see Fig.
p (P). The harmonic fime dependenae” is omitted, 2). With proper treatment of the near singularity, one finds a

gving correct matrix representation for the probfEn

aG
C(P)p(P)=f(—D(Q)HkZov(Q)G dS+4mp!(P), b~
s\ dn 2 Lo
() -
whereSis the surface of the bod{ a point on that surface Here, the near degeneracy is reflected in an ill-conditioned

and P any exterior or interior point. The normal vectoris matrix, which potentially may lead to incorrect solutions. As

directed into the computational domain. The Green’s funcmentioned in the Introduction, two solutions have been pro-
tion for 3D free space is posed to deal with thin bodies, the multidomain method and

the use of the normal derivative. Both of them reformulate

®)

—ikR . . I .
_ _ the problem in a way that makes the ill-conditioning disap-
G(R)=—5— R=|P-Ql. 2 : . :
pear, although in the case of some combined formulations
1297 J. Acoust. Soc. Am., Vol. 109, No. 4, April 2001 Cutanda et al.: Modeling narrow gaps with BEM 1297
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FIG. 2. Thin-body setup.

using the normal derivative, near-singular integrals are still
present and must be taken care"of.

C. The narrow-gap problem

Consider a rigid bulky object with a narrow gap, as rep-
resented in Fig. 3. The surface on the exterior of the object is FIG. 3. Narrow-gap setup.
denoted byS and the surfaces in the gap 8/ andS, ,
respectively. Since there is no pressure jump across the g&md the resultingfalse system of equations will be well-
in the limit of a gap of zero thickness, the normal derivativeconditioned. In the latter case, which represents a standard
methods do not pose any new information for this kind ofnumerical implementation, it is easy to show that the solu-
problems. The standard HIE for a scattering problem withtion will tend towards zero inside the gap as the gap width

such an object is tends towards zero. The solution outside the gap will still
9G 96 tend towards the solution of the equivalent exterior problem
C(P)p(P)=f p(Q)—dS+f p_(Q)—dS with the gap removed.
S on s an
G | . IMPROVEMENT OF THE NUMERICAL
+ | P+(Q) 5 dS+Amp(P). 6)  INTEGRATION
.

Let P be onS In the limit of an infinitely narrow gap, con- To achieve the goal of obtaining valid solutions for
tinuity of the pressure requires that =p.. so the two inte- Narrow-gap problems, the strategy chosen is the improve-
grals for the two gap surfaces cancel out. Hence, in the limifnent of the numerical integration technique. A system of
of narrow gaps the sound field outside the gap is not influequations of the form ifi7) should be guaranteed for a range
enced by the sound field inside the gap. This is in agreemer@f @spect ratios of practical importance. As mentioned in the
with what one would expect physically. Therefore, the solu-last section, there is still ill conditioning, and therefore the
tion strategy for a problem involving a very narrow planar @ccuracy of the elements in the coefficient matrix, which are
gap with rigid surfaces could be to solve an exterior problenfbtained by numerical integration, imposes a limit to the
neglecting the gap, and then to solve the gap problem as @SPect ratio that can be calculated. Nevertheless, if this limit
two-dimensional interior problem with the pressures ob-IS high enough, the cases left out will be too narrow to have
tained for the exterior problem as the boundary conditionsPractical use or even physical meaning.
However, if the gap width cannot be neglected, if parts of the ~ Several authors propose ways to handle near-singular
gap surface are of finite impedance, and/or if viscosity is tdhtégrals. For example, in Refs. 4 and 9 an analytical re-
be taken into account, the need for a simultaneous analysis §foval of the near singularity that splits the integral is per-
the gap and the exterior field is envisaged. If the near singuformed. The resulting terms are treated with variable changes
larity is properly taken into account, the block of identity @hd the Stokes theorem in order to reduce or eliminate their
matrices of Eq(5) is found in the matrix equivalent of Eq. difficulty. However, the approach taken in this paper will be
(6) numerical, not analytical.

The behavior of a near-singular integrand differs in

A D -Db p many ways from a genuine singularity. If a collocation point
C 27l ~2m7l p_ | =4mp'. (7) is in the neighborhood of an element to be integrated, it
~C ~241 27l P, produces a perturbation on the integrand around its projec-

tion on the element, more localized and more acute the
The first block of rows in Eq(7) refers to collocation points  shorter the distance. This effect can be observed in Fig. 4,
on the exterior surfac&, and the second and third block of which is a near-singular integrand along a one-dimensional
rows refer to collocation points o8 andS, , respectively. element. It has been obtained from the disk test case to be
Again, the near degeneracy due to the two close surfaces fresented in the following section. Note that integrand values
reflected in ill-conditioning of the coefficient matrix. If the are represented in a logarithmic scale and that only a part of
near singularity is not dealt with properly, the lower right the element is shown. It becomes clear from Fig. 4 why
corner of the coefficient matrix is to be replaced with B).  standard numerical integration methods, like Gauss—

A D -D Legendre, miss this troublesome area for a given relative
P | distance and lead to results as shown in E4jsand(8). This
Cc 2ml ~0 P- | =4mp, ® situation has often been described as the “breakdown” of
~C ~0 2ml/) \P+ the BEM standard formulation.
1298 J. Acoust. Soc. Am., Vol. 109, No. 4, April 2001 Cutanda et al.: Modeling narrow gaps with BEM 1298
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TABLE I. Processing time results on a DEC Alpha 433 MHz for the two-
10° cylinder test casé¢see Sec. IV B with 60 elements. Gauss—Legendre nu-
merical integration of order 20 and the interval division technique are com-
@ ared.
é‘ 10° P
9 Gap width Integration Timés) Result
. 1] 10°2 G
> auss 82.7 Good
% Division 91.4 Good
= 10 1073 Gauss 83.0 Fail
Division 93.2 Good
- . 1074 Gauss 83.2 Fail
10 ' J Division 93.9 Good
-0.1 -0.05 0 0.05 0.1 10°° Gauss 82.7 Fail
Local coordinate Division 94.4 Good
1076 Gauss 82.6 Fail
FIG. 4. Near-singular behavior of an integrand in the thin disk calculation. Division 96.7 Fail

Abscissas are local coordinates along the element1]; ordinates are val-
ues of the integrand on a logarithmic scale. The curves are integrands with
a collocation point at 10%, 1073, 1074, 1075, and 108 units’ distance

from the local coordinate 0. The disk radius is 1 unit. Five elements per dis

. Klimensional guadratic elements are used, but the technique
side are used.

can be translated to other implementations. The distance
from each subinterval boundary to the collocation point pro-

. Onlly very limited |mprovement_|s o.btalned_ by merely jection is expressed hy-b"-d, whereb andc are constants,
increasing the order of the numerical integration formula.; . . . .

) . d is the distance from collocation point to the element, rela-
The integration does not concentrate the effort around thﬁ

near singularity, where the integrand has a peak. The use Of - to the element size, amtis the subinterval number. In
g Y, 9 peax. ractical calculations, it was adjusted lie=2 andc=2"°5.

numerical formulas designed for singular integrals has alsg ; ) . .
ach subinterval can be numerically integrated using low-

been considered, but they do not perform well due to the : . . ) )
) . : order standard techniques. In this way the information avail-
different nature of the near-singular integrand.

. . . ., .. able about the integrand is used to perform the numerical
Another possible choice is an adaptive numerical inte- . N . .
integration, and no complex adaptive integration strategy is

gration routine. Such routines have been used for many years
needed.

on all kinds of problems and are implemented in most math- The improved integration does not involve a significant

ematical software packages. Basically, the algorithm tries tcl)ncrease in computer load. Computational effort is only ap-

decrease the integration error down to a given value. To dQ,. - i : .
i : ) . ; . lied where it is necessary; that is, only in those cases where
this, the error is estimated during every iterative step, an . o -
he collocation point is very close to the element and, within

more integration points are used on the difficult areas. Wher}1 : ) )
: . : : . that element, around the near singularity and proportional to
applied to near-singular integrals in BEM, there is a clear.

. S . its strength. Table | presents some run times for the narrow-
improvement. However, these methods often fail in the limit ab test case and a 60-element fixed mesh. The interval di-
of very close collocation points. The floating-point precisiong P )

e ; . . ision technique adds around 10%—-20% to the normal pro-
of the machine is reached during the internal calculation o L : L L
) . : . . . cessing time, with a slight increase for narrower gaps. This is
integration error estimates, with unpredictable results. Thi

- . ; ?ogical if we consider that the technique is only used to cal-
lack of reliability and control on the routine behavior seems : .
culate an order oN elements in alN X N matrix.

to rule them out.

An optimal numerical integration scheme for this par-
ticular problem should be simple enough to minimize errors
but, on the other hand, it should concentrate the effort around
the difficult area. If the information about the near singular-'V' TEST CASES
ity and its strength can be used in order to perform eacln, BEM axisymmetrical formulation
integration in the most appropriate way, the computer load

can Iilsvci)eSVeorfet?\liJsc,et?\.e approach finally adopted employs anconsidereq, it is possiblg to simplify the standard BEM from
exponential interval division according to the expected near? surface integral to an mtegrgl al_o ng th? ggnerator and an-
singular behavior, as shown in Fig. 5. In this study, one_other over the angle of reyolutlon, ina cylindrical coordmate
system. The use of a cosine expansiop@®) and»(Q) in
orthogonal terms allows the isolation of the singularities con-
tained in the revolution integrals so that only the generator

| | has to be discretized, saving computing time and storage

If an axisymmetric body or bodies on the same axis are

Distance

—— - “_—_
{ A capacity. Although the excitations described in this paper are
* > also axisymmetrical, the cosine expansions permit nonaxi-
Element to integrate symmetrical boundary conditions. This implementation re-

o S : . i tains most features of the full 3D version, which means that
FIG. 5. Exponential interval division on a one-dimensional quadratic ele- . . .
ment. Relative distance and local coordinate of the collocation point ardN€ Problem of close boundaries can be studied more easily

used to calculate the number and sizes of the subintervals. and over a larger number of test cas®s.
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FIG. 6. Test casega) thin disc;(b) narrow gap. Distance along the generator

FIG. 8. Calculated sound-pressure modulus on the generator of two coaxial
rigid cylinders[see Fig. @b)] separated by a variable narrow gap calculated
using a mesh of 10 elements per unit, 60 elements in total. The gap widths
are 102, 1073, 1074, 1075, and 10°%. An axial plane wave oka=1 and
1.4 unit amplitude is scattered by the setup. Calculations ugagGauss—
Analytical 4 Legendre numerical integration of order 2@) with interval division as
j:|_> explained in Sec. Ill.

B. Test cases

Two test cases have been chosen to represent the thin-
body problem and the narrow-gap problem. These are, re-
spectively, a disk of variable thickness and two cylinders
with a common axis that form a narrow gap. They are rep-
resented in Fig. 6.

These cases have rotational symmetry along the cylin-
drical coordinated and therefore the axisymmetrical BEM
formulation can be applied. The bodies are supposed to be
1.4 Analytioal i rigid (infinite impedanckand excited by a plane wave com-

2 v ing from thez"-axis direction. Several values &f (wave
number times radiyshave been used in the calculations, but
only the results foka=1 are presented, since no relevant
variation with the frequency has been observed. The raius
of disk and cylinders is normalized to 1, as well as cylinder
lengths.

The numerical implementation is made by dividing the
0.9 L . generators into line elements. Both pressure and geometry

0 0.5 1 15 5 are modeled using quadratic shape functions.

Pressure modulus

10° 10* 10° 10°

0.9 -
0 0.5 1 1.5 2

Distance along the generator

Pressure modulus

Distance along the generator
C. Sound-pressure results
FIG. 7. Calculated sound-pressure modulus on the generator of fseisk
Fig. 6(@)] of variable thickness using a mesh of 10 elements per unit, 20 ~ The sound-pressure modulus along the generator of the
elements in total. The thicknesses are 3,010 2, 104, 10°°, and 10°8. Objects in F|g 6 is shown in F|gsm|sk) and 8(gag for a

The analytical SOJUtIOI‘] for a |nf|n|t_ely th_ln disk is also pIotte_d. An axial variety of thicknesses/widths. Standard Gauss—Legendre in-
plane wave oka=1 and unit amplitude is scattered by the disk. Calcula:

tions using(a) Gauss—Legendre numerical integration of order(@Pwith tegration[Figs. 1a)/8(a)] succeeds only if the disks or gaps
interval division as explained in Sec. III. are thicker than 107 units, while the proposed interval di-
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vision can give good results down to 10units[Figs. 1b)/  ence of a very narrow gap. Therefore, considering the gap as
8(b)]. The two breakdowns are different. An integration fail- two-dimensional, the sound pressure along the ratiies-

ure causes the pressure to drop to zero on the close surfacesato) inside the gap has the form of a Bessel functibtts
while the improved integration avoids this down to a pointboundary condition is the sound pressure on the external
where ill-conditioning is too serious for the limited precision surface connected to the gagbscissas 2 and 4 in Fig).8

of the computer to cope with, and unpredictable results apFor ka=1, there are no zeros of the Bessel function within
pear. Other calculations not shown here have demonstratébe gap; therefore, only a pressure increase is observed.
that neither mesh density nor frequency has any influence on

the ill-conditioning breakdown. It is only dependent on th . :
© onditioning breakdo s only dependent o eD. Convergence of the improved solution
aspect ratio.

Figure 7 also includes the corresponding analytical so- Using the calculated complex sound pressure on the
lution for a disk of zero thickness, which can be obtained agienerator nodes and the corresponding analytical values for
a series of oblate spheroidal functions. This solution hasn infinitely thin disk, it is possible to study the convergence
been calculated in order to validate the results and study thef the thin-disk calculation as a function of mesh density and
convergence. A brief summary is given in the Appendix ofdisk thickness.
this paper. The thicknesses examined are small enough to make

The pressure increase in the gap observed in Fig. 8 caem physically very similar to a disk with no thickness. The
be explained in the limiting case of a vanishing gap. Ideallyerror is calculated as the length of the residual vector relative
the external sound field would not be influenced by the presto the analytical solution

Relative erroe

VLI (RE(P; analyiica) — RE(P; catcutated) >+ (IM(P; anaiytical = IM(P; caicuiated)?]

©)
\/E ]M: 1[ Rd l:)j analyticab 2+ |m( Pj analyticap 2]

where Pj ghaytical IS the analytical solution at nodg and  due to the ill-conditioning of the coefficient matrix, but

Pj caiculated IS the calculated complex pressure at the samehicker disks do not show any strange behavior. The gap case

node.M is the total number of nodes of every solution. Seeis physically more complicated because what happens inside

Fig. 9. the gap is strongly influenced by the phenomena on the gap
Unfortunately, the narrow-gap case does not have a suitim; therefore, the convergence pattern differs. Nevertheless,

able analytical solution. The two-dimensional analogy menthe solutions clearly converge again except for the ®10

tioned in the last section is not precise enough to study corcase. The use of a calculated solution as a reference produces

vergence, since it is dependent on the boundary conditions atso a shift in the error scale.

the rim that are themselves subject to calculation errors,

which are aggravated because of the sharp edge singufarity g lll-conditioning

The convergence can nevertheless be studied by using a so- . - _

lution with a very fine mesh as a reference. This is what Fig. 1€ condition number of the coefficient matrix has been

10 represents. calculated for a number of mesh densities and dlsk/g.ap th|ck—
The convergence is clear in the disk case, and indepeﬁ‘-esses' _It was shown in Sec. lll that a good numerical |n.te-

dent of the thickness. Only the 10 case cannot converge gration in a problem of close surfaces produces an ill-

10° A

100 10°
e HHH— ¢ = 10°F 10+ 10

< =

< g -3

‘5 10 g 10 + 10.2

5 ‘}o’ 10

o 2 1+F

2 =

‘(.“a L Q

g) 1 T qoth

10°% : e
0.1 e — 1 10 100
1 10 100

Elements per side
Elements per side

FIG. 10. Convergence towards the “true” solution of a narrow psee Fig.
FIG. 9. Convergence towards the analytical solution of a thin [disk Fig. 6(b)] of variable width, using the proposed numerical integration. The
6(a)] of variable thickness, using the proposed numerical integration. Thewidths are 102 (+), 1072 (¢), 10°* (0), 10°° (O), and 10° (X).
thicknesses are 16 (+), 102 (¢), 10°* (O), 10°° (O), and 10° The relative error in the gap nodes is represented as a function of the mesh
(X). The relative error is represented as a function of the mesh density. Aensity. An axial plane wave ¢&fa= 1 and unit amplitude is scattered by the
axial plane wave oka=1 and unit amplitude is scattered by the disk. cylinders.

1301 J. Acoust. Soc. Am., Vol. 109, No. 4, April 2001 Cutanda et al.: Modeling narrow gaps with BEM 1301

Downloaded 28 Jun 2010 to 192.38.67.112. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



107 conditioned system of equations, and therefore a high

108 | ? condition number of the coefficient matrix. Conversely, a
3 45t failure of the integration generates low condition numbers,
E nl but with erroneous solutions.
g 103 Figures 11 and 12 show that the ill-conditioning behaves
g 10T similarly in the two test cases. If the near-singular integrals
§ 10° L are not dealt with, the condition number does not grow very
10 L much, but the calculation gives erroneous results. When the
4 ‘ , } ‘ : interval division technique is used the condition number
10" 10°? 10° 10* 10° 10° grows exponentially as the surfaces get closer, no matter
Gap width which mesh density is used. The frequency also has very
little influence, as other calculations not presented here have
, shown. Hence, the aspect ratio indeed seems to determine the
10 condition number, independently of whether we deal with
oo narrow gaps or thin bodies.
é 10°
g 10 V. CONCLUSIONS
(=] 3
B 102 It has been shown that a case of practical importance in
8§ 1 engineering like the narrow gap can be modeled using con-
10+ ventional BEM despite the ill-conditioning of the coefficient

1 L - - - e . matrix and with no need of denser meshes. A convergence
10 10 10 10 10 10 S
study has also revealed that the solution improves normally

Gap width for gradually denser meshes. A simple strategy of interval
FIG. 11. Condition number of the coefficient matrix for the narrow-gap testdlvISIon with low CompUtatlor_]al cost is enough to EXtend_ the
case, as a function of gap width. Three mesh densities are plotted, 20  'ange of Ztractablse aspect ratios by thr_ee orders of magthdeu
(X), and 60(0O) elements per unit. Calculations usife) Gauss—Legendre from 10 < to 10 °. This makes it possible to deal with prob-
numerical integration of order 2Qb) with interval division as explained in  |ems like condenser microphones and sound intensity probes,
Sec. lll. Calculation made witka=1. which have motivated this study. For example, the air layer

behind the diaphragm of a 1/2-in. condenser microphone is

about 20um, giving an aspect ratio of about 19

107

a
108 ) APPENDIX: ANALYTICAL SOLUTION FOR
10°+ SCATTERING BY A FLAT DISK

10* The infinitely thin disk is the limiting case of the oblate
10% | spheroid, which is better described in the oblate spheroidal
coordinate systern€, 7, ¢). Its relation with rectangular Car-
tesian coordinates is

‘ , x=3d\(£2+1)(1- n°)cose,

10" 10* 10° 10 10° 10° ) , - ) (A1)
y=32dV(§°+1)(1=7%)sing, z=3d{u.

The wave equation is separable in this coordinate system into

spheroidal wave functions, thus providing analytical solu-

tions for a range of cases. The particular solution used in this

paper corresponds to an infinitely thin hard digk=0 and

d=diametey excited by a plane wave coming from the posi-

tive z axis. The sound pressuf@ecident and scattergan its

surface can be expressed by the séfies

Condition number

Disc thickness

. 2 & in —ika,—1 —ika,
PI + PS=_ E i Son( . )SOH( 77) ,
kan=o Non(—ika) Ron ' (—ika,io)
1 -1 1 -2 ‘ -3 ‘ -4 I -5 -6 (Az)
10 10 10 10 10 10

Condition number

whereS,,, are the oblate spheroidal angular functioR§>)

are the derivatives of the oblate spheroidal radial functions of
FIG. 12. Condition number of the coefficient matrix for the thin-disk test the third kind, andN,,,, are the normalization factoté These

case, as a function of thickness. Three mesh densities are plotted; 20 functions are also expressed as infinite series. and computer
(X), and 60(O) elements per side. Calculations usif@®y Gauss—Legendre . T o
numerical integration of order 20b) with interval division as explained in  algorithms have been used to calculate them with sufficient

Sec. Ill. Calculation made witka=1. accuracy”’

Disc thickness
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