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Numerical methods based on the Helmholtz integral equation are well suited for solving acoustic
scattering and diffraction problems at relatively low frequencies. However, it is well known that the
standard method becomes degenerate if the objects that disturb the sound field are very thin. This
paper makes use of a standard axisymmetric Helmholtz integral equation formulation and its
boundary element method~BEM! implementation to study the behavior of the method on two test
cases: a thin rigid disk of variable thickness and two rigid cylinders separated by a gap of variable
width. Both problems give rise to the same kind of degeneracy in the method, and modified
formulations have been proposed to overcome this difficulty. However, such techniques are better
suited for the so-called thin-body problem than for the reciprocal narrow-gap problem, and only the
first is usually dealt with in the literature. A simple integration technique that can extend the range
of thicknesses/widths tractable by the otherwise unmodified standard formulation is presented and
tested. This technique is valid for both cases. The modeling of acoustic transducers like sound
intensity probes and condenser microphones has motivated this work, although the proposed
technique has a wider range of applications. ©2001 Acoustical Society of America.
@DOI: 10.1121/1.1350399#

PACS numbers: 43.20.Fn@ANN#

I. INTRODUCTION

Phenomena where the physical setup contains very close
domain boundaries are not uncommon in practice. Typical
cases are fins or appendages from bulky structures, thin
plates, and shells. All of them have parts that are very thin
compared to the overall dimensions. It is well known that the
conventional boundary element method has difficulties in
dealing with such tasks. Considerable effort has been put
into this so-called thin-body problem in recent years in order
to make it tractable with BEM, and different formulations
have been proposed that can alleviate or remove such
difficulties.1–4

There is a second family of cases that shares many fea-
tures with thin bodies. This may be named the narrow-gap
problem. Examples are coatings, lubricant layers, cracks, and
some acoustic transducers. The domain of interest in these
cases is situatedbetweenthe close boundaries, and very often
a two-dimensional simplification cannot be used if the trans-
versal variations are of physical relevance.

BEM formulations that can deal effectively with thin
bodies become of no use in narrow gaps, and only a few
techniques remain that can provide results in practical engi-
neering work. One of these techniques is described in this

paper, which has been motivated by numerical modeling of
sound intensity probes and condenser microphones.5 The be-
havior of sound fields inside narrow gaps plays a central role
in these devices. Therefore, the performance of BEM formu-
lations in such situations must be understood in order to
obtain meaningful results.

The conventional BEM has two difficulties whenever
two parts of the surface are very close.4 First, the coefficient
matrix becomes ill-conditioned as the distance gets smaller,
and second, the integrals are near singular and difficult to
solve numerically. The methods proposed to get around these
difficulties in the thin-body variant fall into two groups: mul-
tidomain methods and normal-derivative equation methods.
In multidomain methods an imaginary surface is constructed
so as to replace the original problem of a thin body in a
single domain with bulky bodies in two domains or more,
coupled at an imaginary surface.2 Such methods are advan-
tageous for certain problems such as muffler analysis, but for
other cases the imaginary surface may be quite large and will
therefore give rise to considerable computational work. The
alternative methods involve the normal derivative of the
Helmholtz integral equation~HIE!. A popular implementa-
tion is a combination of the HIE with its normal derivative,
since this combination also can be shown to overcome the
nonuniqueness problem of the standard HIE.6 A strategy of-
ten chosen is to apply the combined equation on the midsur-
face of the thin body.1,3 Another procedure, which does not

a!Electronic mail: vcutanda@bksv.com
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assume the approximation of an infinitely thin body, applies
the HIE on one side of the thin body and its normal deriva-
tive on the other.4

For a plane narrow gap a multidomain strategy could be
used in which the gap could be modeled as a two-
dimensional problem coupled to an exterior three-
dimensional problem. However, this approach is only ap-
proximate for any finite gap width, and not suitable for
problems where the sound field details inside the gap are
important. As to the combined formulation in Ref. 4, the
regularizing effect seems to rely on a medium being present
outside, as in the case of inclusions.

Since complete removal of the ill-conditioning in the
gap case is problematic, it is interesting to examine whether
the conventional formulation can still provide correct results
for practical cases under such circumstances. As pointed out
in Ref. 4, adequate treatment of the near-singular integrals
can prevent a breakdown due to poor integration, but it
leaves the ill-conditioning. We will show in this paper how a
simple numerical integration strategy can extend the range of
aspect ratios~smaller dimension/overall dimension! by sev-
eral orders of magnitude despite ill-conditioning, thus plac-
ing most practical gap problems within reach of the standard
BEM. Besides, the proposed numerical integration only re-
quires a very small increase of computing resources.

The nature of the problem of close boundaries is re-
viewed in the next section, with emphasis on the features of
the gap case. An explanation of the numerical integration
technique developed follows. The remainder of the paper is
dedicated to thin-body and narrow-gap test cases. An axi-
symmetrical formulation is used, which is outlined along
with details of the study methodology. The behavior of the
method’s convergence towards the solution is analyzed on
the test cases, as well as the ill-conditioning of the coefficient
matrix. The influence of frequency, mesh density, and aspect
ratio is investigated.

II. THE PROBLEM OF CLOSE DOMAIN BOUNDARIES

A. The standard Helmholtz integral equation „HIE…

The BEM approach to acoustic radiation and scattering
problems is based on the Helmholtz integral equation that
relates the pressurep(Q) and normal velocityn(Q) on the
surface of a body of any shape~see Fig. 1! with the pressure
at any pointp(P) and the pressure of an incoming wave
pI(P).7 The harmonic time dependenceeivt is omitted,
giving

C~P!p~P!5E
S
S ]G

]n
p~Q!1 ikz0n~Q!GDdS14ppl~P!,

~1!

whereS is the surface of the body,Q a point on that surface,
andP any exterior or interior point. The normal vectorn is
directed into the computational domain. The Green’s func-
tion for 3D free space is

G~R!5
e2 ikR

R
, R5uP2Qu. ~2!

The factorC(P) is the geometrical constant and represents
the exterior solid angle atP. It is calculated by

C~P!54p1E
S

]

]n S 1

RDdS. ~3!

The expression~3! is valid for exterior problems; for interior
problems 4p should be subtracted. In the present study only
scattering by rigid bodies is considered; thus,pI(P) is the
excitation andn(Q)50, making Eq.~1! simpler. However,
the coefficient matrix obtained from the BEM numerical
implementation of~1! will be the same as for radiation prob-
lems, and therefore the conclusions discussed below will still
be general. The standard collocation formulation will be
used.

B. The thin-body problem

The case of a thin planar body has been discussed ex-
tensively in the literature, and hence the results are merely
listed. For a thin disk using constant elements and unmodi-
fied numerical integration, the coefficient matrix of the BEM
becomes

2pS I ;0

;0 I D , ~4!

where I is the identity matrix and;0 is approximately a
matrix of zeros. This matrix is perfectly conditioned, but
does not lead to the correct solution of the problem.8 The
problem is grounded in the nonhandling of the near singular-
ity of the integral as the integration pointQ to the surfaceS1

passes the collocation pointP on the near surfaceS ~see Fig.
2!. With proper treatment of the near singularity, one finds a
correct matrix representation for the problem4,8

2pS I ;I

;I I D . ~5!

Here, the near degeneracy is reflected in an ill-conditioned
matrix, which potentially may lead to incorrect solutions. As
mentioned in the Introduction, two solutions have been pro-
posed to deal with thin bodies, the multidomain method and
the use of the normal derivative. Both of them reformulate
the problem in a way that makes the ill-conditioning disap-
pear, although in the case of some combined formulations

FIG. 1. Generic integration domain and boundary surface.
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using the normal derivative, near-singular integrals are still
present and must be taken care of.4,9

C. The narrow-gap problem

Consider a rigid bulky object with a narrow gap, as rep-
resented in Fig. 3. The surface on the exterior of the object is
denoted byS, and the surfaces in the gap byS2 and S1 ,
respectively. Since there is no pressure jump across the gap
in the limit of a gap of zero thickness, the normal derivative
methods do not pose any new information for this kind of
problems. The standard HIE for a scattering problem with
such an object is

C~P!p~P!5E
S
p~Q!

]G

]n
dS1E

S2

p2~Q!
]G

]n
dS

1E
S1

p1~Q!
]G

]n
dS14ppI~P!. ~6!

Let P be onS. In the limit of an infinitely narrow gap, con-
tinuity of the pressure requires thatp25p1 so the two inte-
grals for the two gap surfaces cancel out. Hence, in the limit
of narrow gaps the sound field outside the gap is not influ-
enced by the sound field inside the gap. This is in agreement
with what one would expect physically. Therefore, the solu-
tion strategy for a problem involving a very narrow planar
gap with rigid surfaces could be to solve an exterior problem
neglecting the gap, and then to solve the gap problem as a
two-dimensional interior problem with the pressures ob-
tained for the exterior problem as the boundary conditions.
However, if the gap width cannot be neglected, if parts of the
gap surface are of finite impedance, and/or if viscosity is to
be taken into account, the need for a simultaneous analysis of
the gap and the exterior field is envisaged. If the near singu-
larity is properly taken into account, the block of identity
matrices of Eq.~5! is found in the matrix equivalent of Eq.
~6!

S A D 2D

C 2pI ;2pI

;C ;2pI 2pI
D S p

p2

p1

D 54ppI . ~7!

The first block of rows in Eq.~7! refers to collocation points
on the exterior surfaceS, and the second and third block of
rows refer to collocation points onS2 andS1 , respectively.
Again, the near degeneracy due to the two close surfaces is
reflected in ill-conditioning of the coefficient matrix. If the
near singularity is not dealt with properly, the lower right
corner of the coefficient matrix is to be replaced with Eq.~4!

S A D 2D

C 2pI ;0

;C ;0 2pI
D S p

p2

p1

D 54ppI , ~8!

and the resulting~false! system of equations will be well-
conditioned. In the latter case, which represents a standard
numerical implementation, it is easy to show that the solu-
tion will tend towards zero inside the gap as the gap width
tends towards zero. The solution outside the gap will still
tend towards the solution of the equivalent exterior problem
with the gap removed.

III. IMPROVEMENT OF THE NUMERICAL
INTEGRATION

To achieve the goal of obtaining valid solutions for
narrow-gap problems, the strategy chosen is the improve-
ment of the numerical integration technique. A system of
equations of the form in~7! should be guaranteed for a range
of aspect ratios of practical importance. As mentioned in the
last section, there is still ill conditioning, and therefore the
accuracy of the elements in the coefficient matrix, which are
obtained by numerical integration, imposes a limit to the
aspect ratio that can be calculated. Nevertheless, if this limit
is high enough, the cases left out will be too narrow to have
practical use or even physical meaning.

Several authors propose ways to handle near-singular
integrals. For example, in Refs. 4 and 9 an analytical re-
moval of the near singularity that splits the integral is per-
formed. The resulting terms are treated with variable changes
and the Stokes theorem in order to reduce or eliminate their
difficulty. However, the approach taken in this paper will be
numerical, not analytical.

The behavior of a near-singular integrand differs in
many ways from a genuine singularity. If a collocation point
is in the neighborhood of an element to be integrated, it
produces a perturbation on the integrand around its projec-
tion on the element, more localized and more acute the
shorter the distance. This effect can be observed in Fig. 4,
which is a near-singular integrand along a one-dimensional
element. It has been obtained from the disk test case to be
presented in the following section. Note that integrand values
are represented in a logarithmic scale and that only a part of
the element is shown. It becomes clear from Fig. 4 why
standard numerical integration methods, like Gauss–
Legendre, miss this troublesome area for a given relative
distance and lead to results as shown in Eqs.~4! and~8!. This
situation has often been described as the ‘‘breakdown’’ of
the BEM standard formulation.

FIG. 2. Thin-body setup.

FIG. 3. Narrow-gap setup.
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Only very limited improvement is obtained by merely
increasing the order of the numerical integration formula.
The integration does not concentrate the effort around the
near singularity, where the integrand has a peak. The use of
numerical formulas designed for singular integrals has also
been considered, but they do not perform well due to the
different nature of the near-singular integrand.

Another possible choice is an adaptive numerical inte-
gration routine. Such routines have been used for many years
on all kinds of problems and are implemented in most math-
ematical software packages. Basically, the algorithm tries to
decrease the integration error down to a given value. To do
this, the error is estimated during every iterative step, and
more integration points are used on the difficult areas. When
applied to near-singular integrals in BEM, there is a clear
improvement. However, these methods often fail in the limit
of very close collocation points. The floating-point precision
of the machine is reached during the internal calculation of
integration error estimates, with unpredictable results. This
lack of reliability and control on the routine behavior seems
to rule them out.

An optimal numerical integration scheme for this par-
ticular problem should be simple enough to minimize errors
but, on the other hand, it should concentrate the effort around
the difficult area. If the information about the near singular-
ity and its strength can be used in order to perform each
integration in the most appropriate way, the computer load
can also be reduced.

In view of this, the approach finally adopted employs an
exponential interval division according to the expected near-
singular behavior, as shown in Fig. 5. In this study, one-

dimensional quadratic elements are used, but the technique
can be translated to other implementations. The distance
from each subinterval boundary to the collocation point pro-
jection is expressed byc•bn

•d, whereb andc are constants,
d is the distance from collocation point to the element, rela-
tive to the element size, andn is the subinterval number. In
practical calculations, it was adjusted tob52 andc5225.
Each subinterval can be numerically integrated using low-
order standard techniques. In this way the information avail-
able about the integrand is used to perform the numerical
integration, and no complex adaptive integration strategy is
needed.

The improved integration does not involve a significant
increase in computer load. Computational effort is only ap-
plied where it is necessary; that is, only in those cases where
the collocation point is very close to the element and, within
that element, around the near singularity and proportional to
its strength. Table I presents some run times for the narrow-
gap test case and a 60-element fixed mesh. The interval di-
vision technique adds around 10%–20% to the normal pro-
cessing time, with a slight increase for narrower gaps. This is
logical if we consider that the technique is only used to cal-
culate an order ofN elements in anN3N matrix.

IV. TEST CASES

A. BEM axisymmetrical formulation

If an axisymmetric body or bodies on the same axis are
considered, it is possible to simplify the standard BEM from
a surface integral to an integral along the generator and an-
other over the angle of revolution, in a cylindrical coordinate
system. The use of a cosine expansion ofp(Q) andn(Q) in
orthogonal terms allows the isolation of the singularities con-
tained in the revolution integrals so that only the generator
has to be discretized, saving computing time and storage
capacity. Although the excitations described in this paper are
also axisymmetrical, the cosine expansions permit nonaxi-
symmetrical boundary conditions. This implementation re-
tains most features of the full 3D version, which means that
the problem of close boundaries can be studied more easily
and over a larger number of test cases.10

FIG. 4. Near-singular behavior of an integrand in the thin disk calculation.
Abscissas are local coordinates along the element@21,1#; ordinates are val-
ues of the integrand on a logarithmic scale. The curves are integrands with
a collocation point at 1022, 1023, 1024, 1025, and 1026 units’ distance
from the local coordinate 0. The disk radius is 1 unit. Five elements per disk
side are used.

FIG. 5. Exponential interval division on a one-dimensional quadratic ele-
ment. Relative distance and local coordinate of the collocation point are
used to calculate the number and sizes of the subintervals.

TABLE I. Processing time results on a DEC Alpha 433 MHz for the two-
cylinder test case~see Sec. IV B! with 60 elements. Gauss–Legendre nu-
merical integration of order 20 and the interval division technique are com-
pared.

Gap width Integration Time~s! Result

1022 Gauss 82.7 Good
Division 91.4 Good

1023 Gauss 83.0 Fail
Division 93.2 Good

1024 Gauss 83.2 Fail
Division 93.9 Good

1025 Gauss 82.7 Fail
Division 94.4 Good

1026 Gauss 82.6 Fail
Division 96.7 Fail
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B. Test cases

Two test cases have been chosen to represent the thin-
body problem and the narrow-gap problem. These are, re-
spectively, a disk of variable thickness and two cylinders
with a common axis that form a narrow gap. They are rep-
resented in Fig. 6.

These cases have rotational symmetry along the cylin-
drical coordinateu and therefore the axisymmetrical BEM
formulation can be applied. The bodies are supposed to be
rigid ~infinite impedance! and excited by a plane wave com-
ing from thez1-axis direction. Several values ofka ~wave
number times radius! have been used in the calculations, but
only the results forka51 are presented, since no relevant
variation with the frequency has been observed. The radiusa
of disk and cylinders is normalized to 1, as well as cylinder
lengths.

The numerical implementation is made by dividing the
generators into line elements. Both pressure and geometry
are modeled using quadratic shape functions.

C. Sound-pressure results

The sound-pressure modulus along the generator of the
objects in Fig. 6 is shown in Figs. 7~disk! and 8~gap! for a
variety of thicknesses/widths. Standard Gauss–Legendre in-
tegration@Figs. 7~a!/8~a!# succeeds only if the disks or gaps
are thicker than 1022 units, while the proposed interval di-

FIG. 6. Test cases.~a! thin disc; ~b! narrow gap.

FIG. 7. Calculated sound-pressure modulus on the generator of a disk@see
Fig. 6~a!# of variable thickness using a mesh of 10 elements per unit, 20
elements in total. The thicknesses are 1022, 1023, 1024, 1025, and 1026.
The analytical solution for a infinitely thin disk is also plotted. An axial
plane wave ofka51 and unit amplitude is scattered by the disk. Calcula-
tions using~a! Gauss–Legendre numerical integration of order 20;~b! with
interval division as explained in Sec. III.

FIG. 8. Calculated sound-pressure modulus on the generator of two coaxial
rigid cylinders@see Fig. 6~b!# separated by a variable narrow gap calculated
using a mesh of 10 elements per unit, 60 elements in total. The gap widths
are 1022, 1023, 1024, 1025, and 1026. An axial plane wave ofka51 and
unit amplitude is scattered by the setup. Calculations using~a! Gauss–
Legendre numerical integration of order 20;~b! with interval division as
explained in Sec. III.

1300 1300J. Acoust. Soc. Am., Vol. 109, No. 4, April 2001 Cutanda et al.: Modeling narrow gaps with BEM

Downloaded 28 Jun 2010 to 192.38.67.112. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



vision can give good results down to 1025 units @Figs. 7~b!/
8~b!#. The two breakdowns are different. An integration fail-
ure causes the pressure to drop to zero on the close surfaces,
while the improved integration avoids this down to a point
where ill-conditioning is too serious for the limited precision
of the computer to cope with, and unpredictable results ap-
pear. Other calculations not shown here have demonstrated
that neither mesh density nor frequency has any influence on
the ill-conditioning breakdown. It is only dependent on the
aspect ratio.

Figure 7 also includes the corresponding analytical so-
lution for a disk of zero thickness, which can be obtained as
a series of oblate spheroidal functions. This solution has
been calculated in order to validate the results and study the
convergence. A brief summary is given in the Appendix of
this paper.

The pressure increase in the gap observed in Fig. 8 can
be explained in the limiting case of a vanishing gap. Ideally,
the external sound field would not be influenced by the pres-

ence of a very narrow gap. Therefore, considering the gap as
two-dimensional, the sound pressure along the radius~gen-
erator! inside the gap has the form of a Bessel function.11 Its
boundary condition is the sound pressure on the external
surface connected to the gap~abscissas 2 and 4 in Fig. 8!.
For ka51, there are no zeros of the Bessel function within
the gap; therefore, only a pressure increase is observed.

D. Convergence of the improved solution

Using the calculated complex sound pressure on the
generator nodes and the corresponding analytical values for
an infinitely thin disk, it is possible to study the convergence
of the thin-disk calculation as a function of mesh density and
disk thickness.

The thicknesses examined are small enough to make
them physically very similar to a disk with no thickness. The
error is calculated as the length of the residual vector relative
to the analytical solution

Relative error5
A( j 51

M @~Re~Pj analytical!2Re~Pj calculated!!21~ Im~Pj analytical!2Im~Pj calculated!!2#

A( j 51
M @Re~Pj analytical!

21Im~Pj analytical!
2#

, ~9!

where Pj analytical is the analytical solution at nodej and
Pj calculated is the calculated complex pressure at the same
node.M is the total number of nodes of every solution. See
Fig. 9.

Unfortunately, the narrow-gap case does not have a suit-
able analytical solution. The two-dimensional analogy men-
tioned in the last section is not precise enough to study con-
vergence, since it is dependent on the boundary conditions at
the rim that are themselves subject to calculation errors,
which are aggravated because of the sharp edge singularity.12

The convergence can nevertheless be studied by using a so-
lution with a very fine mesh as a reference. This is what Fig.
10 represents.

The convergence is clear in the disk case, and indepen-
dent of the thickness. Only the 1026 case cannot converge

due to the ill-conditioning of the coefficient matrix, but
thicker disks do not show any strange behavior. The gap case
is physically more complicated because what happens inside
the gap is strongly influenced by the phenomena on the gap
rim; therefore, the convergence pattern differs. Nevertheless,
the solutions clearly converge again except for the 1026

case. The use of a calculated solution as a reference produces
also a shift in the error scale.

E. Ill-conditioning

The condition number of the coefficient matrix has been
calculated for a number of mesh densities and disk/gap thick-
nesses. It was shown in Sec. III that a good numerical inte-
gration in a problem of close surfaces produces an ill-

FIG. 9. Convergence towards the analytical solution of a thin disk@see Fig.
6~a!# of variable thickness, using the proposed numerical integration. The
thicknesses are 1022 (1), 1023 (L), 1024 (h), 1025 (s), and 1026

(3). The relative error is represented as a function of the mesh density. An
axial plane wave ofka51 and unit amplitude is scattered by the disk.

FIG. 10. Convergence towards the ‘‘true’’ solution of a narrow gap@see Fig.
6~b!# of variable width, using the proposed numerical integration. The
widths are 1022 (1), 1023 (L), 1024 (h), 1025 (s), and 1026 (3).
The relative error in the gap nodes is represented as a function of the mesh
density. An axial plane wave ofka51 and unit amplitude is scattered by the
cylinders.
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conditioned system of equations, and therefore a high
condition number of the coefficient matrix. Conversely, a
failure of the integration generates low condition numbers,
but with erroneous solutions.

Figures 11 and 12 show that the ill-conditioning behaves
similarly in the two test cases. If the near-singular integrals
are not dealt with, the condition number does not grow very
much, but the calculation gives erroneous results. When the
interval division technique is used the condition number
grows exponentially as the surfaces get closer, no matter
which mesh density is used. The frequency also has very
little influence, as other calculations not presented here have
shown. Hence, the aspect ratio indeed seems to determine the
condition number, independently of whether we deal with
narrow gaps or thin bodies.

V. CONCLUSIONS

It has been shown that a case of practical importance in
engineering like the narrow gap can be modeled using con-
ventional BEM despite the ill-conditioning of the coefficient
matrix and with no need of denser meshes. A convergence
study has also revealed that the solution improves normally
for gradually denser meshes. A simple strategy of interval
division with low computational cost is enough to extend the
range of tractable aspect ratios by three orders of magnitude,
from 1022 to 1025. This makes it possible to deal with prob-
lems like condenser microphones and sound intensity probes,
which have motivated this study. For example, the air layer
behind the diaphragm of a 1/2-in. condenser microphone is
about 20mm, giving an aspect ratio of about 1023.

APPENDIX: ANALYTICAL SOLUTION FOR
SCATTERING BY A FLAT DISK

The infinitely thin disk is the limiting case of the oblate
spheroid, which is better described in the oblate spheroidal
coordinate system~j, h, f!. Its relation with rectangular Car-
tesian coordinates is

x5 1
2dA~j211!~12h2!cosf,

~A1!
y5 1

2dA~j211!~12h2!sinf, z5 1
2djm.

The wave equation is separable in this coordinate system into
spheroidal wave functions, thus providing analytical solu-
tions for a range of cases. The particular solution used in this
paper corresponds to an infinitely thin hard disk~j50 and
d5diameter! excited by a plane wave coming from the posi-
tive z axis. The sound pressure~incident and scattered! on its
surface can be expressed by the series13

Pi1Ps5
2

ka (
n50

`
i n

N0n~2 ika!

S0n~2 ika,21!S0n~2 ika,h!

R0n
~3!8~2 ika,i0!

,

~A2!

whereSmn are the oblate spheroidal angular functions,Rmn
(3)

are the derivatives of the oblate spheroidal radial functions of
the third kind, andNnm are the normalization factors.14 These
functions are also expressed as infinite series, and computer
algorithms have been used to calculate them with sufficient
accuracy.15

FIG. 11. Condition number of the coefficient matrix for the narrow-gap test
case, as a function of gap width. Three mesh densities are plotted: 2~1!, 10
~3!, and 60~s! elements per unit. Calculations using~a! Gauss–Legendre
numerical integration of order 20;~b! with interval division as explained in
Sec. III. Calculation made withka51.

FIG. 12. Condition number of the coefficient matrix for the thin-disk test
case, as a function of thickness. Three mesh densities are plotted: 2~1!, 10
~3!, and 60~s! elements per side. Calculations using~a! Gauss–Legendre
numerical integration of order 20;~b! with interval division as explained in
Sec. III. Calculation made withka51.
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