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A three-dimensional, two-way, parabolic equation model for
acoustic backscattering in a cylindrical coordinate system

Dong zZhu? and Leif Bjgrng
Department of Industrial Acoustics, Technical University of Denmark, Building 425, DK-2800 Lyngby,
Denmark

(Received 5 January 1999; accepted for publication 20 March)2000

A new PE model for solving three-dimensional, forward and backward sound propagation in a
cylindrical coordinate system is presented. The model marches a wave field in the radial direction
including the azimuthal diffraction effects, and solves for a backscattered field based on a
three-dimensional, single scattering approach. A periodic sidewall boundary condition is applied for
computations in a 360-degree sector, while an approximate sidewall boundary condition is used for
calculation in a sector less than 360 degrees. These two sidewall boundary conditions are verified
by the numerical results. The major drawback of using the cylindrical coordinate system, when the
backscattering solution is valid within a limited area, is analyzed using a geometrical-optical
interpretation. The model may be useful for studying three-dimensional backscattering phenomena
comprising azimuthal diffraction effects. @000 Acoustical Society of America.
[S0001-496600)00607-X]

PACS numbers: 43.20.Bi, 43.30.BpLB]

I. INTRODUCTION derived using a normal-mode, double-series exparlsidre
analytical solution is numerically efficient for relatively low
Acoustic backscattering is an important issue in underfrequencies. However, the models above for scattering prob-
water acoustics, particularly in active sonar applicationslems in a cylindrical coordinate system were one-way mod-
However, it is normally difficult to model the backscattering els(i.e., for forward propagation onlyin active sonar simu-
in the ocean accurately, because fully three-dimensional efations where signals are transmitted and received at the
fects and two-way propagation are involved. In recent yearssame point, it is better to use a cylindrical coordinate system
the parabolic equatiofPE) method has been widely used to rather than a Cartesian coordinate system. Although a hybrid
solve various sound propagation problems including acoustighree-dimensional, two-way PE mofiehay be applicable to
backscattering. Backscattering from scatterers of arbitrarynodel three-dimensional backscattering in a cylindrical co-
shape in three dimensions in a Cartesian coordinate systegidinate system in some cases, it cannot handle fully three-
has been recently solved using the PE technique combiningdimensional effects. Therefore, a PE model that can solve
direct computation of the scattered field based on nonhomdully three-dimensional backscattering in the cylindrical co-
geneous boundary conditions on the scattering obfebis. ordinate system is required, and is presented in this article.
this method the size of objects can range from a few wave-  The three-dimensional, two-way PE model is mainly
lengths to hundreds of wavelengths. Another earlier metholased on a radius-marching algorithm and a three-
for solving three-dimensional backscattering in a Cartesialimensional, single scattering approach. The radius-
coordinate system was developed on the basis of the PHarching algorithm originates from a three-dimensional,
technique and the cross-range wave number spectiline.  one-way PE mod&lthat achieves a wide-angle capability
cross-range transform reduces the three-dimensional problegsing a quadratic operator approximatforiThe three-
to a two-dimensional problem that can be solved using thelimensional, single scattering approach arises from the idea
existing two-dimensional PE models. However, the spectraintroduced in a two-dimensional, two-way PE moddihe
PE solution breaks down for energy propagating nearly parthree-dimensional computing domain is discretized as a se-
allel to the cross-range direction. For three-dimensional scauence of stepwise radius-independent regions. The radius-
tering problems in a cylindrical coordinate system, a few PEmarching algorithm marches a wave field forward and back-
models were developed by solving a PE using the finite difward in the radial direction within each region. Based on the
ference methdtland using the alternating direction methbd. continuity conditions of acoustic pressure and normal par-
A coupled mode PE method including mode coupling termsicle velocity across the vertical interface between regions, a
is presented for large-scale scattering problems involvingpecific boundary equation is established to obtain the back-
coupling of energy between modes and azimitAs. ana-  scattered field. For simplicity of the solution technique, a
lytical solution for the three-dimensional acoustic scatterindinear operator approximation is presently used to form the
from a nonpenetrable cylindrical island in shallow water isspecific boundary equation. In future works other wide-angle
approximations may be implemented to improve the model.

dNow at @degaard & Danneskiold-Samsge A/S, Titangade 15, DK-2200 The OUtgc’ir_]g W_ave equat_ion is esse_mia!ly based on a
Copenhagen N, Denmark. paraxial approximation, a far-field approximation and an as-
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which will be discussed later in this article. Because the
radius-marching algorithm always marches the wave field
back to the source, the backscattered energy propagating in
other directions may not be fully handled. The backscattering
solution is thus valid within a limited area. This drawback is
analyzed and explained using a geometric-optical interpreta-

: tion.
Source R e T ot It is clear that the single scattering approach is valid for
Pl P g mE problems involving a single interfadeut it is not clear how
"""" ﬂ f}1=1 well this approach works for problems involving multiple

interfaces. Therefore, the present computations are focused
on the backscattering from those objects that have a single
cylindrical vertical surface. Some interesting three-

m= dimensional backscattering phenomena are also discussed.
ALGORITHM

sumption that backscattering is negligibl@he paraxial ap-
proximation limits sound propagation in the directions hav-
ing small angles with respect to the horizontal. However, thi
narrow-angle limitation has been relaxed nowadays using
high-order Padeapproximatior?. The far-field assumption

The derivation is performed in a cylindrical coordinate
system ¢, 0,z) and begins with the outgoing wave equation
5gl+) and the incoming wave equatidr-):

Jd
—ut=iky(Q—1)ut,

(i.e., kgr>0) causes the solution to be valid only beyond a  gr (13
certain distance from the source. The third assumption is not
needed in the two-way PE where backscattering has to be iu*: —iko(Q—1)u", (1b)

included. As the solution of outgoing and incoming waves  dr

can be expressed as combinations of Hankel funcioti®e o6 ko is a reference wave number. The wave fields
solution breaks down at the source position because of thg. 4 - are related to the acoustic pressupdsandp” via
singularity of the Hankel functions. Should the solution bey, . \1-n«el functions i and H?, which are given in the

regular at the source position, the incident field had to beforms of their far-field asvmptotic expressiore(>1):
modified by the presence of the scatterer so that a part of the ymp P e(>1):

outgoing field combined with the incoming field could pro- p*(r,0,2)=u"(r,0,2)H5" (kor)

duce a regular result. This is, in fact, a multiple scattering

effect that is beyond the scope of this article. Nevertheless, ~u*(r,0,2) /ieikomwm, (2a)
the use of the far-field assumption has implied that the valid Kol

solution domain is defined in such a way that a small neigh-
borhood of the source is excluded. Consequently, the solu-
tion is not singular within the valid solution domain. 2 o
Different from the two-dimensional modeling, the three- ~u~(r,0,2) me_'kOH'WM- (2b)

dimensional computations in the cylindrical coordinate sys- 0

tem involve two additional sidewall boundaries, i.e., a start-Note that the solutions of E¢2a) and Eq.(2b) are not sin-
ing sidewall and an ending sidewall. The starting sidewallgular in the far field(i.e., r>1/ko). The three-dimensional
refers to the radius—depth plane at the starting azimuth angleperatorQ= 1+ X+Y is defined by

of the computing domain. The ending sidewall means the P (1 &)

p(r,6,2)=u"(r,0,2)H? (kor)

1
radius—depth plane at the ending azimuth angle of the com-  X=£%(r,0,2)— 1+ —p—
puting domain. If computations are performed in a 360- ko™ 92
degree sectofi.e., a cylinder spagethe physically correct 1 J (1 9 ) ()

. s . . _ Y= _ - —
sidewall boundary conditions are periodic because the start kérzp 90\ p 70

p oz

ing sidewall overlaps the ending sidewall, while if a scatter-
ing object locates within a very narrow sector, the computingvhereé=cy/c(r, 6,z) represents the index of refractiory
domain may be truncated into a sector less than 360 degreds.a reference sound speed, gnd p(6,z) denotes the den-
As a result, the computational time can be reduced greatlsity of the medium. Sinc¥ is proportional to 12, the azi-
However, this type of computation requires absorbing sidemuthal coupling in relation tor reduces quickly when the
wall boundary conditions that are very difficult to imple- wave field is marched out in radius. At very large radii, the
ment. Therefore, approximate sidewall boundary condition@zimuthal coupling becomes unimportant.
are presently used. The absorbing sidewall boundary condi- In a cylindrical coordinate system, a three-dimensional
tions may be implemented in further works. environment is discretized in thedirection,r direction, and
There is a major drawback of using the cylindrical co- @ direction. A general three-dimensional grid mesh is shown
ordinate system to model three-dimensional backscatteringn Fig. 1, where the computing domain is a sector. The steps
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FIG. 2. A three-dimensional vieya) and a side viewhb) of the geometry of
a step object.

in range, in azimuth, and in depth are denotedAyy A6,
andAz, respectively. The range index is denotedrbyThe
sector boundaries are identified py 1-J (J=3 in the ex-

ample in Fig. 1. In particular, the starting sidewall boundary
is denoted by =0, and the ending sidewall boundary is de-

noted byj=J+1. The depth index is denoted loy=1-M
(M=4 in Fig. 1. The sea surface is indicated by=0, and

efficiently by solving two tridiagonal system of equations
using the lower-upper triangulaflLU) decomposition
method*!

Ill. THE THREE-DIMENSIONAL, SINGLE SCATTERING
APPROACH

_As shown in Fig. 2, across a cylindrical interfaBeat
r=r, the acoustic pressure and the normal components of
the particle velocity satisfy the continuity conditions:

UinHél)(kor_)‘l-UreHE)Z)(kor_)ZUtng)l)(kor_), (6a)

ié,(uinHE)l))‘ +i ﬁ(ureng))‘ :i é,(utngl))‘

pa O = pa o |- pg o ]
(6b)

Replacing the derivatives in Eq6b) using Egs.(1a and
(1b), the combination of Eqg6a) and(6b) results in a three-
dimensional boundary equation:

L.+L _i_ i_i Utr=2L uin (7)
ATTE 2kor \pa P8 AT
where
V1I+Xa+Ys 14+0.5X,+0.5Y,
LA: ~ ’
PA Pa
(8)
. _\/1+XB+YB~1+0.5XB+O.5YB
B_ -~ .
PB PB

the horizontal interface at the maximum depth is indicated byA low-order expansion is used here to approximate the
m=M+1. Thus,up, denotes the value of a point at the square-root operator in E¢8). Although this is a narrow-

position ofr=nAr, 6=jAH, andz=mAz.

angle approximation for propagation in azimuth-depth plane,

A range-dependent environment, where the watert gives the simplest finite difference scheme to the operator
seabed interface may vary in the radial direction as well as i.. Other approximations such as a rational-function approxi-
the azimuthal direction, is discretized forming a sequence ofnation may be used; however, discretizing Eg. will be
stepwise, range-independent regions shown in Fig. 2. Twenuch more difficult and complicated because operators are

regionsA andB are separated by a cylindrical interfa& at
r=r. Sound is assumed to propagate frénto B acrossS.

The incident field, t_he transmitted field, and the reflected
field are denoted by™, u", andu'®, respectively. Note that

involved in both the numerator and denominator. On€és
obtained, the reflected field® can be readily found:

ue=—i. ei2kOT( ul— uin)_ (9)

the azimuthal discretization may cause discrepancies bérhe continuity conditions in the radial direction are fulfilled
tween the realoriginal) environment and the discrete envi- by satisfying Eq.(7), while the continuity conditions in the
ronment. Analyses of the errors arising from the azimuthakzimuthal direction are fulfilled automatically during the

discretization can be found in Ref. 8.

radius-marching process that includes the azimuthal coupling

The radius-marching algorithm is based on the quadratiand azimuthal dependence.

approximatiof°

Q=V1+X+Y=1+3X—X*+3V. (4)
The radius-marching algorithm can be expresséd as
1—ikoAr ikoAr 11
[1+T [1— 7 Y|u
B +1+ikoArx ikoArY N .

IV. THE SIDEWALL BOUNDARY CONDITIONS

Solving Eq.(7) forms the crucial part in the develop-
ment of the present model. The solution technique greatly
depends on how the operatbris approximated. Since Eq.
(8) only involvesX andY in the numerator, the operattr
can be discretized using the finite difference scheme and
Varga’s procedur® that satisfies the azimuthal continuity.
Using the notations shown in Fig. 1, the operatiancan be

whereu" denotes the known wave field at the present rang@xpressed as

(rangen), andu"*?! denotes the unknown wave field at the

subsequent rang@angen-+1). Since in Eq.(5) the cou-

plings betweerX andY are separated, E¢5) can be solved

891  J. Acoust. Soc. Am., Vol. 108, No. 3, Pt. 1, Sep 2000
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whereBp,j, D, Enj, Fmj, andGp,; are the constant » -~

coefficients given in the Appendix. Unlike Ep), Eq.(7) is & A ¥ T . \
solved at one range only. Therefore, the supersarips$ '(\ ;\\/ ‘(Q’
omitted in Eq.(10). i v

To rewrite Eq.(10) in the form of a product of matrices, = J=,2 j=2
proper boundary conditions for the starting sidewall and the _ Vg i
ending sidewall are needed. Two types of sidewall boundar 3 NP N
conditions are implemented corresponding to whether the ,7? i
computing domain is 360 degrees or less than 360 degrees ¥ S
azimuth. To clearly illustrate how these sidewall boundary  (a) (b) ©
conditions are implemented, a simple example given in Fig.

3 is used FIG. 3. Top view of sector boundarie@) General mesh(b) Computing
) . L . . domain around 360 degreds) Computing domain less than 360 degrees.
In general the computing domain is discretized as sec-

tors shown in Fig. @&). The sector boundaries are counted

from the starting sidewallj=0) to the ending sidewallj( Gy 0 -+ 0
=4). Imagine to rotate the ending sidewglH4) clockwise 0 .
and the starting sidewallj €0) counter-clockwise until one G= )
sector is overlapped, the computing domain becomes a cir- 0
cular area shown in Fig.(B). The sector boundaries are 0 - 0 Gy,

numbered fromj=0 to j=4 in the direction shown by the

arrows. The periodic sidewall boundary conditions applied tOEachTi is a tridiagonal matrix, whilés; andG; are diagonal
Fig. 3(b) assume that, o= U, 3 anduy, 4= U, ; because one  matrices. The elemenB,,;, Dy, Emj,» Fmj, andGp,
sector is overlapped, shown by the dark shadow sector. Ugye given in the Appendix'. The \'/ectan;c,andv'i contain the

ing these assumptions, EQ.0) can be rewritten as values of the field points at ttih sector boundary. They are
given by
B T, F, 0 - 0 G, 7
G T. F, - 0 Uy STE U,
2 12 k2 T : Uz, 0
9 Gg Tg ™ u= = |, v= : , (119
L-U=| * - . : Upm—1j 0
: . T Fio2 0 Um,i DM,i'uM+1,i
0 GJ*l TJ*l FJ*l . . .
whereu, ; to uy ; represent the values of the field points in
LFp 0 e 0 G, Ty the z direction,up; denotes the value on the sea surface, and

Uy +1; denotes the value at the maximum depth. The vector

Ez z; v; will vanish if a pressure-release boundary condition is
: assumed on the sea surface and at the maximum depth.
: If the computing domain is a sector less than 360 de-
+ ; ' (11a grees, absorbing boundary conditions should be applied to
: : the sidewall boundaries to prevent artificial reflections. How-
Uj-1 Vi-1 ever, it is difficult to implement the absorbing boundary con-
u; V3 ditions. Presently, approximate sidewall boundary conditions

shown in Fig. 8c) are used, which set the starting sidewall
. . (j=0) the same as the sector boundanyj efl1, and set the
where the block matrices are defined by ending sidewall [=4) the same as the sector boundary of
j=3, namely,uy o=Un,; anduy, ,=Uun, 3. Based on the ap-
proximate sidewall boundary conditions, a new sparse matrix

[ By Dy O 0 o ) ) .
E ) ) equation is derived from Eq10). Slightly different from Eq.
T=| # - - 0 (118, the new sparse matrix does not involve the block ma-
: 0 . Dm-1i |’ tricesG; andF; at the corners. In addition, the new sparse
_ _ matrix has two block matrice§; andT; defined differently
0 0 EM,l BM,l .
B from Eq.(11b). The newT,; andT; are defined by
B Fl,i O O Bl,l+ Gl,l D1’1 0 0
o .o . Esq 0
F=| . 11 T,=
i : .. .. 0 ’ ( ) 1 O DM_l’l ]
| 0 - 0 Fy, 0 0 Ewmi BwmitGm:1
(12)
892  J. Acoust. Soc. Am., Vol. 108, No. 3, Pt. 1, Sep 2000 D. Zhu and L. Bjgrng: 3D two-way PE model 892
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top view.
H I - i
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T.= E2,J 0 FIG. 5. The top views of the forward transmission losgasand (b), and
J= 0 D ' the backward transmission lossé&s,and(d). The computing domain is 360
M-1J degrees ina) and(c), but 90 degrees ifb) and(d). All results are created
0 0 Emg BwmitFuy at the receiving depth of 100 m, and the same object within an azimuthal

. . . ) angle of 4 degrees is used.
Note that only the main diagonals ihin Eq. (12) are dif-

ferent from Eq.(11b). _
Using either of the sidewall boundary conditions, E§. 90 m that is much shorter than the water depth to reduce the

can finally be expressed in the form of a sparse matrix equa2ottom influence. The object is assumed situating from

tion. As shown in Eqs(11a and(11b), the size of the matrix to « in the azimuthal direction shown in F|g(b}_. In thls_

L is of the order oM2x J2, whereM is the total number of €Xamplea equals 2 degrees. To use the two different side-
points in thez direction, andl is the number of sectors in the Wall boundary conditions, the computing domain is chosen

¢ direction. The matrix. may be very huge but has only very 0 be a 360-degree sector in one test case and a 90-degree
few nonzero diagonals. In the case of Figh)3L has 5MJ sector in another test case. The trial runs show that the pa-
—2J nonzero elements. In the case of Figh)3L has only ~rameters ofAr=1m, Az=1m, andA¢=1 degree may be

5MJ—2(M +J) nonzero elements. The sparse matrix equa@PPropriate to obtain the convergent resulits. o
tion is solved using aw-indexmethod!! which stores only The top views of the forward and backward transmission

nonzero elements during the computation. losses obtained at the receiving depth of 100 m are shown in
Fig. 5, where the top plots display the forward transmission
losses, and the lower plots are the backward transmission
V. EXAMPLES losses. The left plots correspond to the 360-degree computa-
An example shown in Fig. 4 is used to verify the two tions, while the right plots show the results calculated in a
different sidewall boundary conditions discussed above. Asector area from-45 degrees to 45 degrees. The comparison
shown in the side view of Fig.(d), the water is 300 deep between Figs. &) and Hb) and the comparison between
with the sound speedc,=1500m/s, density p,,  Figs. 5c) and 3d) both display very good agreement in the
=1000 kg/n?, and attenuation,,=0.0 dB/A. The 50-m sea- scattering patterns. Significant diffraction effects are found
bed layer is described bg,=1700m/s, p,=1500 kg/ni, in Figs. 5c) and 8d), where energy is backscattered from
and a,=0.5dB/\. The absorbing layer extended from 350 the object in a manner similar to sound radiation from a point
to 400 m has the same parameters as in the seabed lay@urce. Quantitative comparisons are given in Figs. 6 and 7.
excepta,=30.0dBA. An omnidirectional point source is Figure 6 shows the transmission losses versus azimuthal
assumed locating at 100 m below the sea surface and tranangles at a given range. The plotting depth is 100 m, and the
mitting continuous wave signals with a frequency of 100 Hz.plotting range is 100 m for the forward propagation and 70 m
A cylindrical sector is used as the scattering object because for the backward propagation. The solid curve corresponds
has only one vertical cylindrical interface. To concentrate orto the computation from-180 degrees to 180 degrees, and
the effects of backscattering from the object, the influencghe dashed curve corresponds to the computation frath
from the interaction of sound with the seabed should be redegrees to 45 degrees. The forward and backward transmis-
duced greatly. Therefore, the object is placed at the range &fion losses created at the azimuthal angle of O degrees and at
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FIG. 7. The forward transmission loga) and the backward transmission
loss (b) created at azimuthal angle of 0 degrees and at the depth of 100 m.
Comparisons between the solid curve for the 360-degree computation and
the squares for the 90-degree calculation show an excellent agreement.

Transmission loss (dB)

-90 -6.0 -36 0 310 6.0 90
Azimuthal angle (degree) the comparison of the backward propagating field between
G 6. C ) e t <sion | (Spthe 1 § Figs. 8c) and &d). It is also noted that the absorbing layer is
gation pl o oS e g?q%rg'ﬁfogﬂ;ﬁees backsva(r)criwgrropgrgoegs)n efficient enough to reduce the bottom reflection by attenuat-
plotted at the radius of 70 m. The solid and dashed curves correspond to tH8 Significantly the sound energy that penetrates into the
computation over 360 degrees and the calculation within a 90-degree sectdpottom. Therefore, the backscattered fields given in Fig. 5
respectively. are mostly due to the backscattering from the cylindrical sec-
tor object with minimized bottom influences. The results thus
the depth of 100 m are shown in Fig. 7, where the solid curveare more useful and accurate for studying the characteristics
corresponds to the 360-degree computation and the squarekthe backscattering from objects.
are the result of the 90-degree calculation. Excellent agree- Backscattering effects are of course dependent on the
ment is found in all the comparisons in Figs. 6 and 7, indi-source frequency as well. To illustrate the frequency depen-
cating that both of the sidewall boundary conditions showrndence, the source frequency is increased from 100 to 300 Hz
in Fig. 3 can be applied to obtain identical results. Howeverjn the previous example. The side views of the forward-
the computational time due to the use of two different sidepropagating field and the backward-propagating field created
wall boundary conditions is very different. In the example at azimuthal angle of 0 degrees are shown in Figa). 8nd
above, the two-way run of the 360-degree computation take8(b). In Fig. 9a) the major change from Fig.(®& is that the
about 10 min on a 400-MHz PC, while the two-way run of sound energy radiating from the point source is trapped
the 90-degree calculation uses only about 1 min on the samaithin a beam, which ensonifies the object very well. Figure
computer. Therefore, it is not always preferable to perforn9(b) shows significant energy being backscattered from the
360-degree calculation using the periodic sidewall boundarypbject, where the lower edge of the backscattered field is
condition if computations in a sector area less than 360 dealong the specular direction of the lower edge of the incident
grees can cover the backscattered field that is of interest, arfitld. Bottom influence can be ignored in this case.
the solution accuracy is acceptable. Figure 10 shows the top view of the backward transmis-
The side views of the forward and backward transmis-sion loss obtained at the receiving depth of 100 m. The back-
sion losses created at an azimuthal angle of 0 degrees for tiseattering pattern shows a beam that is narrower than the one
360-degree and the 90-degree computations are given in Fifpund in Fig. %c), meaning that the diffraction effects are
8. Excellent agreement is observed in the comparison of theveaker in Fig. 10. It is noted that the backscattered energy
forward propagating field between FiggaBand 8b), and in  goes all the way back to the source. However, this is not
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FIG. 10. The top view of the backward transmission loss created at the
receiving depth of 100 m. The source frequency is 300 Hz.

in Fig. 11 may be helpful to roughly understand the phenom-
enon. The scatterer is assumed to be a very narrow ofgect
behaving like an omnidirectional point source that can radi-
ate sound in all directions. The wave field is marched back to
M & B0 60 ' W oan 61 B0 the source(O) through the radii indicated by the dotted
reey gt circles. An incoming propagation is defined as the sound

FIG. 8. The side views of the forward transmission los¢asand (b), and propagation from large radii to small radii. For example, ray

the backward transmission lossés, and(d), created at the azimuthal angle SA IS considered as an incoming propagation, while Ady/

of 0 degrees. The plots to the left correspond to the 360-degree computas considered as an outgoing propagation. Since the back-

tions, and the plots to the right are the results of the 90-degree calculationgyard radius-marching algorithm handles only the incoming

The horizontal white solid lines indicate the water—seabed interface, th . . . . . .

horizontal white dashed lines show the absorbing layer interface, and thi)mpagat'on' the-outgomg propagation Is omitted dur_mg th_e

vertical black and white lines outline the cylindrical interface of the object. Packward marching process. Therefore, all the possible dif-
fracting rays(indicated by the arrowsfrom the scatterefs

with only the incoming propagation parts

what is exactly observed in practice. Therefore, the solutiord'® fruncated”
cannot be taken seriously inside some range around the
source. This is also the main drawback of using a cylindrical
coordinate system for three-dimensional, two-way propaga-
tion modeling. A geometrical-optical interpretation displayed
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FIG. 9. The side views of the forward transmission I¢@sand the back-
ward transmission log®) created at the azimuthal angle of 0 degrees for the FIG. 11. A geometric-optical interpretation of the limited region of back-
frequency of 300 Hz. scattering from a point scatterer.
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remaining during the backward marching. Those incomingACKNOWLEDGMENTS
rays representing all the valid solutions are bounded within a
limited region shown by the thick elliptic curves. Further-
more, if the scattere®is not an omnidirectional point source
but has certain directivity, the possible diffracting ragsw
indicated by the solid arrows orlyrom Sare limited within

a certain angle, which may be due to the PE’s angular limi-

tation. The far-field assumption also leads to a bound at APPENDIX: DERIVATION OF THE SPARSE MATRIX

certain radius. The valid backscattering solutions represente’%iQ UATION

by those solid arrows finally are bounded within a small area  \yjjth the operatot defined in Eq(8), the operatiorLu
indicated by the shadow zone in Fig. 11, which is similar tocan pe expressed as

the backscattering pattern in Fig. 10.
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Ag+ A X+AY

Lu= UE[L1+L2+L3]U, (Al)

VI. DISCUSSIONS AND CONCLUSIONS

A new three-dimensional, two-way PE model has beerwhereAg=1, A;=A,=0.5. Inserting Eq(3) into Eq. (A1)
developed in a cylindrical coordinate system to solve threeleads to
d@mens_ional backscattering proble_ms_ int_:luding azimuthal 1 E(r.0.2)—1 AL d(1d
diffraction effects. The correct periodic sidewall boundary  L,=A,—+A; , 2:_2_< )
conditions are implemented for computations in a sector p ko 9z
around 360 degrees. When the computing domain is less A, 9 (10 (A2)
than 360 degrees, approximate sidewall boundary conditions Lszﬁ &—9( )
are applied to give fairly good results. The accurate absorb- (kor)
ing sidewall boundary conditions may be implemented inThe varying density comprises the inhomogeneity of the me-
future works. Although the Hankel function is singular at thedium. The derivation uses the notations shown in Fig. 1.
source position, the solution does not have a singularity belsing the continuity conditions on thath horizontal inter-
cause the use of the far-field assumption removes a smdtce Z,=z,+mAz) and the finite difference schemky
neighborhood of the source from the valid solution domaincan be expressed as

p iz

p a0

The major drawback is that the backscattering solution is A 1 1
valid within a limited area, which is due to the cylindrical Llum,,:—o( + )u J
marching process as well as the single scattering approach. 2 \pm+arj  Pm-172j
Nevertheless, the three-dimensional, two-way PE model A p—1 & -1
can be useful to demonstrate some interesting three- _L|omida - >mo ) Unj. (A3)

2 Pm+1/2j Pm-1/2j

dimensional backscattering phenomena that cannot be seen
using two-dimensional models. For example, the result$or expressind.,, the first-order derivative can easily be
show that the backscattering from a narrow-angle object is ifandled using a forward finite difference scheme. But the
a manner similar to sound radiation from a point source. Thenajor concern is how to treatd{dz)((1/p)d/dz) because
azimuthal diffraction effects at higher frequencies are weake(1/p)d/ dz is discontinuous on the horizontal interface. Here,

than that at lower frequencies. Varga’s procedurd is applied:
1 1 1 2
J (1 J )u 1 (1 a) (1 a) }u  Pme1j (U2~ Uin,) Pm-172; (U, ~Un-1,) A
IE R ) 111 R I (R R - m,j 2 ’
dz\p 9z Az|\p 9z mi12 P dz - 112 (Az)
|
whereu,ﬁ” denotes the field on the horizontal interfagein A, 1 1
medium 1, andjzm- denotes the field on the horizontal inter- LsUmj= KTADZ| . +— Um,j
. .M. o i, ) (korA®) Pmj+12  Pmj-1/2
face z,, in medium 2. The continuity conditions |mplyﬁ1j
2 . . !
=u4 . =u, . Using the scheme in E¢A4), L, andL5 can 1 1
be gﬁépre;néjed as ’ “ ? ° +————Upj+1t —Unj-1|- (AB)
Pm,j+1/2 Pm,j—1/2
Lo - Ac | (1 N 1 u Note that the densities in Eq@\3) and(A5) are evaluated at
M (koA | \pmirzy  Pm-ij) ™ the depths ofzo+(m+3)Az and zo+(m—3)Az on both

1 1 sides of themth horizontal interface while the densities in
Uy gyt ——— um_”}, (A5) Eq. (A6)1are evaluated _at the a2|muthal .ang!es PEBAG
Pm+1/2j Pm-1/2j and ( —3)A 6 on both sides of th¢h vertical interface. In-
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serting Eqs.(A3), (AE?),_ and (A6) i_nto (A1) results in Eq. fBl,rUl,r'” Dy qUp 1+ Eq g1+ FygUs o+ Gy Uy g
(10), where the coefficients are given by By .1Up 1+ D Uz 1+ E 1Up 11 Fp Uz o+ G Uz o
B3 U311+ D3aUs 1t E3 iUz 1+ Fa iUz o+ GsaUsg
B, = ('Aﬂ_ A1 2)( 1 + 1 ) By aUs 1t Dy aUs 1+ Eg qUs 1+ Fg gl o+ Gy a0
' 2 (koA2D)"/\ pmr1r2j  Pm-112] B1o Uy ot DUy o+ BEq g ot Fy g 3+ Gyl g
A, §r2n+1/2j 1 Eﬁq_ o1 Lu. = Bo s o+ Dy g ot Ep iy o+ Fo iy 3+ Gy olp g
e s + P } M) By Uz ot Daolig ot Bz iy ot Fa iz s+ Ga ol g
' ' Ba g ot Dy s ot Eq Uz ot Faols st Gydls g
Y ( 1 1 ) (A7) Bia Uyt DigUpstEgsUgatFaguyatGyguss
(Kor A 6)? Pmj+12  Pmj-12 Bo Uy 3+ Doz st Eoguy st Faodup 4t Gogus )
B3 U3 st D3 gls st Egaup st Fasus st Gsals
A, 1 A, 1 \ Badus 3t Dggus gt Eg iz st Fagls st Gyglsp.
™ (KoA2Z)? pms ) Em'J_(koAZ)2 Pm-112j (A10)
(A8) Equation(A10) may be written in the form of a product of
matrices ifu is written as a vector following the order pf
Foi= Az 1 Az 1 However, of special concern is how to treat the starting side-

(KorA0)? prm 12’ Gm'j_(kor_Aﬁ)2 pmj-12  Wwall boundary (ino) and the ending sidewall boundary
A (Umg). Two types of sidewall boundary conditions are
shown in Fig. 3.
For transforming Eq(10) into a matrix form, a simple ex- In the case of Fig. ®), the periodic sidewall boundary
ample shown in Fig. 3 is used, where=0-5 andj conditions assumeup,o=Umn3 and uUm4=Uy ;. Equation
=0-4. Following the order of and m, Eq. (10) can be (A10) can be reorganized and expressed in the form of a
expanded as sparse matrix:

Bjy Dyy O O (F;; 0O 0 0 Gy O 0 07 [upy, E11Uos
Ezq By Dy O 1 0O Fpy O 01 0 Gy O O Ups 0
Es1 Bsi D31 O 0 Fsz O ;O 0 Gz O Uz 1 0
0 0 Es1 Bsi: O 0 0 F41. 0 0 0 Gy Uss Daus
G2 O 0 E Bi2 Do O 0 E Fi2 O 0 0 Ugo E1 o2
Lu= | | + , All
0 Gi, 0 Ez2 Bsy D3y 0 F32 O Us 0
0 0 0 Gy, O 0 E4p Bysp 0 0 0 Faol| uae D4 ls
Fiz O 0 0 :rG13 0 0 0 1: Bz D1z O 0 Uiz Eq3Uos
F2,3 0 0 . G2'3 0 0 :E2,3 82,3 D2,3 0 U213 0
0 0 Fs3 O 0 0 Gzz O 0 Ess Bsz Djgs Uz g 0
L 0 0 0 Fu3: 0 0 0 Gyz: O 0 E43 Bagl |Ugg Daaus

where the values on the surface,() and the values at the conditions setup,,=uy, and uy,4=up 3. Following the
maximum depth s;) are extracted and written in a vector. same procedure as in the previous case,(Bg0) can also
Following the order ofj, the matrix in Eq.(A11) may be be transformed into a sparse matrix similar to &jL1). The
divided into block matrices as indicated by the dashed linesnew sparse matrix has only five diagonals without the block
This sparse matrix has only seven diagonals and can be diratricesG,; andF, 3 occurring at the corners. The differ-
vided intoJ? block matriceseach block ha#1? elements ent block matrices are given in E(L2).

Two diagonal blocks5,, ; andF, 3 occurring at the corners

are due to the use of the periodic sidewall boundary condi-ig g jensen, w. A. Kuperman, M. B. Porter, and H. Schn@dtnputa-
tions. Equation(All) can be written in the form of EQs. tional Ocean AcousticéAlP, New York, 1994, Chap. 6.

(119 and(11b). If J=1, the sparse matrix reduces to a tridi- M. F. Levy gnd A. A Zaporozhets, “Target scattering calculations with
agonal matrix, which has been encountered in two- t(f;(;ggarabollc equation method,” J. Acoust. Soc. A3 735-741

dimensional mOdeIS: . ) 3G. J. Orris and M. D. Collins, “The spectral parabolic equation and three-
In the case of Fig. @), approximate sidewall boundary  dimensional backscattering,” J. Acoust. Soc. A86, 1725—1731(1994.
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