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A three-dimensional, two-way, parabolic equation model for
acoustic backscattering in a cylindrical coordinate system

Dong Zhua) and Leif Bjørnø
Department of Industrial Acoustics, Technical University of Denmark, Building 425, DK-2800 Lyngby,
Denmark

~Received 5 January 1999; accepted for publication 20 March 2000!

A new PE model for solving three-dimensional, forward and backward sound propagation in a
cylindrical coordinate system is presented. The model marches a wave field in the radial direction
including the azimuthal diffraction effects, and solves for a backscattered field based on a
three-dimensional, single scattering approach. A periodic sidewall boundary condition is applied for
computations in a 360-degree sector, while an approximate sidewall boundary condition is used for
calculation in a sector less than 360 degrees. These two sidewall boundary conditions are verified
by the numerical results. The major drawback of using the cylindrical coordinate system, when the
backscattering solution is valid within a limited area, is analyzed using a geometrical-optical
interpretation. The model may be useful for studying three-dimensional backscattering phenomena
comprising azimuthal diffraction effects. ©2000 Acoustical Society of America.
@S0001-4966~00!00607-X#

PACS numbers: 43.20.Bi, 43.30.Bp@DLB#

I. INTRODUCTION

Acoustic backscattering is an important issue in under-
water acoustics, particularly in active sonar applications.
However, it is normally difficult to model the backscattering
in the ocean accurately, because fully three-dimensional ef-
fects and two-way propagation are involved. In recent years,
the parabolic equation~PE! method1 has been widely used to
solve various sound propagation problems including acoustic
backscattering. Backscattering from scatterers of arbitrary
shape in three dimensions in a Cartesian coordinate system
has been recently solved using the PE technique combining a
direct computation of the scattered field based on nonhomo-
geneous boundary conditions on the scattering objects.2 In
this method the size of objects can range from a few wave-
lengths to hundreds of wavelengths. Another earlier method
for solving three-dimensional backscattering in a Cartesian
coordinate system was developed on the basis of the PE
technique and the cross-range wave number spectrum.3 The
cross-range transform reduces the three-dimensional problem
to a two-dimensional problem that can be solved using the
existing two-dimensional PE models. However, the spectral
PE solution breaks down for energy propagating nearly par-
allel to the cross-range direction. For three-dimensional scat-
tering problems in a cylindrical coordinate system, a few PE
models were developed by solving a PE using the finite dif-
ference method4 and using the alternating direction method.5

A coupled mode PE method including mode coupling terms
is presented for large-scale scattering problems involving
coupling of energy between modes and azimuths.6 An ana-
lytical solution for the three-dimensional acoustic scattering
from a nonpenetrable cylindrical island in shallow water is

derived using a normal-mode, double-series expansion.7 The
analytical solution is numerically efficient for relatively low
frequencies. However, the models above for scattering prob-
lems in a cylindrical coordinate system were one-way mod-
els ~i.e., for forward propagation only!. In active sonar simu-
lations where signals are transmitted and received at the
same point, it is better to use a cylindrical coordinate system
rather than a Cartesian coordinate system. Although a hybrid
three-dimensional, two-way PE model8 may be applicable to
model three-dimensional backscattering in a cylindrical co-
ordinate system in some cases, it cannot handle fully three-
dimensional effects. Therefore, a PE model that can solve
fully three-dimensional backscattering in the cylindrical co-
ordinate system is required, and is presented in this article.

The three-dimensional, two-way PE model is mainly
based on a radius-marching algorithm and a three-
dimensional, single scattering approach. The radius-
marching algorithm originates from a three-dimensional,
one-way PE model4 that achieves a wide-angle capability
using a quadratic operator approximation.4 The three-
dimensional, single scattering approach arises from the idea
introduced in a two-dimensional, two-way PE model.9 The
three-dimensional computing domain is discretized as a se-
quence of stepwise radius-independent regions. The radius-
marching algorithm marches a wave field forward and back-
ward in the radial direction within each region. Based on the
continuity conditions of acoustic pressure and normal par-
ticle velocity across the vertical interface between regions, a
specific boundary equation is established to obtain the back-
scattered field. For simplicity of the solution technique, a
linear operator approximation is presently used to form the
specific boundary equation. In future works other wide-angle
approximations may be implemented to improve the model.

The outgoing wave equation is essentially based on a
paraxial approximation, a far-field approximation and an as-
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sumption that backscattering is negligible.1 The paraxial ap-
proximation limits sound propagation in the directions hav-
ing small angles with respect to the horizontal. However, this
narrow-angle limitation has been relaxed nowadays using a
high-order Pade´ approximation.9 The far-field assumption
~i.e., k0r @0) causes the solution to be valid only beyond a
certain distance from the source. The third assumption is not
needed in the two-way PE where backscattering has to be
included. As the solution of outgoing and incoming waves
can be expressed as combinations of Hankel functions,12 the
solution breaks down at the source position because of the
singularity of the Hankel functions. Should the solution be
regular at the source position, the incident field had to be
modified by the presence of the scatterer so that a part of the
outgoing field combined with the incoming field could pro-
duce a regular result. This is, in fact, a multiple scattering
effect that is beyond the scope of this article. Nevertheless,
the use of the far-field assumption has implied that the valid
solution domain is defined in such a way that a small neigh-
borhood of the source is excluded. Consequently, the solu-
tion is not singular within the valid solution domain.

Different from the two-dimensional modeling, the three-
dimensional computations in the cylindrical coordinate sys-
tem involve two additional sidewall boundaries, i.e., a start-
ing sidewall and an ending sidewall. The starting sidewall
refers to the radius–depth plane at the starting azimuth angle
of the computing domain. The ending sidewall means the
radius–depth plane at the ending azimuth angle of the com-
puting domain. If computations are performed in a 360-
degree sector~i.e., a cylinder space!, the physically correct
sidewall boundary conditions are periodic because the start-
ing sidewall overlaps the ending sidewall, while if a scatter-
ing object locates within a very narrow sector, the computing
domain may be truncated into a sector less than 360 degrees.
As a result, the computational time can be reduced greatly.
However, this type of computation requires absorbing side-
wall boundary conditions that are very difficult to imple-
ment. Therefore, approximate sidewall boundary conditions
are presently used. The absorbing sidewall boundary condi-
tions may be implemented in further works.

There is a major drawback of using the cylindrical co-
ordinate system to model three-dimensional backscattering,

which will be discussed later in this article. Because the
radius-marching algorithm always marches the wave field
back to the source, the backscattered energy propagating in
other directions may not be fully handled. The backscattering
solution is thus valid within a limited area. This drawback is
analyzed and explained using a geometric-optical interpreta-
tion.

It is clear that the single scattering approach is valid for
problems involving a single interface,9 but it is not clear how
well this approach works for problems involving multiple
interfaces. Therefore, the present computations are focused
on the backscattering from those objects that have a single
cylindrical vertical surface. Some interesting three-
dimensional backscattering phenomena are also discussed.

II. THE THREE-DIMENSIONAL, RADIUS-MARCHING
ALGORITHM

The derivation is performed in a cylindrical coordinate
system (r ,u,z) and begins with the outgoing wave equation
~1! and the incoming wave equation~2!:

]

]r
u15 ik0~Q21!u1, ~1a!

]

]r
u252 ik0~Q21!u2, ~1b!

wherek0 is a reference wave number. The wave fieldsu1

andu2 are related to the acoustic pressuresp1 and p2 via
the Hankel functions, H0

(1) and H0
(2) , which are given in the

forms of their far-field asymptotic expressions (k0r @1):

p1~r ,u,z!5u1~r ,u,z!H0
~1!~k0r !

'u1~r ,u,z!A 2

pk0r
eik0r 2 ip/4, ~2a!

p2~r ,u,z!5u2~r ,u,z!H0
~2!~k0r !

'u2~r ,u,z!A 2

pk0r
e2 ik0r 1 ip/4. ~2b!

Note that the solutions of Eq.~2a! and Eq.~2b! are not sin-
gular in the far field~i.e., r @1/k0). The three-dimensional
operatorQ[A11X1Y is defined by

X5j2~r ,u,z!211
1

k0
2 r

]

]z S 1

r

]

]zD ,

~3!

Y5
1

k0
2r 2 r

]

]u S 1

r

]

]u D ,

wherej5c0 /c(r ,u,z) represents the index of refraction,c0

is a reference sound speed, andr5r(u,z) denotes the den-
sity of the medium. SinceY is proportional to 1/r 2, the azi-
muthal coupling in relation toY reduces quickly when the
wave field is marched out in radius. At very large radii, the
azimuthal coupling becomes unimportant.

In a cylindrical coordinate system, a three-dimensional
environment is discretized in thez direction,r direction, and
u direction. A general three-dimensional grid mesh is shown
in Fig. 1, where the computing domain is a sector. The steps

FIG. 1. The three-dimensional grid mesh forJ53 andM54.
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in range, in azimuth, and in depth are denoted byDr , Du,
andDz, respectively. The range index is denoted byn. The
sector boundaries are identified byj 51 –J ~J53 in the ex-
ample in Fig. 1!. In particular, the starting sidewall boundary
is denoted byj 50, and the ending sidewall boundary is de-
noted byj 5J11. The depth index is denoted bym51 –M
(M54 in Fig. 1!. The sea surface is indicated bym50, and
the horizontal interface at the maximum depth is indicated by
m5M11. Thus, um j

n denotes the value of a point at the
position of r 5nDr , u5 j Du, andz5mDz.

A range-dependent environment, where the water–
seabed interface may vary in the radial direction as well as in
the azimuthal direction, is discretized forming a sequence of
stepwise, range-independent regions shown in Fig. 2. Two
regionsA andB are separated by a cylindrical interface~S! at
r 5 r̄ . Sound is assumed to propagate fromA to B acrossS.
The incident field, the transmitted field, and the reflected
field are denoted byuin, utr, andure, respectively. Note that
the azimuthal discretization may cause discrepancies be-
tween the real~original! environment and the discrete envi-
ronment. Analyses of the errors arising from the azimuthal
discretization can be found in Ref. 8.

The radius-marching algorithm is based on the quadratic
approximation4,10

Q[A11X1Y>11 1
2X2 1

8X
21 1

2Y. ~4!

The radius-marching algorithm can be expressed as3

F11
12 ik0Dr

4
XGF12

ik0Dr

4
YGun11

5F11
11 ik0Dr

4
XGF11

ik0Dr

4
YGun, ~5!

whereun denotes the known wave field at the present range
~rangen!, andun11 denotes the unknown wave field at the
subsequent range~rangen11!. Since in Eq.~5! the cou-
plings betweenX andY are separated, Eq.~5! can be solved

efficiently by solving two tridiagonal system of equations
using the lower-upper triangular~LU! decomposition
method.11

III. THE THREE-DIMENSIONAL, SINGLE SCATTERING
APPROACH

As shown in Fig. 2, across a cylindrical interfaceS at
r 5 r̄ , the acoustic pressure and the normal components of
the particle velocity satisfy the continuity conditions:

uinH0
~1!~k0r̄ !1ureH0

~2!~k0r̄ !5utrH0
~1!~k0r̄ !, ~6a!

1

rA

]~uinH0
~1!!

]r
U

r̄

1
1

rA

]~ureH0
~2!!

]r
U

r̄

5
1

rB

]~utrH0
~1!!

]r
U

r̄

.

~6b!

Replacing the derivatives in Eq.~6b! using Eqs.~1a! and
~1b!, the combination of Eqs.~6a! and~6b! results in a three-
dimensional boundary equation:

FLA1LB2
i

2k0r̄ S 1

rA
2

1

rB
D Gutr52LAuin, ~7!

where

LA5
A11XA1YA

rA
'

110.5XA10.5YA

rA
,

~8!

LB5
A11XB1YB

rB
'

110.5XB10.5YB

rB
.

A low-order expansion is used here to approximate the
square-root operator in Eq.~8!. Although this is a narrow-
angle approximation for propagation in azimuth-depth plane,
it gives the simplest finite difference scheme to the operator
L. Other approximations such as a rational-function approxi-
mation may be used; however, discretizing Eq.~7! will be
much more difficult and complicated because operators are
involved in both the numerator and denominator. Onceutr is
obtained, the reflected fieldure can be readily found:

ure52 i •ei2k0r̄~utr2uin!. ~9!

The continuity conditions in the radial direction are fulfilled
by satisfying Eq.~7!, while the continuity conditions in the
azimuthal direction are fulfilled automatically during the
radius-marching process that includes the azimuthal coupling
and azimuthal dependence.

IV. THE SIDEWALL BOUNDARY CONDITIONS

Solving Eq. ~7! forms the crucial part in the develop-
ment of the present model. The solution technique greatly
depends on how the operatorL is approximated. Since Eq.
~8! only involvesX and Y in the numerator, the operatorL
can be discretized using the finite difference scheme and
Varga’s procedure10 that satisfies the azimuthal continuity.
Using the notations shown in Fig. 1, the operationLu can be
expressed as

Lum, j[Bm, jum, j1Dm, jum11,j1Em, jum21,j1Fm, jum, j 11

1Gm, jum, j 21 , ~10!

FIG. 2. A three-dimensional view~a! and a side view~b! of the geometry of
a step object.
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where Bm, j , Dm, j , Em, j , Fm, j , and Gm, j are the constant
coefficients given in the Appendix. Unlike Eq.~5!, Eq. ~7! is
solved at one range only. Therefore, the superscriptn is
omitted in Eq.~10!.

To rewrite Eq.~10! in the form of a product of matrices,
proper boundary conditions for the starting sidewall and the
ending sidewall are needed. Two types of sidewall boundary
conditions are implemented corresponding to whether the
computing domain is 360 degrees or less than 360 degrees in
azimuth. To clearly illustrate how these sidewall boundary
conditions are implemented, a simple example given in Fig.
3 is used.

In general the computing domain is discretized as sec-
tors shown in Fig. 3~a!. The sector boundaries are counted
from the starting sidewall (j 50) to the ending sidewall (j
54). Imagine to rotate the ending sidewall (j 54) clockwise
and the starting sidewall (j 50) counter-clockwise until one
sector is overlapped, the computing domain becomes a cir-
cular area shown in Fig. 3~b!. The sector boundaries are
numbered fromj 50 to j 54 in the direction shown by the
arrows. The periodic sidewall boundary conditions applied to
Fig. 3~b! assume thatum,05um,3 andum,45um,1 because one
sector is overlapped, shown by the dark shadow sector. Us-
ing these assumptions, Eq.~10! can be rewritten as

L "U53
T1 F1 0 ¯ ¯ 0 G1

G2 T2 F2 � 0

0 G3 T3 � � ]

] � � � � � ]

] � � TJ22 FJ22 0

0 � GJ21 TJ21 FJ21

FJ 0 ¯ ¯ 0 GJ TJ

4
•S u1

u2

]

]

]

uJ21

uJ

D 1S v1

v2

]

]

]

vJ21

vJ

D , ~11a!

where the block matrices are defined by

T i5F B1,i D1,i 0 0

E2,i � � 0

0 � � DM21,i

0 0 EM ,i BM ,i

G ,

Fi5F F1,i 0 ¯ 0

0 � � ]

] � � 0

0 ¯ 0 FM ,i

G , ~11b!

Gi5F G1,i 0 ¯ 0

0 � � ]

] � � 0

0 ¯ 0 GM ,i

G .

EachT i is a tridiagonal matrix, whileFi andGi are diagonal
matrices. The elementsBm, j , Dm, j , Em, j , Fm, j , and Gm, j

are given in the Appendix. The vectorsui andvi contain the
values of the field points at theith sector boundary. They are
given by

ui5S u1,i

u2,i

]

uM21,i

uM ,i

D , vi5S E1,i•u
0,i

0
]

0
DM ,i•uM11,i

D , ~11c!

whereu1,i to uM ,i represent the values of the field points in
thez direction,u0,i denotes the value on the sea surface, and
uM11,i denotes the value at the maximum depth. The vector
vi will vanish if a pressure-release boundary condition is
assumed on the sea surface and at the maximum depth.

If the computing domain is a sector less than 360 de-
grees, absorbing boundary conditions should be applied to
the sidewall boundaries to prevent artificial reflections. How-
ever, it is difficult to implement the absorbing boundary con-
ditions. Presently, approximate sidewall boundary conditions
shown in Fig. 3~c! are used, which set the starting sidewall
( j 50) the same as the sector boundary ofj 51, and set the
ending sidewall (j 54) the same as the sector boundary of
j 53, namely,um,05um,1 and um,45um,3 . Based on the ap-
proximate sidewall boundary conditions, a new sparse matrix
equation is derived from Eq.~10!. Slightly different from Eq.
~11a!, the new sparse matrix does not involve the block ma-
tricesG1 andFJ at the corners. In addition, the new sparse
matrix has two block matricesT1 andTJ defined differently
from Eq. ~11b!. The newT1 andTJ are defined by

T15F B1,11G1,1 D1,1 0 0

E2,1 � � 0

0 � � DM21,1

0 0 EM ,1 BM ,11GM ,1

G ,

~12!

FIG. 3. Top view of sector boundaries.~a! General mesh.~b! Computing
domain around 360 degrees.~c! Computing domain less than 360 degrees.
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TJ5F B1,J1F1,J D1,J 0 0

E2,J � � 0

0 � � DM21,J

0 0 EM ,J BM ,J1FM ,J

G .

Note that only the main diagonals inT in Eq. ~12! are dif-
ferent from Eq.~11b!.

Using either of the sidewall boundary conditions, Eq.~7!
can finally be expressed in the form of a sparse matrix equa-
tion. As shown in Eqs.~11a! and~11b!, the size of the matrix
L is of the order ofM23J2, whereM is the total number of
points in thez direction, andJ is the number of sectors in the
u direction. The matrixL may be very huge but has only very
few nonzero diagonals. In the case of Fig. 3~b!, L has 5MJ
22J nonzero elements. In the case of Fig. 3~b!, L has only
5MJ22(M1J) nonzero elements. The sparse matrix equa-
tion is solved using arow-indexmethod,11 which stores only
nonzero elements during the computation.

V. EXAMPLES

An example shown in Fig. 4 is used to verify the two
different sidewall boundary conditions discussed above. As
shown in the side view of Fig. 4~a!, the water is 300 deep
with the sound speed cw51500 m/s, density rw

51000 kg/m3, and attenuationaw50.0 dB/l. The 50-m sea-
bed layer is described bycb51700 m/s, rb51500 kg/m3,
and ab50.5 dB/l. The absorbing layer extended from 350
to 400 m has the same parameters as in the seabed layer
exceptab530.0 dB/l. An omnidirectional point source is
assumed locating at 100 m below the sea surface and trans-
mitting continuous wave signals with a frequency of 100 Hz.
A cylindrical sector is used as the scattering object because it
has only one vertical cylindrical interface. To concentrate on
the effects of backscattering from the object, the influence
from the interaction of sound with the seabed should be re-
duced greatly. Therefore, the object is placed at the range of

90 m that is much shorter than the water depth to reduce the
bottom influence. The object is assumed situating from2a
to a in the azimuthal direction shown in Fig. 4~b!. In this
examplea equals 2 degrees. To use the two different side-
wall boundary conditions, the computing domain is chosen
to be a 360-degree sector in one test case and a 90-degree
sector in another test case. The trial runs show that the pa-
rameters ofDr 51 m, Dz51 m, andDu51 degree may be
appropriate to obtain the convergent results.

The top views of the forward and backward transmission
losses obtained at the receiving depth of 100 m are shown in
Fig. 5, where the top plots display the forward transmission
losses, and the lower plots are the backward transmission
losses. The left plots correspond to the 360-degree computa-
tions, while the right plots show the results calculated in a
sector area from245 degrees to 45 degrees. The comparison
between Figs. 5~a! and 5~b! and the comparison between
Figs. 5~c! and 5~d! both display very good agreement in the
scattering patterns. Significant diffraction effects are found
in Figs. 5~c! and 5~d!, where energy is backscattered from
the object in a manner similar to sound radiation from a point
source. Quantitative comparisons are given in Figs. 6 and 7.
Figure 6 shows the transmission losses versus azimuthal
angles at a given range. The plotting depth is 100 m, and the
plotting range is 100 m for the forward propagation and 70 m
for the backward propagation. The solid curve corresponds
to the computation from2180 degrees to 180 degrees, and
the dashed curve corresponds to the computation from245
degrees to 45 degrees. The forward and backward transmis-
sion losses created at the azimuthal angle of 0 degrees and at

FIG. 4. The geometry of the single sector case.~a! The side view.~b! The
top view.

FIG. 5. The top views of the forward transmission losses,~a! and ~b!, and
the backward transmission losses,~c! and~d!. The computing domain is 360
degrees in~a! and ~c!, but 90 degrees in~b! and ~d!. All results are created
at the receiving depth of 100 m, and the same object within an azimuthal
angle of 4 degrees is used.
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the depth of 100 m are shown in Fig. 7, where the solid curve
corresponds to the 360-degree computation and the squares
are the result of the 90-degree calculation. Excellent agree-
ment is found in all the comparisons in Figs. 6 and 7, indi-
cating that both of the sidewall boundary conditions shown
in Fig. 3 can be applied to obtain identical results. However,
the computational time due to the use of two different side-
wall boundary conditions is very different. In the example
above, the two-way run of the 360-degree computation takes
about 10 min on a 400-MHz PC, while the two-way run of
the 90-degree calculation uses only about 1 min on the same
computer. Therefore, it is not always preferable to perform
360-degree calculation using the periodic sidewall boundary
condition if computations in a sector area less than 360 de-
grees can cover the backscattered field that is of interest, and
the solution accuracy is acceptable.

The side views of the forward and backward transmis-
sion losses created at an azimuthal angle of 0 degrees for the
360-degree and the 90-degree computations are given in Fig.
8. Excellent agreement is observed in the comparison of the
forward propagating field between Figs. 8~a! and 8~b!, and in

the comparison of the backward propagating field between
Figs. 8~c! and 8~d!. It is also noted that the absorbing layer is
efficient enough to reduce the bottom reflection by attenuat-
ing significantly the sound energy that penetrates into the
bottom. Therefore, the backscattered fields given in Fig. 5
are mostly due to the backscattering from the cylindrical sec-
tor object with minimized bottom influences. The results thus
are more useful and accurate for studying the characteristics
of the backscattering from objects.

Backscattering effects are of course dependent on the
source frequency as well. To illustrate the frequency depen-
dence, the source frequency is increased from 100 to 300 Hz
in the previous example. The side views of the forward-
propagating field and the backward-propagating field created
at azimuthal angle of 0 degrees are shown in Figs. 9~a! and
9~b!. In Fig. 9~a! the major change from Fig. 8~a! is that the
sound energy radiating from the point source is trapped
within a beam, which ensonifies the object very well. Figure
9~b! shows significant energy being backscattered from the
object, where the lower edge of the backscattered field is
along the specular direction of the lower edge of the incident
field. Bottom influence can be ignored in this case.

Figure 10 shows the top view of the backward transmis-
sion loss obtained at the receiving depth of 100 m. The back-
scattering pattern shows a beam that is narrower than the one
found in Fig. 5~c!, meaning that the diffraction effects are
weaker in Fig. 10. It is noted that the backscattered energy
goes all the way back to the source. However, this is not

FIG. 6. Comparisons of the transmission losses for~a! the forward propa-
gation plotted at the radius of 100 m, and~b! the backward propagation
plotted at the radius of 70 m. The solid and dashed curves correspond to the
computation over 360 degrees and the calculation within a 90-degree sector,
respectively.

FIG. 7. The forward transmission loss~a! and the backward transmission
loss ~b! created at azimuthal angle of 0 degrees and at the depth of 100 m.
Comparisons between the solid curve for the 360-degree computation and
the squares for the 90-degree calculation show an excellent agreement.
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what is exactly observed in practice. Therefore, the solution
cannot be taken seriously inside some range around the
source. This is also the main drawback of using a cylindrical
coordinate system for three-dimensional, two-way propaga-
tion modeling. A geometrical-optical interpretation displayed

in Fig. 11 may be helpful to roughly understand the phenom-
enon. The scatterer is assumed to be a very narrow object~S!
behaving like an omnidirectional point source that can radi-
ate sound in all directions. The wave field is marched back to
the source~O! through the radii indicated by the dotted
circles. An incoming propagation is defined as the sound
propagation from large radii to small radii. For example, ray
SA is considered as an incoming propagation, while rayAB
is considered as an outgoing propagation. Since the back-
ward radius-marching algorithm handles only the incoming
propagation, the outgoing propagation is omitted during the
backward marching process. Therefore, all the possible dif-
fracting rays~indicated by the arrows! from the scattererS
are ‘‘truncated’’ with only the incoming propagation parts

FIG. 8. The side views of the forward transmission losses,~a! and~b!, and
the backward transmission losses,~c! and~d!, created at the azimuthal angle
of 0 degrees. The plots to the left correspond to the 360-degree computa-
tions, and the plots to the right are the results of the 90-degree calculations.
The horizontal white solid lines indicate the water–seabed interface, the
horizontal white dashed lines show the absorbing layer interface, and the
vertical black and white lines outline the cylindrical interface of the object.

FIG. 9. The side views of the forward transmission loss~a! and the back-
ward transmission loss~b! created at the azimuthal angle of 0 degrees for the
frequency of 300 Hz.

FIG. 10. The top view of the backward transmission loss created at the
receiving depth of 100 m. The source frequency is 300 Hz.

FIG. 11. A geometric-optical interpretation of the limited region of back-
scattering from a point scatterer.
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remaining during the backward marching. Those incoming
rays representing all the valid solutions are bounded within a
limited region shown by the thick elliptic curves. Further-
more, if the scattererS is not an omnidirectional point source
but has certain directivity, the possible diffracting rays~now
indicated by the solid arrows only! from Sare limited within
a certain angle, which may be due to the PE’s angular limi-
tation. The far-field assumption also leads to a bound at a
certain radius. The valid backscattering solutions represented
by those solid arrows finally are bounded within a small area
indicated by the shadow zone in Fig. 11, which is similar to
the backscattering pattern in Fig. 10.

VI. DISCUSSIONS AND CONCLUSIONS

A new three-dimensional, two-way PE model has been
developed in a cylindrical coordinate system to solve three-
dimensional backscattering problems including azimuthal
diffraction effects. The correct periodic sidewall boundary
conditions are implemented for computations in a sector
around 360 degrees. When the computing domain is less
than 360 degrees, approximate sidewall boundary conditions
are applied to give fairly good results. The accurate absorb-
ing sidewall boundary conditions may be implemented in
future works. Although the Hankel function is singular at the
source position, the solution does not have a singularity be-
cause the use of the far-field assumption removes a small
neighborhood of the source from the valid solution domain.
The major drawback is that the backscattering solution is
valid within a limited area, which is due to the cylindrical
marching process as well as the single scattering approach.

Nevertheless, the three-dimensional, two-way PE model
can be useful to demonstrate some interesting three-
dimensional backscattering phenomena that cannot be seen
using two-dimensional models. For example, the results
show that the backscattering from a narrow-angle object is in
a manner similar to sound radiation from a point source. The
azimuthal diffraction effects at higher frequencies are weaker
than that at lower frequencies.
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APPENDIX: DERIVATION OF THE SPARSE MATRIX
EQUATION

With the operatorL defined in Eq.~8!, the operationLu
can be expressed as

Lu5FA01A1X1A2Y

r Gu[@L11L21L3#u, ~A1!

whereA051, A15A250.5. Inserting Eq.~3! into Eq. ~A1!
leads to

L15A0

1

r
1A1

j2~r ,u,z!21

r
, L25

A1

k0
2

]

]z S 1

r

]

]zD ,

~A2!

L35
A2

~k0r̄ !2

]

]u S 1

r

]

]u D .

The varying density comprises the inhomogeneity of the me-
dium. The derivation uses the notations shown in Fig. 1.
Using the continuity conditions on themth horizontal inter-
face (zm5z01mDz) and the finite difference scheme,L1

can be expressed as

L1um, j5
A0

2 S 1

rm11/2,j
1

1

rm21/2,j
Dum, j

1
A1

2 Fjm11/2,j
2 21

rm11/2,j
1

jm21/2,j
2 21

rm21/2,j
Gum, j . ~A3!

For expressingL2 , the first-order derivative can easily be
handled using a forward finite difference scheme. But the
major concern is how to treat (]/]z)((1/r)]/]z) because
(1/r)]/]z is discontinuous on the horizontal interface. Here,
Varga’s procedure10 is applied:

]

]z S 1

r
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]zDum, j5
1

Dz F S 1
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m11/2,j

2S 1
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]zD
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1

rm11/2,j
~um11,j2um, j

1 !2
1

rm21/2,j
~um, j

2 2um21,j !

~Dz!2 , ~A4!

whereum, j
1 denotes the field on the horizontal interfacezm in

medium 1, andum, j
2 denotes the field on the horizontal inter-

face zm in medium 2. The continuity conditions implyum, j
1

5um, j
2 5um, j . Using the scheme in Eq.~A4!, L2 andL3 can

be expressed as

L2um, j5
A1

~k0Dz!2 F2S 1

rm11/2,j
1

1

rm21/2,j
Dum, j

1
1

rm11/2,j
um11,j1

1

rm21/2,j
um21,j G , ~A5!

L3um, j5
A2

~k0r̄Du!2 F2S 1

rm, j 11/2
1

1

rm, j 21/2
Dum, j

1
1

rm, j 11/2
um, j 111

1

rm, j 21/2
um, j 21G . ~A6!

Note that the densities in Eqs.~A3! and~A5! are evaluated at
the depths ofz01(m1 1

2)Dz and z01(m2 1
2)Dz on both

sides of themth horizontal interface while the densities in
Eq. ~A6! are evaluated at the azimuthal angles of (j 1 1

2)Du
and (j 2 1

2)Du on both sides of thejth vertical interface. In-
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serting Eqs.~A3!, ~A5!, and ~A6! into ~A1! results in Eq.
~10!, where the coefficients are given by

Bm, j5S A0
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rm, j 11/2
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1

rm, j 21/2
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~A9!

For transforming Eq.~10! into a matrix form, a simple ex-
ample shown in Fig. 3 is used, wherem50 – 5 and j
50 – 4. Following the order ofj and m, Eq. ~10! can be
expanded as

Lum, j5

¦

B1,1•u1,11D1,1u2,11E1,1u0,11F1,1u1,21G1,1u1,0

B2,1u2,11D2,1u3,11E2,1u1,11F2,1u2,21G2,1u2,0

B3,1u3,11D3,1u4,11E3,1u2,11F3,1u3,21G3,1u3,0

B4,1u4,11D4,1u5,11E4,1u3,11F4,1u4,21G4,1u4,0

B1,2•u1,21D1,2u2,21E1,2u0,21F1,2u1,31G1,2u1,1

B2,2u2,21D2,2u3,21E2,2u1,21F2,2u2,31G2,2u2,1

B3,2u3,21D3,2u4,21E3,2u2,21F3,2u3,31G3,2u3,1

B4,2u4,21D4,2u5,21E4,2u3,21F4,2u4,31G4,2u4,1

B1,3•u1,31D1,3u2,31E1,3u0,31F1,3u1,41G1,3u1,2

B2,3u2,31D2,3u3,31E2,3u1,31F2,3u2,41G2,3u2,2

B3,3u3,31D3,3u4,31E3,3u2,31F3,3u3,41G3,3u3,2

B4,3u4,31D4,3u5,31E4,3u3,31F4,3u4,41G4,3u4,2.

~A10!

Equation~A10! may be written in the form of a product of
matrices ifu is written as a vector following the order ofj.
However, of special concern is how to treat the starting side-
wall boundary (um,0) and the ending sidewall boundary
(um,4). Two types of sidewall boundary conditions are
shown in Fig. 3.

In the case of Fig. 3~b!, the periodic sidewall boundary
conditions assumeum,05um,3 and um,45um,1 . Equation
~A10! can be reorganized and expressed in the form of a
sparse matrix:

Lu5

l

B1,1 D1,1 0 0 F1,1 0 0 0 G1,1 0 0 0

E2,1 B2,1 D2,1 0 0 F2,1 0 0 0 G2,1 0 0

0 E3,1 B3,1 D3,1 0 0 F3,1 0 0 0 G3,1 0

0 0 E4,1 B4,1 0 0 0 F4,1 0 0 0 G4,1

G1,2 0 0 0 B1,2 D1,2 0 0 F1,2 0 0 0

0 G2,2 0 0 E2,2 B2,2 D2,2 0 0 F2,2 0 0

0 0 G3,2 0 0 E3,2 B3,2 D3,2 0 0 F3,2 0

0 0 0 G4,2 0 0 E4,2 B4,2 0 0 0 F4,2

F1,3 0 0 0 G1,3 0 0 0 B1,3 D1,3 0 0

0 F2,3 0 0 0 G2,3 0 0 E2,3 B2,3 D2,3 0

0 0 F3,3 0 0 0 G3,3 0 0 E3,3 B3,3 D3,3

0 0 0 F4,3 0 0 0 G4,3 0 0 E4,3 B4,3

m ¨

u1,1
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u4,1

u1,2
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u3,2

u4,2

u1,3

u2,3

u3,3

u4,3

©
1

¨

E1,1u0,1

0

0

D4,1u5,1

E1,2u0,2

0

0

D4,2u5,2

E1,3u0,3

0

0

D4,3u5,3

©
, ~A11!

where the values on the surface (u0,j ) and the values at the
maximum depth (u5,j ) are extracted and written in a vector.
Following the order ofj, the matrix in Eq.~A11! may be
divided into block matrices as indicated by the dashed lines.
This sparse matrix has only seven diagonals and can be di-
vided intoJ2 block matrices~each block hasM2 elements!.
Two diagonal blocksGm,1 andFm,3 occurring at the corners
are due to the use of the periodic sidewall boundary condi-
tions. Equation~A11! can be written in the form of Eqs.
~11a! and~11b!. If J51, the sparse matrix reduces to a tridi-
agonal matrix, which has been encountered in two-
dimensional models.

In the case of Fig. 3~c!, approximate sidewall boundary

conditions setum,05um,1 and um,45um,3 . Following the
same procedure as in the previous case, Eq.~A10! can also
be transformed into a sparse matrix similar to Eq.~A11!. The
new sparse matrix has only five diagonals without the block
matricesGm,1 andFm,3 occurring at the corners. The differ-
ent block matrices are given in Eq.~12!.
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