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Lithium Intercalation info Layered LiMnO,

G. Vitins® and K. West
Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark

ABSTRACT

Recently Armstrong and Bruce' reported a layered modification of lithium manganese oxide, LiMnO,, isostructural
with LiCoO,. LiMnO, obtained by ion exchange from a-NaMnO, synthesized in air is characterized by x-ray diffraction
and by electrochemical insertion and extraction of lithium in a series of voltage ranges between 1.5 and 4.5 V relative to
a lithium electrode. During cycling, voltage plateaus at 3.0 and 4.0 V vs. Li develop, indicating that the material is con-
verted from its original layered structure to a spinel structure. This finding is confirmed by x-ray diffraction. Contrary to
expectations based on thermodynamics, insertion of larger amounts of lithium leads to a more complete conversion. We
suggest that a relatively high mobility of manganese leaves Li and Mn randomly distributed in the close-packed oxygen
lattice after a deep discharge. This isotropic Mn distribution can relatively easily relax to the Mn distribution character-
istic of spinels whereas the anisotropic distribution characteristic of layered structures is not reformed when excess lithi-

um is extracted.

Introduction

With the introduction of the lithium-ion battery con-
cept, the “voltage” (potential relative to a lithium elec-
trode) of electrode materials has become an important
design parameter. A high voltage of the positive electrode,
preferably above 4 V vs. Li, is required in order to mini-
mize the loss in energy density introduced by the nonzero
voltage of the coke or graphite used as negative electrode.
High voltages can be found in two groups of intercalation
materials: in layered lithium transition metal dioxides
(e.g., LiCoO, and LiNiO,) and in lithium transition metal
spinels, especially LiMn,0O,. These materials have “unusu-
ally” high voltages, i.e, voltages that are considerably
higher than known from materials with similar compo-
sitions, but different structures. The high voltage of the
layered oxides stems from a destabilization of the host
structure caused by lithium extraction. This can be illus-
trated by the fact that lithium extraction from the ideally
layered LiCoO, occurs at a considerably higher voltage
compared to lithium extraction from disordered LiCoO, ?
where interlayer transition metal ions reduce the electro-
static repulsion between negatively charged oxide layers.
This destabilization eventually leads to irreversible struc-
tural breakdown if a critical limit of lithium extraction is
exceeded. The high voltage of lithium extraction from the
manganese spinel can be ascribed to the oxygen coordina-
tion of lithium in this structure. The tight tetrahedral
coordination offered by the spinel structure defines a par-
ticularly stable environment for lithium ions, resulting in
higher potentials during lithium insertion or extraction
than in materials with octahedral coordination. The tetra-
hedral sites in most other close-packed structures used as
intercalation hosts share faces with octahedral sites occu-
pied by transition metal ions. These sites are energetically
disfavored for electrostatic reasons. The current efforts in
the investigations on new electrode materials with high
energy density are focused on alternative materials with
similar or better performance compared to LiCoO,, *
LiNiO,, * or Li, ;Mn, ,0,. *" A point of special concern is to
find materials with an initial lithium capacity larger than
the, at best, 160 mAh/g offered by these materials. Cost
and environmental issues are also of concern, making
manganese-based materials much more attractive than
e.g., cobalt oxides. Orthorhombic LiMnO, is such a mater-
ial; it exists both in a low-temperature modification with
an initial charge capacity close to 230 mAh/g,*" and in a
high-temperature modification with an initial charge
capacity of 150 mAh/g.'*** Upon cycling, these materials
transform into spinel-like materials,®'*'213 pyt they do not
exhibit the good cycling performance that can be achieved
with optimized lithium manganese spinels.

Recently a new layered LiMnO, compound analogous to
LiCoO, was reported by Armstrong and Bruce.! This mate-

° Permanent address: Institute of Solid State Physics, University
of Latvia, LV-1063 Riga, Latvia.
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rial is not thermodynamically stable, but could be ob-
tained by an ion-exchange reaction where a-NaMnO, was
refluxed with LiCl or LiBr in n-hexanol for 6 to 8 h at
150°C. A previous attempt to perform similar ion-ex-
change reactions was not successful**: refluxing with LiCl
in methanol for 32 h gave an incomplete ion exchange,
whereas the reaction in molten Lil at about 450°C resulted
in complete exchange of Na with Li, but the product did
not retain the layered structure of the starting material.
The product phase was identified as isotypic with the
lithium insertion product of the spinel LiMn,O,. This
insertion product, Li,Mn,O, has a spinel-related ordered
rock salt structure.!s”

The structure of layered LiMnO, was established by
neutron powder diffraction to be monoclinic with space
group C2/m and unit cell dimensions: a = 5.4387(7), b =
2.80857(4), c = 5.3878(6) A, B = 116.006(3)°. ! Lithium ions
are located in octahedral sites between MnO,-octahedron
sheets. The oxygen packing is not regular due to a Jahn-
Teller distortion.

In this paper we examine the electrochemical properties
of the layered lithium manganese oxide. By analysis of the
differential capacities obtained during galvanostatic
cycling of Li/LiMnO, cells we show that this material is
unstable towards lithium extraction/insertion and trans-
forms into a spinel-related modification just like the orth-
orhombic material does on cycling.®® We also discuss
aspects of the synthesis of the layered lithium manganese
oxide.

Experimental

Synthesis of the metastable layered lithium manganese
dioxide is performed in two steps: synthesis of a-NaMnO,
and exchange of sodium ions with lithium ions under soft
chemistry conditions. At each step in the synthesis, the
phase contents of the samples were analyzed by x-ray
powder diffraction carried out on a Phillips automated
powder diffractometer, PW1710, using Cu K, radiation
and W as an internal standard.

Synthesis of a-NaMnO, —oa-NaMnO, was synthesized
from Na,CO, and MnCO, heated to 700 to 710°C under
flowing nitrogen for 18 h with an intermediate grind-
ing.M** As a-NaMnO, has been reported to be stable in
oxygen above 650°C, '® a simpler synthetic route was tried.
A batch of the same starting materials was heated twice to
725°C in air for 24 h and then quenched to room tempera-
ture. Between these two firings the product was finely
ground in a mortar.

Ion erchange.—The ion exchange was performed by
heating o-NaMnO, in a solution of lithium bromide in
n-hexanol (4 M) to 145 to 154°C for 8 h or 24 h. After this
period, the slurry was filtered, and the precipitate washed
with n-hexanol and methanol. The total amount of LiBr
corresponds to a five to tenfold excess of the amount
required for full exchange of Na with Li. LiBr was found
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to be well suited for this purpose, as it is highly soluble in
n-hexanol whereas the NaBr formed in the reaction is only
poorly soluble but dissolves easily in methanol.

Electrochemical testing.—For galvanostatic cycling,
electrodes were made as composite films containing 60%
by weight lithium manganese oxide, 10% carbon (Ketjen
EC Black), and 30% polyethylene oxide (PEO, Mw = 4 X
10% used as an ionically conducting binder. The electrode
films were solvent cast onto aluminum foil and punched
into circular disks (1 cm diam each containing 1 to 2 mg
active material. The exact amount of manganese oxide
was determined by chemical analysis after cycling. To
eliminate traces of water, the electrode disks were dried in
vacuum at 100 to 120°C for 20 h prior to use.

The electrodes were cycled in spring-loaded test cells
with metallic lithium as the negative electrode and an
electrolyte consisting of LiPFy (1 M) dissolved in a 1:1
mixture of ethylene carbonate and diethyl carbonate.
Porous polypropylene sheets (Celgard 2400) were used as
separators.

As in our previous work, we used galvanostatic dis-
charge and charge to fixed voltage limits followed by a
period of potentiostatic charging at the upper voltage in
order to bring the electrode to a reproducible state before
each discharge. The differential capacity (dx/dE) is calcu-
lated numerically from the voltage/time relationship and
the amount of oxide in the electrode. Currents in the range
10 to 25 wA, corresponding to discharge times larger than
10 h/x, were chosen in order to minimize concentration
polarization effects. At lower currents, a systematic imbal-
ance between the capacities during charge and discharge
due to parasitic reactions with electrolyte impurities
became noticeable. The results obtained with the layered
lithium manganese oxide are compared with results
obtained under identical conditions with a well-charac-
terized lithium manganese spinel, LiMn,O, obtained from
Sedema, Tertre, Belgium.

Results and Discussion

Synthesis of a-NaMnO,—X-ray diffraction of the yel-
lowish brown powders resulting from either synthetic
route to a-NaMnO, confirmed the presence of the correct
monoclinic phase. The powder synthesized under nitrogen
showed additional diffraction lines (relative intensity less
than 5%) from the orthorhombic NaMnO, B-phase. The
lattice constants of the two powders are compared with
literature data in Table L.

It is seen that there is a tendency for an increased unit
cell volume for samples obtained in nitrogen atmosphere,
consistent with a reduction of the average oxidation state
of manganese slightly below the ideal value of 3.0. The lat-
tice constants of the sample prepared in air are closer to
the single-crystal data’ obtained on a sample prepared in
a closed system. The differences are small, however. Liter-
ature data'2!%1? suggest that the oxidation state of Mn in
this phase can vary only in a narrow interval: 2.95 to 3.08.

Upon exposure to humid air, the color of the powders
changes from yellowish brown to dark brown. Tt seems
that a-NaMnO, initially reacts with moisture to form a
sodium-deficient product with an intense diffraction line
atd = 5.57 A corresponding to x-ray diffration (XRD) data
for a-Nay;eMnO,.,. >’ After a longer exposure to humid air,
a-NaMnoO, is converted to a black powder having an ill-
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defined diffraction pattern that could not be indexed to
the parent phase.

Synthesis of LiMnO,-—Chemical analysis of the brown
powder obtained after the ion-exchange reaction on either
of the two «-NaMnO, preparations showed that the lithi-
um exchange was nearly complete, with a [Nal/[Li] ratio
of 7%. X-ray diffraction confirmed that the product had
the layered lithium manganese oxide structure. The few
diffraction lines that did not belong to this material were
of a relative intensity less than 5%. Particularly at low
angles there was an unidentified line (d = 6.66 A) that was
also observed in a previous investigation.” The unit cell
parameters of the product (a = 5.431(6) A, b = 2.809(2) A,
¢ =5.390 A, and p = 115.95(7)°® as determined from least
squares refinement were consistent with the values given
in the literature.”*

Electrochemical cycling.—Cycling of the layered
LiMnO, in the potential range between 3.0 and 4.5 V vs. Li
is shown in Fig. 1. In the first charge, lithium is extracted
over a plateau at 4.1 V vs. Li to x = 0.3, where x is the
composition parameter in Li,MnO, Some cells show an
even larger capacity in the first charge, but as this capac-
ity is not correlated to the capacity in subsequent cycles,
we believe that this additional capacity is due to elec-
trolyte decomposition on an incompletely passivated elec-
trode. During subsequent cycling, the capacity is consid-
erably smaller than in the first charge, and fades relatively
quickly upon repeated cycling. This is similar to the
cycling performance given by Armstrong and Bruce.! The
major part of the capacity is found in a quasi plateau cen-
tered around 4 V as is seen from the differential capacity
curves for cycles 2 and 3 in Fig. 1. Even at the relatively
low rate used here for cycling, the hysteresis between the
discharge voltage and the charge voltage is much larger
(0.3 to 0.4 V) than expected for a typical intercalation
reaction where lithium ions are inserted into or removed
from galleries occupied only by mobile guest ions.

Attempting to increase the capacity, the lower limiting
voltage was extended to 2.0 V vs. Li. Results of cycling in
the voltage range between 2.0 and 4.5 V are shown on
Fig. 2. In this particular cell it is clear that a large part of
the capacity during the first charge is due to electrolyte
decomposition as the capacity exceeds the amount of lithi-
um initially present in the oxide. Furthermore, the voltage
shows a local minimum characteristic of an autocatalytic
process. This phenomenon is absent from the voltage
curves obtained during cycling of other manganese oxides
under identical conditions, and we suppose it to originate
from an instability of the electrolyte at high voltage cat-
alyzed by the surface of manganese oxide particles, which
remain active during the conformation change. A similar
effect is known to occur during a phase change of MoS,
induced by lithium insertion.*” In most cases the plateau
associated with electrolyte decomposition is only seen in
the first charge, but in a few instances it may be present in
the second charge as well, see Fig. 2. When cycled in this
range two plateaus on the voltage curve or two sets of
peaks in differential capacity are seen, one centered around
4.0 V and one around 3.0 V. The capacity retention on
cycling is better and the voltage hysteresis less than in cells

® Determined on the product of ion exchange of the a-exchange
of the a-NaMnQ, sample made in air.

Table 1. Lattice parameters of a-NaMnO,.

Jansen et al.’®
Fuchs et al.**
Synthesis in nitrogen

Single crystal, synthesis
in a closed system

This work
Synthesis in air

This work
Synthesis in nitrogen

a 5.678(5) A 5.662 A
b 2.853(3) A 2.860 A
e 5.811(5) A 5.799 A
B 113.2Q0)° 113.10°,

v 86.67 A® 86.38 A®

5.672(1) A, 5.663(1) A
2.8607(4) A 2.8597(4) A
5.804(1) A 5.804(1) A
113.14(2)° 113.132)°
86.60 A’ 86.43 A®
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discharged only to 3.0 V. The reversible capacity, however,
still only involves half the amount of lithium originally
present in the structure.

After termination of the cycling experiments, electrodes
were examined by x-ray diffraction. Diffraction patterns
of electrodes cycled in the intervals 3.0 to 4.5 V, and 2.4 to
4.0 V are compared with patterns of the pristine layered
lithium manganese oxide and a lithium manganese oxide
spinel in Fig. 3. The polypropylene separator used as car-
rier for the cycled electrode material gives rise to addi-
tional lines at low angles (marked with P on the figure). It
is seen that the cycled electrodes show the weak, broad
diffraction peaks characteristic of poorly crystalline mate-
rials, and that the peaks change position and resemble the
spinel pattern more than the pattern characteristic of the
original layered oxide. This does not necessarily imply
that the structure changes to a spinel structure, because a
fortuitous incidence makes it impossible by diffraction
methods to distinguish between a slightly distorted lay-
ered LiMnO, structure (the “cubic layered structure”) and
a lithiated spinel Li,Mn,O,.* However, the presence of
peaks at both 4.0 V vs. Li and at 3.0 V vs. Li in the capac-
ity curve of the cycled material show that two essentially

different types of lithium sites are present. This is not
expected for a layer structure, but is characteristic of a
spinel having two sets of sites available for lithium inser-
tion, both octahedral sites and a set of tetrahedral sites not
sharing faces with occupied octahedra. For comparison,
voltage and capacity curves obtained from cycling of a
lithium manganese oxide spinel (from Sedema) in the volt-
age range (1.0 to 4.5 V vs. Li) are shown in Fig. 4. Basically
the spinel has capacity in plateaus at 3 and 4 V vs. Li with
the 4 V plateau showing a characteristic splitting. Cycling
in this extended range leads to characteristic changes in
the voltage profile of this otherwise very stable electrode
material.

In order to avoid the ambiguities introduced by the irre-
versible electrolyte reaction in the first charge, a series of
experiments was conducted with the charging voltage lim-
ited to 4.0 V vs. Li. Fig. 5 shows results from such an
experiment. On the initial charge, an equivalent of 0.3 Li
per Mn could be extracted. In the subsequent cycles
between 2.9 and 4.0 V vs. Li only a fraction of this capac-
ity could be cycled and the amount decreased further upon
cycling. After ten of these cycles the lower voltage limit
was decreased to 2.5 V ws. Li, resulting in a gradual

S
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increase in the cycling capacity. The major part of this new
capacity is found in a voltage plateau centered around 3.0
V, but as the capacity in this region increases, a new set of
capacity peaks emerges just below 4 V vs. Li. This behav-
ior is similar to the behavior shown by the spinel LiMn,O,
when cycled in the same voltage range, a similarity that is
further enhanced as the minimum voltage is decreased
further. Fig. 6 shows the 61st cycle of a LiMnO, electrode
which up to cycle 60 was cycled between 4.0 V and a min-
imum voltage gradually decreased to 1.5 V. During this
treatment the capacity increased to an equivalent of 0.4 Li
per Mn. Increasing the upper voltage to 4.5 V further
increased the cycling capacity to more than one Li per Mn,
and the differential capacity curve now shows the split set
of peaks at 4 V characteristic of the spinel. The peak at
3.74 V on charge was also observed in spinels cycled in a
wide voltage range (see Fig. 4 and Ref. 7) but is more pro-
nounced in this preparation. Presently we have no expla-
nation for this peak, but know that it is correlated to the
appearance of additional capacity below 3 V. The XRD on
this electrode after completion of the cycling experiment
showed no diffraction lines; the product was amorphous to
X-rays.

40 50 60 70 80 90

Conclusions

Lithium extraction from and reinsertion into the layered
lithium manganese oxide is not a reversible intercalation
reaction. Unlike the isostructural nickel and cobalt oxides,
LiNiO, and LiCoO,, the manganese oxide undergoes a
structural breakdown after a small amount of lithium is
extracted. Cycling of this material in the voltage range
where the initial lithium extraction takes place only in-
volves a very small capacity, whereas cycling to low volt-
ages promotes a structural rearrangement to a spinel-
related modification that cycles much better than the
pristine material, although it never reaches the capacity of
the pure spinel material. The conversion to a spinel-like
material is apparently paradoxical, as the spinel phase is
thermodynamically stable only at compositions near
Li/Mn = 0.5 whereas it is orthorhombic LiMnO,, having a
layer structure with a double stack of edge-sharing MnO,
octahedra, that is stable at a higher lithium content. A key
to the understanding of this paradox is that a random dis-
tribution of lithium and manganese in a cubic close-
packed array of oxygen ions is much closer to the spinel
structure than to a layered structure. The stresses induced
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composition (x), and (B) differen-
tial capacity (dx/dE) vs. poten-
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h/x
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Fig. 5. (A) Potential (E) vs. composition (x), and (B) differential capacity (dx/dE) vs. potential for cycling of Li MnO,. Discharge/charge cur-

rent 25 pA/cm?, corresponding to a discharge time of 14 h/x.

by a high degree of lithium insertion combined with a rel-
atively high mobility of manganese ions in an oxide lat-
tice** frustrates the structure and causes a displacement of
manganese ions from their original positions. After a num-
ber of cycles, a certain degree of randomness in distribu-
tion of manganese ions is the result. The spinel structure
representing a uniform, isotropic distribution of man-
ganese ions in a close-packed oxygen lattice thus repre-

Ax in LiMnO, |

i N A 1 A A 1 | I 1 1

0 0.4 0.8 1.2

sents a local energy minimum that is more easily attained
under dynamic conditions than, e.g., the orthorhombic
structure.

The mechanism suggested above also explains why
cycling of the orthorhombic layered LiMnO, leads to
transformation of the oxide to a spinel-like material .*!'*'*"*
The implied high mobility of manganese in an oxide
framework makes it unlikely that a lithium manganese

Fig. 6. (A) Potential (E) vs. composition (x), and (B) differential capacity (dx/dE) vs. potential for cycling of Li, MnO,. Discharge/charge cur-

rent 13 pA/cm?, corresponding to a discharge time of 10.5 h/x.
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oxide with a reversible high-voltage capacity much larger
that of LiMn,O, will be found. In most lithium manganese
oxides, lithium insertion into octahedral sites with simul-
taneous reduction of Mn(IV) to Mn(III) occurs at a voltage
just above 3.0 V vs. Li. A higher voltage can be obtained
if lithium is accommodated on tetrahedral sites, but in
hexagonal close-packed structures the amount of tetrahe-
dral sites not sharing faces with occupied octahedra is
limited to the AB,O, composition. Alternatively, a higher
voltage could be obtained if lithium extraction results in a
large change in the stability of the MnO framework, as in
layered oxides. But due to the high mobility of Mn, such
changes in stability will induce Mn motion and cause a
breakdown of the host structure.
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