Technical University of Denmark

Electrochemical Behavior of Molten V2O5-K2S2O7-KHSO4 Systems

Petrushina, Irina; Bjerrum, Niels J.; Berg, Rolf W.; Cappeln, Frederik Vilhelm

Published in: Electrochemical Society. Journal

Link to article, DOI: 10.1149/1.1837444

Publication date: 1997

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Petrushina, I., Bjerrum, N., Berg, R. W., & Cappeln, F. V. (1997). Electrochemical Behavior of Molten V2O5-K2S2O7-KHSO4 Systems. Electrochemical Society. Journal, 144(2), 532-539. DOI: 10.1149/1.1837444

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

REFERENCES

- 1. J. R. MacCallum and C. A. Vincent, Polymer Electrolyte Reviews-2, Elsevier Applied Science, London (1989).
- 2. B. Scrosati and F. Croce, Mater. Res. Soc. Symp. Proc., 293, 459 (1993)
- 3. M. Odziemkowski and D. E. Irish, This Journal, 139, 3063 (1992).

- D. Fauteux, Solid State Ionics, 17, 133 (1985).
 F. Bonino, B. Scrosati, A. Selvaggi, and J. Evans, J. Power Sources, 18, 75 (1986).
 P. D. Greene, E. L. Bush, and I. R. Rawlings, Abstract 479, p. 378, The Electrochemical Society Meeting Abstract Met Society Meeting Abstract Met Society Meeting (Abstract Met Society Meeting). Abstracts, Vol. 5, No. 2, Montreal, PQ, Canada, Oct. 6-11, (1968).
- A. K. Vijh, J. Mater. Sci., 9, 853 (1974).
 J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck and J. D. Robertson, Solid State Ionics, 53-56, 647 (1992)
- J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, and J. D. Robertson, J. Power Sources, 43-44, 103 (1993).
 J. B. Bates, N. J. Dudney, D. C. Lubher, C. B. Cruzalali, S. C. Luck, S. C. Lubher, C. B. Cruzalali, S. C. Luck, S. Luck, S. C. Luck, S. Luck, S. C. Luck, S. Luck, S
- 10. J. B. Bates, N. J. Dudney, D. C. Lubben, G. R. Gruzalski, B. S. Kwak, X. Yu, and R. A. Zuhr, *ibid.*, **54**, 58 (1995).
- J. B. Bates, D. Lubben, N. J. Dudney, and F. X. Hart, *This Journal*, **142**, L149 (1995).
 B. Wang, J. B. Bates, F. X. Hart, B. C. Sales, R. A. Zuhr,

- and J. D. Robertson, *ibid.*, **143**, 3203 (1996).
 13. L. Boukbir, R. Marchang, Y. Laurent, P. Bacher, and G. Roult, Ann. Chim. Fr., **14**, 475 (1989).
 14. B. Wang, B. S. Kwak, B. C. Sales, and J. B. Bates, Non-Cryst. Solids, **183**, 297 (1995).
 15. B. Wang, J. B. Bates, B. C. Chakoumakos, B. C. Sales, B. S. Kwak, R. A. Zuhr, and J. D. Robertson, Mater. Res. Soc. Symp., Proc., **369**, 445 (1995).
 16. J. B. Bates, J. C. Wang, and Y. T. Chu, J. Non-Cryst. Solids, **131-133**, 1046 (1991).
 17. G. E. Jellison and F. A. Modine, Appl. Opt., **29**, 959
- 17. G. E. Jellison and F. A. Modine, Appl. Opt., 29, 959 (1990).
- C. A. C. Sequeira, J. M. North, and A. Hooper, Solid State Ionics, 13, 175 (1984).
- 19. D. A. G. Bruggeman, Ann. Phys. (Leipzig), 24, 636 (1935)
- 20. G. E. Jellison, Jr., Opt. Mater, 1, 41 (1992)
- 21. G. E. Jellison, Jr. and F. A. Modine, Appl. Phys. Lett., 69, 371 (1996); *ibid.*, **69**, 2137 (1996). 22. G. E. Jellison, Jr., *Thin Solid Films*, **234**, 416 (1993).
- J. Tauc, in *The Otical Properties of Solids*, F. Abeles, Editor, p. 277, North-Holland, Amsterdam (1970).
- 24. D. L. Wood and J. Tauc, Phys. Rev. B, 5, 3144 (1972).
- K. Hughes and J. O. Isard, in *Physics of Electrolytes*, Vol. 1, J. Hladik, Editor, p. 351, Academic Press, London (1972).

Electrochemical Behavior of Molten V2O5-K2S2O7-KHSO4 **Systems**

I. M. Petrushina,* N. J. Bjerrum,* R. W. Berg, and F. Cappeln

Materials Science Group, Department of Chemistry, Technical University of Denmark, DK-2800 Lyngby, Denmark

ABSTRACT

The electrochemical behavior of $K_2S_2O_7$ -KHSO₄- V_2O_5 , $K_2S_2O_7$ - V_2O_4 , and $K_2S_2O_7$ -KHSO₄- V_2O_4 melts was studied in argon and SO₂/air atmospheres using a gold electrode. In order to identify the voltammetric waves due to KHSO₄, molten $\dot{\rm KHSO}_4$ and mixtures of $\dot{\rm K}_2 S_2 O_7$ - $\dot{\rm KHSO}_4$ were investigated by voltammetry performed with Au and Pt electrodes in an argon atmosphere. It was shown that H⁺ reduction took place at 0.26 V vs. an Ag⁺/Ag reference electrode, *i.e.*, at a potential in between the $V(V) \rightarrow V(IV)$ and $V(IV) \rightarrow V(III)$ reduction stages. The presence of KHSO₄ caused an increased concentration of V(III) species in the V_2O_5 containing molten electrolytes. This effect may be caused either by protonic promotion of the V(IV) \rightarrow V(III) reduction (VO²⁺ + 2H⁺ + $e^- \rightarrow V^{3+} + H_2O$) or by chemical reduction of V(IV) complexes with hydrogen, formed from H⁺ as the product of the electrochemical reduction. Both the V(V) \rightarrow V(IV) reduction and the V(IV) \rightarrow V(V) oxidation remained one-electron electrochemical reactions after the addition of KHSO₄ (or water) to the $H_2S_2O_7-V_2O_5$ melt. Water had no noticeable effect on the $V(V) \rightarrow V(IV)$ reduction but the $V(IV) \rightarrow V(V)$ oxidation proceeded at higher polarizations in the water-containing melts in both argon and SO₂/air atmospheres. This effect may be explained by participation of the water molecules in the V(IV) active complexes.

Introduction

The present work is a continuation of our investigation on the electrochemistry of molten $V_2O_5\text{-}M_2S_2O_7$ system (M is an alkali metal).¹ This melt has proved to be a realistic model of the V_2O_5 - M_2O catalyst for sulfur dioxide oxidation with oxygen or air in sulfuric acid production and SO₂ removal from flue gases.² Flue gases can contain a significant amount of water (ca. 7% by volume).³ It is known that water dissolves in molten alkali pyrosulfates with formation of hydrogen sulfates^{4,6}

$$H_2O + S_2O_7^{2-} \rightleftharpoons 2HSO_4^{-}$$
 [1]

Dissolved water (or hydrogen sulfate) may participate in some steps of the above mentioned catalytical process. Obviously the physicochemical properties of the melt and possibly the structure of the catalytically active vanadium species depend on the water activity.

* Electrochemical Society Active Member.

It has been shown^{1,6} that electrochemical measurements can provide valuable information about the type of vanadium complexes formed in the $K_2S_2O_7$ - V_2O_5 molten system and knowledge concerning the reaction mechanism during catalysis. Therefore the electrochemistry of $K_2S_2O_7$ -KHSO4-V2O5 melts was studied in an attempt to understand the effect of water.

Previously, neither the electrochemistry of V_2O_5 in the molten $K_2S_2O_7$ -KHSO₄ mixtures, nor the electrochemical behavior of $K_2S_2O_7$ -KHSO4 melts have been studied. Hadid et al.⁷ investigated the electrochemistry of V_2O_5 in molten NH4HSO4 [up to 0.5 mol V2O5/kg, *i.e.*, 5.4 mole percent (m/o)] at 200°C using Pt electrode. It was concluded that vanadium existed only in oxidation states five (VO $_{\!\!2}^{\!+}$ in acidic media and $VO_2SO_4^-$ in basic media) and four [VOSO₄ in acidic media and $VO(SO_4)_2^{2-}$ in basic media], $VOSO_4$ being slightly soluble in the neutral melt. The standard potential of the V(V)/V(IV) electrochemical system was estimated as 0.677 V vs. an Ag/Ag₂SO₄ reference electrode. The electrochemical $V(V) \rightarrow V(IV)$ reaction was shown to be a reversible one-electron process at 200°C.

Experimental data obtained in other electrochemical investigations demonstrate the occurrence of lower stages of vanadium reduction, both in the aqueous electrolytes and in molten salts.⁸⁻¹¹ Thus, the electrochemical reduction of V(V) in aqueous solutions can proceed in two stages forming V(III) by the following reactions⁸

$$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O \quad E^0 = +1.0 V$$
 [2]

$$VO^{2+} + 2H^+ + e^- \rightarrow V^{3+} + H_2O = +0.34 V$$
 [3]

where E^{θ} is the standard potential *vs.* a normal hydrogen electrode. The electrochemical reduction of V(III) to V(II) in 2 *M* aqueous H₂SO₄ was used as a cathodic process for the redox flow cell.^{9,10} It was shown that V(V) can be chemically reduced to V(III) [in the form of KV(SO₄)₂] by SO₂ in molten K₂S₂O₇-KHSO₄-V₂O₅ and KHSO₄-V₂O₅ systems at 450°C.¹¹

In the molten $K_2S_2O_7$ - V_2O_5 systems, catalytically active V(V) complexes (possibly $VO_2SO_4S_2O_7^{3-}$) were found to react with water forming hydrated complexes by the reaction¹²

$$VO_2SO_4S_2O_7^{3-} + 3H_2O \rightarrow VO_2SO_4 \cdot 3H_2O^- + 2HSO_4^-$$
[4]

In studies on the structure of V(V) compounds formed in V_2O_5 solutions in concentrated sulfuric acid, disulfuric acid, and oleum at the ambient temperatures, it was shown that VO(HSO₄)₃, VO(OH)(HSO₄)₂, and H[VO(HSO₄)₄] were the most likely V(V) compounds.¹³⁻¹⁵ Gillespie *et al.*¹⁴ have also found evidence for the formation of dimeric H[V₂O₃(HSO₄)]₆ species at high V₂O₅ concentrations.

Until now only the electrochemistry of hydrogen reduction on platinum from molten KHSO₄ has been studied.¹⁶⁻¹⁸ The electroreduction of hydrogen on bright and platinized platinum was studied in molten KHSO₄ at 250 to 440°C.^{16,17} Videla *et al.* suggested hydrogen bonding in the melt.¹² Arvia *et al.*¹³ assumed that the potential window of molten KHSO₄ is limited by the following cathodic and anodic electrochemical reactions

$$2H^+ + 2e^- \neq H_2$$
 [5]

$$2HSO_4^- \rightleftharpoons H_2SO_4 + SO_3 + \frac{1}{2}O_2 + 2e^-$$
 [6]

 \mathbf{or}

$$SO_4^{2-} \neq SO_3 + \frac{1}{2} O_2 + 2e^-$$
 [7]

The residual EMF after the electrolysis of the KHSO₄ melt was measured.¹⁷ It was found to be 0.602 V at 269°C and was assumed to be equal to the potential window of this electrolyte. The hydrogen-evolution reaction was studied¹⁸ at a bright Pt electrode at 270 to 430°C. It was shown that the atom-atom combination step at low polarization is rate determining; and at high potentials ion-atom electrochemical desorption is the rate-determining step. These regions are separated by a transition region. By analogy with aqueous H₂SO₄, it was also shown that PtO₂ formation and reduction took place at 0.8 and 0.4 V, respectively, vs. the hydrogen reference electrode.¹⁸

Equation 5 implies a preceding dissociation of HSO_4^-

$$\mathrm{HSO}_4^- \to \mathrm{H}^+ + \mathrm{SO}_4^{2-}$$
 [8]

i.e., the presence of more or less "free" protons in molten KHSO₄. This assumption is in agreement with the conclusion of Rogers *et al.*¹⁹ that different particles are responsible for the conductivity and the viscous flow in the molten alkali hydrogen sulfates: the energy barrier for viscosity involves the M⁺, HSO₄⁻, and SO₄²⁻ ions (M = alkali metal), while the conductivity involves only H⁺ ions. A considerably higher electroconductivity of molten K₂S₂O₇ after addition of KHSO₄²⁰ is also in agreement with a proton hopping mechanism of conductivity for molten KHSO₄-

White *et al.*²¹ studied the electrochemical behavior of water dissolved in a molten $\text{Li}_2\text{SO}_4-\text{K}_2\text{SO}_4-\text{Na}_2\text{SO}_4$ eutectic using a gold electrode at 560°C. It was shown that water is

solvated in the sulfate melt, occurring in the form of hydrogenosulfate after the reaction

$$H_2O + M_2SO_4 + SO_3 \rightleftharpoons 2MHSO_4$$
[9]

It was also shown that the reduction of the HSO_4^- ion in molten sulfates proceeds at 0.31 and 0.28 V vs. Ag/Ag⁺ at 100 and 500 mV/s, respectively.

Almost all electrochemical data for $K_2S_2O_7$ and V_2O_5 - $K_2S_2O_7$ melts were obtained at Au electrodes using the Ag/Ag⁺ reference electrode; and the electrochemical data for molten KHSO₄ were obtained at Pt electrodes using primarily the hydrogen reference electrode. However, gold was proven to be corrosion stable both in KHSO₄ and in KHSO₄-K₂S₂O₇ melts up to 550°C²² and therefore, seems to be the most suitable material for the electrochemical investigations in KHSO₄-K₂S₂O₇ containing electrolytes. As a result an additional electrochemical investigation in KHSO₄ and KHSO₄-K₂S₂O₇ melts using an Au working electrode vs. Ag/Ag⁺ is required. Such data are provided here to help distinguish the voltammetric characteristics of the molten KHSO₄-K₂S₂O₇ solvent and also with added vanadium compounds.

Experimental

Pure and dry $K_2S_2O_7$ was obtained by thermal decomposition of $K_2S_2O_8$ (Merck, Pro Analysi, maximum 0.001% by weight N) as described earlier.⁴ KHSO₄ (Merck, p.a.) was dried at 120°C for 24 h and then stored in a dry box. K_2SO_4 (Merck, Suprapur) was dried at 500°C overnight. V_2O_5 from Cerac (99.9% by weight pure) and Ag_2SO_4 from Heraeus (99.9% by weight pure) were used without further purification. All sample preparation and handling were performed in an argon-filled glove box (Vacuum Atmospheres Inc.), with a measured oxygen and water concentration less than 10 ppm.

Cyclic voltammetry measurements were performed in a hermetically closed three-electrode quartz cell previously described.¹ The reference electrode was a silver wire placed in a Pyrex cylindric chamber with a thin-walled sphere bottom. A melt of $K_2S_2O_7$ saturated with Ag_2SO_4 was used as the electrolyte for the reference electrode for the experiments with molten $K_2S_2O_7$ -KHSO₄ or molten $K_2S_2O_7$ -KHSO₄-V₂O₅. A melt of 3 weight percent (w/o) solution of Ag_2SO_4 in KHSO₄ was used as the electrolyte for the experiments involving molten KHSO₄ or molten KHSO

Gold and platinum wires sealed in Pyrex tubes served as working electrodes. In the most cases the working electrode area was 0.236 cm². A gold wire spiral served as a counterelectrode. The cell was filled with electrolyte and hermetically closed in the argon glove box, and placed in a vertical copper-aluminum-block furnace with temperature regulation to within $\pm 1^{\circ}$ C.²³ The components of the melt could be mixed by automatic rocking of the furnace. The temperature of the melt was measured by a calibrated Chromel-Alumel thermocouple in a Pyrex pocket placed inside the electrochemical cell.

Several voltammetric measurements were done in a mixture of SO₂ (10 v/o), O₂(26 v/o), and N₂(64 v/o), bubbling the gas through the Pyrex tube immersed in the molten electrolyte. Commercial gases were used: SO₂ (>99.9% by volume), O₂ (99.8 v/o + 0.2 v/o N₂ and Ar), and N₂ (<40 ppm of O₂). The SO₂/O₂/N₂ mixture was supplied from a mixing system based on gas streams monitored by Brooks mass flowmeters. The voltammetric measurements were carried out with a THJ Instrument potentiostat (Denmark) controlled CV1A (THJ Instrument) and Easy Plot 2.02 (MIT and Spiral Software) software packages and with a potentiostat/galvanostat (Autolab-PGSTAT 20, Eco Chemie, The Netherlands) controlled by GPES (Eco Chemie) software packages. The data were corrected for IR drops using current interruption technique.²⁴

Results and Discussion

Voltammetric measurements on Pt and Au electrodes in melts of KHSO₄ and $K_2S_2O_7$ -KHSO₄ at 265 and 440°C.—

Vapor pressure measurements in the $K_2S_2O_7$ -KHSO₄ system were performed using the boiling-point-method and the quartz-Bourdon-manometer-method prior to the electrochemical measurements.²⁵ The obtained vapor pressure values were lower than 60 Torr for KHSO₄ concentrations less than 10 m/o at 440°C. Taking these data into account, we deduce that the $K_2S_2O_7$ -KHSO₄ system is sufficiently stable up to 10 m/o KHSO₄ at 440°C.

The voltammograms obtained with the gold electrode in the molten $K_2S_2O_7$, and its mixtures with 7.5 and 10 m/o of KHSO₄, at 700 and 1000 mV/s at 440°C are given in Fig. 1 and 2. After addition of KHSO₄ to the $K_2S_2O_7$ melt the reduction wave R_1 and the oxidation wave Ox_1 appear in the voltammetric curves at the potentials 0.26₀ and 0.04₅ V (300 mV/s), respectively. The magnitude of current for the cathodic process (wave R_1) depends on the concentration of KHSO₄ and the cathodic limit of the potential window moves toward more positive potentials, *i.e.*, the potential window becomes more narrow than for the "dry" $K_2S_2O_7$ melt.¹ The oxidation wave Ox_2 and the reduction wave R_4 are gradually suppressed with the increasing concentration of KHSO₄.

It has already been shown¹ that wave R_2 is due to the reduction of the gold oxide through the following reaction

$$^{1}/_{2}Au_{2}O_{3} + ^{3}/_{2}S_{2}O_{7}^{2-} + 3e^{-} \rightarrow Au + 3SO_{4}^{2-}$$
 [10]

Wave Ox_2 , according to Ref. 1,6 is the electrochemical dissolution of the gold electrode which can be described by the following equation

Au +
$$2n \operatorname{S}_2\operatorname{O}_7^{2-} \to \operatorname{Au}(\operatorname{SO}_4)_n^{(2n+3)-} + n\operatorname{S}_3\operatorname{O}_{10}^{2-} + 3e^-$$
 [11]

Wave
$$Ox_3$$
 is the electrochemical oxidation of $S_2O_7^{2-}$

$$3S_2O_7^{2-} \neq 2S_3O_{10}^{2-} + \frac{1}{2}O_2 + 2e^{-}$$
 [12]

and wave R_3 is the electrochemical reduction of solvated SO_3 mixed with oxygen.¹ Wave R_4 appears only at high potential scan rates and can be ascribed to electrochemical reduction of gold complexes because it is decreasing simultaneously with wave Ox_2 after the additions of KHSO₄. Wave R_1 is clearly due to KHSO₄. To identify the electrochemical process we need information about the electrochemical behavior of molten KHSO₄. We compared the electrochemical behavior of the much investigated platinum electrode to the gold electrode under the same conditions.

Fig. 1. Voltammetric curves obtained with a gold electrode in molten $K_2S_2O_7$ (1); and $K_2S_2O_7 + 7.5$ m/o KHSO₄ (2) at 800 mV/s and 440°C in Ar atmosphere.

Fig. 2. Voltammetric curve obtained with a gold electrode in molten $K_2S_2O_7$ + 10 m/o KHSO_4 at 1000 mV/s and 440°C in Ar atmosphere.

The voltammogram obtained with a Pt electrode in molten KHSO₄ at 265°C and 300 mV/s is given in Fig. 3. Wave R₁ at approximately 0.25 V and wave Ox₅ at 1.3 V corresponds to the anodic and cathodic limiting reactions, respectively, of the potential window of the KHSO₄ melt. According to Arvia *et al.*¹⁷ hydrogen reduction is the cathodic limiting reaction in molten alkali hydrogen sulfates. Reaction Ox₅ can be identified with Eq. 6.¹⁷ This conclusion is in agreement with the results of anodic galvanostatic transient measurements made by Gilroy,¹⁸ the last anodic plateau occurred at 1.0 V vs. the hydrogen reference electrode and the gas evolution took place at this potential.

According to Arvia *et al.*,¹⁷ the residual EMF, after electrolysis of the molten potassium hydrogenosulfate, was 0.602 V at 269°C. This EMF was identified with the poten-

Fig. 3. Comparison of voltammetric curves for different electrode materials, platinum (Pt) and gold (Au) in molten KHSO₄ at 300 mV/s and 265°C in Ar atmosphere.

tial window of molten $\rm KHSO_4$ on the basis of the reversibility of the reactions described by Eq. 5 and 6, *i.e.*, it was much lower than in our measurement. However, it is obvious from Fig. 3 that reaction Ox_5 is irreversible. The only "available" cathodic reaction to form an electrochemical couple with hydrogen after KHSO₄ electrolysis is reaction R_5 (Fig. 3). This fact can explain the low values of residual EMF obtained by Arvia et al.¹⁷ Wave R₅ can be ascribed to the reduction of platinum oxide, taking into account the electrochemical behavior of (i) platinum in dilute sulfuric acid26 (platinum oxide formation and reduction region occurring between 0.4 V and 1.1 V vs. hydrogen electrode), (ii) platinum in concentrated sulfuric acid solutions²⁷ (platinum oxide formation and reduction region occurring between 0 and 0.6 V vs. the hydrogen electrode), and (iii) the experimental data obtained by Gilroy¹⁸ (platinum oxide reduction in the molten KHSO₄ takes place at 0.4 V vs. the hydrogen electrode).

The gold electrode voltammogram for molten KHSO₄ under Ar atmosphere and at 265°C was characterized by a 0.26 V cathodic limit (wave R_1) and a 0.96 V anodic limit (wave Ox_5) at 300 mV/s (Fig. 3, solid line). The cathodic wave R_6 is obviously the electrochemical reduction of the product of reaction Ox_4 .

As the cathodic limiting reaction (and taking into account data obtained with Pt electrode) wave R_1 can be ascribed to H^+ or HSO_4^- reduction on Au (Eq. 5). It was found that the value of the peak current of wave R_6 depends upon the duration of the anodic electrolysis during the corresponding oxidation wave Ox_4 . At high potential scan rates it is possible to scan the potential to more positive values to reach (similar to platinum) the anodic oxidation of HSO_4^- ion at 1.45 V, *i.e.*, wave Ox_5 (Fig. 4). We can assume that wave Ox_4 is a passivation peak corresponding to the anodic dissolution of gold in molten KHSO4. Therefore wave R_6 can be ascribed to the electroreduction of the gold compound formed in the reaction Ox_4 .

Experimental data on the electrochemical behavior of gold in KHSO₄ melts and comparison of the voltammograms obtained in molten $K_2S_2O_7$ and KHSO₄ electrolytes at 440°C (Fig. 5) show that the cathodic wave R_1 on the $K_2S_2O_7$ -KHSO₄ voltammogram (Fig. 1) can be ascribed to proton reduction and the anodic wave Ox_1 to the oxidation of absorbed hydrogen (Eq. 6). It can also be seen from Fig. 5 that the anodic dissolution of gold in molten KHSO₄ proceeds at more positive potentials than in molten

Fig. 4. Voltammetric curves obtained with a gold electrode in molten KHSO₄ at 1000 mV/s and 265° C in Ar atmosphere.

Fig. 5. Comparison of voltammetric curves obtained with a gold electrode in molten $K_2S_2O_7$ (A) and molten KHSO₄ (B) at 1000 mV/s and 440°C in Ar atmosphere.

 $K_2S_2O_7, \ i.e.,$ gold is more stable in the presence of water in $K_2S_2O_7$ melt than in the "dry" melt.

Voltammetric measurements on a Au electrode in the molten $K_2S_2O_7-V_2O_4$, $K_2S_2O_7-KHSO_4-V_2O_4$, and $K_2S_2O_7-V_2O_4$ KHSO₄- V_2O_5 systems at 440°C in argon atmosphere. Electrochemical behavior of vanadium tetroxide (V_2O_4) in molten $K_2S_2O_7$ and $K_2S_2O_7$ -KHSO₄.—We have found¹ previously that in the molten system containing vanadium pentoxide, $K_2S_2O_7-V_2O_5$, the electrochemical reduction of V_2O_5 proceeds in two steps. The first step is a one-electron $V(V) \rightarrow V(IV)$ reduction, starting at 0.7-0.8 V vs. Ag/Ag⁺. The second reduction stage, $V(IV) \rightarrow V(III)$, starting at 0.1-0.2 V, is irreversible and under ohmic control. Similar V(IV) and V(III) electrochemical behaviors were observed in the V(IV) solutions in concentrated H₂SO₄.¹⁰ In the present investigation with vanadium tetroxide added to molten $K_2S_2O_7$, a V(IV) \rightarrow V(III) reduction wave was also observed (R_{11} , Fig. 6). Corresponding V(III) \rightarrow V(IV) oxidation wave (wave Ox_9) preceded the $\tilde{V}(IV) \rightarrow V(V)$ oxidation (wave Ox_{10}). In $K_2S_2O_7-V_2O_4$ melts, the V(V) \leftrightarrow V(IV) reduction stage (wave R_{10}) was obtained after the first cycle, *i.e.*, after V(V) species have been produced electrochemically.

The results of the voltammetric measurements in $K_2S_2O_7-V_2O_4$ (sat.)-KHSO₄ (10 mole percent (m/o)] melt are given in Fig. 7 and 8. It can be seen that a new reduction wave (R_{12}) appears between V(V) \rightarrow V(IV) (R_{10}) and V(IV) \rightarrow V(III)/(R_{11}) reduction waves. Wave R_{12} (Fig. 7, 8) and wave R_1 (Fig. 2) are situated in the same potential region. Therefore we can ascribe wave R_{12} to H⁺ (or HSO₄) reduction. The fact that hydrogen formation (wave R_{12}) proceeds at more positive potentials than V(IV) \rightarrow V(III) reduction, (wave R_{11}) helps us to understand the reason for the absence of the second vanadium electroreduction stage in the published experimental data for $K_2S_2O_7-V_2O_5$ melts containing water.^{6,28}

From Fig. 7 it can be seen that the addition of KHSO₄ causes a higher concentration of V(III). This can be achieved either through the promotion of the V(IV) \rightarrow V(III) electroreduction by protons (Eq. 3)⁸ or by a chemi-

Fig. 6. Comparison of voltammetric curves obtained with a gold electrode in molten $K_2S_2O_7$ (1) and molten $K_2S_2O_7$ - V_2O_4 (sat.) (2) at 1000 mV/s and 440°C in Ar atmosphere.

cal reduction of $V(\mathrm{IV})$ by hydrogen formed during proton electroreduction.

Electrochemical behavior of vanadium pentoxide (V_2O_5) in molten $K_2S_2O_7$ -KHSO₄.—The voltammetric data obtained at a gold electrode in a $K_2S_2O_7$ -KHSO₄ (10 m/o)- V_2O_5 (10 m/o) melt are given in Fig. 9 to 12 and in Table I; the voltammogram obtained in a "dry" melt of $K_2S_2O_7$ - V_2O_5 (10 m/o) is also presented for comparison. It can be seen that the addition of KHSO₄ does not affect the V(V) \rightarrow V(IV) reduction significantly but the peak potential of the V(IV) \rightarrow V(IV) oxidation moves to more positive potentials. For both V(V) \rightarrow V(IV) and V(IV) \rightarrow V(V) reactions, peak currents (I_p) depend linearly on the square root of the potential scan rate (Fig. 11). The peak potentials (E_p) are linearly dependent on the natural logarithm (ln) of the potential scan rate (V_E) (Fig. 12). The linear E_p dependence on the ln V_E (Fig. 12) demonstrates the irreversibility of the

Fig. 7. Comparison of voltammetric curves obtained with a gold electrode in molten $K_2S_2O_7$ - V_2O_4 (sat.) (dashed curve) and in molten $K_2S_2O_7$ -KHSO₄ (10 m/o)- V_2O_4 (sat.) (solid curve) at 1000 mV/s and 440°C in Ar atmosphere.

Fig. 8. Voltammetric curve obtained with a gold electrode in molten $K_2S_2O_7\mbox{-}KHSO_4$ (10 m/o)- V_2O_4 (sat.) at 400 mV/s and 440°C in Ar atmosphere.

charge-transfer stages of both electrochemical reactions.²⁴ Therefore the Nicholson and Shain equation, Eq. 13,²⁴ can be used to calculate the number of electrons (n_{α}) participating in the rate defining stages

$$E_{\rm p} - E_{\rm p/2} = -1.857 \frac{RT}{\alpha n_{\alpha} F}$$
 [13]

where $E_{\rm p}$ and $E_{\rm p/2}$ are peak and "half-peak" potentials (*i.e.*, the potentials at $I = I_{\rm p}/2$), respectively; α is the transfer coefficient; n_{α} is the number of electrons taking part in the irreversible electrochemical reaction; R is the gas constant; F is the Faraday constant; and T is the absolute temperature.

It is often assumed that α equals $0.5.^{24}$ Calculated numbers of electrons are given in Table I. Similar to the "dry" $K_2S_2O_7-V_2O_5 \quad melt,^1 V(V) \rightarrow V(IV)$ and $V(IV) \rightarrow V(V)$ in molten $K_2S_2O_7\text{-}KHSO_4\text{-}V_2O_5$ are the one-electron reactions. Therefore we can assume that the number of vanadium atoms in the active vanadium complexes does not change upon addition of KHSO₄ to the molten $K_2S_2O_7\text{-}V_2O_5$.

Fig. 9. Voltammetric curves obtained with a gold electrode in molten $K_2S_2O_7$ -10 m/o V_2O_5 (solid line) and molten $K_2S_2O_7$ -10 m/o V_2O_5 -10 m/o KHSO₄ (dashed line) at 100 mV/s and 440°C in Ar atmosphere.

Fig. 10. Effect of the potential scan rate on the voltammetric curves obtained with a gold electrode in molten $K_2S_2O_7$ -10 m/o V_2O_5 -10 m/o KHSO₄: 1, 1000; 2, 700; 3, 500; and 4, 100 mV/s at 440°C in Ar atmosphere.

The more positive peak potentials of V(IV) oxidation in $K_2S_2O_7$ -KHSO₄-V₂O₅ (than in $K_2S_2O_7$ -V₂O₅) is a result of a change in the kinetics of this reaction.²⁴ This change can be caused by the formation of stable VOSO₄ · 3H₂O complexes⁸ in the presence of water in the melt. The water molecules are expected to participate in the electric double-layer formation. As a result they may cause so-called screening of the electrode and subsequent inhibition of V(IV) \rightarrow V(V) stage. However, in this case they would probably affect both the V(V) reduction and the V(IV) oxidation.

Voltammetry in $K_2S_2O_7$ - V_2O_5 and $K_2S_2O_7$ - $KHSO_4$ - V_2O_5 melts under SO_2/air atmosphere.—The liquid-gas $M_2S_2O_7$ - V_2O_5/SO_2 - O_2 - N_2 system can be considered to be closer to the catalytic conditions of the industrial sulfuric acid pro-

Fig. 11. Peak currents of R_{10} (A) and Ox_{10} (B) waves (Fig. 10) vs. the square root of the potential scan rate.

Fig. 12. Peak potentials of R_{10} (A) and Ox_{10} (B) waves (Fig. 10) vs. logarithm of the potential scan rate.

duction. Therefore additional voltammetric measurements were made in molten $K_2S_2O_7$ - V_2O_5 and $K_2S_2O_7$ -KHSO₄- V_2O_5 melts under a SO₂/air atmosphere. The experimental results we obtained are given in Fig. 13 and 14. It can be seen that $V(IV) \rightarrow V(V)$ oxidation in SO₂/O₂ atmosphere proceeds at lower polarizations than in argon (compare Fig. 12 and Fig. 14). Similarly to what was found for the Ar atmosphere, the presence of water (or KHSO₄) has no significant effect on the V(IV) reduction, but it visibly changes the polarization of the V(IV) oxidation, the effect being more pronounced in SO₂/air atmosphere than in argon atmosphere.

The V(IV) \rightarrow V(V) oxidation kinetics in the "dry" K₂S₂O₇-V₂O₅ changes from slow charge-transfer stage¹ in argon to slow preceding chemical reaction in SO₂/O₂ atmosphere (Fig. 14). Figure 14 (A) demonstrates the well-known voltammetric criterion for the slow preceding chemical reaction mechanism²⁴: oxidation peak potential moves in the negative direction with growth of the potential scan rate. After the addition of water (or KHSO₄) the V(IV) \rightarrow V(V) oxidation kinetics, like in the argon atmosphere, becomes a slow charge-transfer kinetics²⁴ (Fig. 14B). Therefore it is easier to detect the inhibiting water effect on the V(IV) \rightarrow V(V) oxidation in the SO₂/O₂ atmosphere than in argon atmosphere. Neither the SO₂/O₂ atmosphere nor the water change type of the kinetics of the V(V) \rightarrow V(IV) reduction (Fig. 12, 14). However there is a small positive change of V(V) \rightarrow V(IV) peak potential after KHSO₄

Table I. Potential difference between peak and "half-peak" potentials, $E_p - E_{p/2}$, and the number of participating electrons, n_{a} , for the V(V) \rightarrow V(IV) and V(IV) \rightarrow V(V), obtained in molten K₂S₂O₇ containing KHSO₄ (10 m/o) and V₂O₅ (10 m/o) with Au electrode at 440°C.

Electrochemical wave designation	Potential scan rate (V/s)	$E_{\mathrm{p}} - E_{\mathrm{p}/2}$ (V)	n_{lpha}
Ox ₁₀	0.7	0.23.	0.99
R_{10}	0.7	0.20^{-1}	1.14
Ox_{10}	0.5	0.19°_{2}	1.19
\mathbf{R}_{10}	0.5	0.17	1.30
Ox_{10}	0.2	0.23,	0.99
\mathbf{R}_{10}	0.2	0.16^{-1}_{0}	1.28
Ox_{10}	0.1	0.22_{4}^{*}	1.02
R_{10}	0.1	0.20	1.10

Fig. 13. Voltammetric curves obtained with a gold electrode in molten $K_2S_2O_7$ -10 m/o V_2O_5 (solid line) and molten $K_2S_2O_7$ -10 m/o V_2O_5 -10 m/o KHSO₄ (dashed line) at 500 mV/s and 440°C in SO_2 /air atmosphere.

addition in the SO_2/O_2 atmosphere (Fig. 14). The effect disappears at high potential scan rates.

Taking into account considerable changes in the mechanism of the $V(IV) \rightarrow V(V)$ oxidation and absence of the effect for the $V(V) \rightarrow V(IV)$ reduction at high potential scan rates, the described water effects are rather caused by change in the structure of the active vanadium complexes in the presence of water, than adsorbed water molecules on the surface of gold electrode.

Conclusions

The effect of water on the electrochemical behavior of V_2O_5 was studied in $K_2S_2O_7$ -KHSO₄- V_2O_5 and $K_2S_2O_7$ -

Fig. 14. Peak potentials of the V(V) \rightarrow V(IV) reduction and V(IV) \rightarrow V(V) oxidation voltammetric waves in dependence on the logarithm of the potential scan rate obtained in molten $K_2S_2O_7$ -10 m/o V_2O_5 (A) and molten $K_2S_2O_7$ -10 m/o V_2O_5 -10 m/o KHSO₄ (B) at 440°C in SO₂/air atmosphere.

 $\rm KHSO_4-V_2O_4$ melts in argon and SO_2/air atmospheres with a gold electrode at 440°C. It was shown that water has a promoting effect on the $V(IV) \rightarrow V(III)$ reduction increasing the concentration of V(III) species in the studied electrolytes.

Both reactions, the $V(V) \rightarrow V(IV)$ reduction and the $V(IV) \rightarrow V(V)$ oxidation, remain one-electron electrochemical reactions with increasing concentration of $\rm KHSO_4$ in the molten $\rm K_2S_2O_7\text{-}KHSO_4\text{-}V_2O_5$ system. Water has no noticeable effect on the kinetics of the $V(V) \rightarrow V(IV)$ reduction but causes higher polarizations (i.e., inhibition) of the V(IV) \rightarrow V(V) oxidation both in the Ar and SO₂/air atmospheres.

We conclude that the decreased activity of the V₂O₅ catalyst in the industrial oxidation of SO_2 to sulfuric acid, when the feed gas is moist,²⁹ is due to the increased concentration of the lower valence vanadium ions, V(III) and V(IV), in the $K_2S_2O_7$ melt when water is present (as KHSO₄). Similar conditions exist for the removal of SO_2 from industrial flue gases.

Acknowledgments

This investigation has been supported by the EEC BRITE-EURAMII Project BRE2.CT93.0447 and the Danish Natural Science Research Council.

Manuscript submitted April 26, 1996; revised manuscript received Oct. 17, $199\overline{6}$.

REFERENCES

- 1. N. J. Bjerrum, I. M. Petrushina, and R. W. Berg, This Journal, 142, 1805 (1995).
- 2. H. F. Topsøe and A. Nielsen, Trans. Dan. Acad. Techn. Sci., 1, 18 (1947)
- 3. S. Boghosian, A. Chrissanthopoulos, D. A. Karidis, S. G. Masters, K. M. Eriksen, and R. Fehrmann, Ab-stract 982, p. 1497, The Electrochemical Society Meeting Abstracts, Vol. 94-1, San Francisco, CA, May 22-27, 1994.
- 4. N. H. Hansen, R. Fehrmann, and N. J. Bjerrum, Inorg. Chem., 21, 744 (1982).
- R. Fehrmann, N. H. Hansen, and N. J. Bjerrum, ibid., 22, 4009 (1983)
- 6. M. Frank and J. Winnick, J. Electroanal. Chem., 238, 163 (1987)
- 7. A. Ben Hadid, G. Picard, and J. Vedel, ibid., 74, 157 (1976).
- 8. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., p. 668, John Wiley & Sons, Inc., New York (1988).
- 9. M. Skyllas-Kazakos and F. Grossmith, This Journal, 134, 2950 (1987).
- 10. H. Kaneko, K. Nozaki, Y. Wada, T. Aoki, A. Negishi, and M. Kamimoto, *Electrochim. Acta*, **36**, 1191 (1991).
- 11. R. Fehrmann, B. Krebs, G. N. Papatheodorou, R. W. Berg, and N. J. Bjerrum, Inorg. Chem., 25, 1571 (1986)
- 12. M. P. Glazyrin, V. N. Krasil'nikov, and A. A. Ivakin, Zurn. Neorg. Khim. (Russ. J. Inorg. Chem.), 27, 3073 (1982)
- 13. H. C. Mishra and M. C. R. Symons, J. Chem. Soc., 4411 (1962)
- 14. R. J. Gillespie, R. Kapoor, and E. A. Robinson, Can. J. Chem., 44, 1203 (1966).
- 15. R. C. Paul, J. K. Puri, and K. S. Malhotra, J. Inorg. Nucl. Chem., 33, 4191 (1971).
- 16. H. A. Videla and A. J. Arvia, Electrochim. Acta, 10, 21 (1965).
- 17. A. J. Arvia, A. J. Calandra, and H. A. Videla, ibid., 10, 33 (1965)
- D. Gilroy, *ibid.*, **17**, 1771 (1972).
 S. E. Rogers and A. R. Ubbelohde, *Trans. Faraday* Soc., **46**, 1051 (1950).
- K. M. Eriksen, R. Fehrmann, G. Hatem, M. Gaune-Escard, O. Lapina, and V. M. Mastikhin, in *Proceedings* of 9th International Symposium on Molten Salts, C. S. Hussey, D. S. Newman, G. Mamantov, and Y. Ito, Editors, PV 94-13, p. 124, The Electrochemical Society

Proceedings Series, Pennington, NJ (1994).

- 21. S. H. White and U. M. Twardoch, *ibid.*, **134**, 1080 (1987).
- 22. B. J. Méehan and S. A. Tariq, Aust. J. Chem., 32, 1385 (1979).
- H. A. Andreasen, N. J. Bjerrum, and C. E. Foverskov, *Rev. Sci. Instrum.*, 48, 1340 (1977).
- Instrumental Methods in Electrochemistry, Southampton Electrochemistry Group, pp. 178-227, 380, Ellis Horwood Ltd, New York (1990).
- 25. N. J. Bjerrum, I. M. Petrushina, and T. Østvold, To be submitted for publication.
- 26. H. Kozlowska, B. Conway, and W. Sharp, J. Electroanal. Chem., 43, 9 (1973).
- 27. D. Dutta and D. Landolt, This Journal, 119, 1320 (1972).
- 28. A. Durand, G. Picard, and J. Vedel, J. Electroanal. Chem., 127, 169 (1981).
- S. Boghosian, R. Fehrmann, N. J. Bjerrum, and G. N. Papatheodorou, J. Catal., 119, 121 (1989).

Electrocatalytic Formation of CH₄ from CO₂ on a Pt Gas Diffusion Electrode

Kohjiro Hara* and Tadayoshi Sakata

Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan

ABSTRACT

Electrochemical reduction of CO_2 under high pressure (<50 atm) on a Pt gas diffusion electrode (Pt-GDE) was studied. When the Pt catalyst layer was directed toward the CO_2 gas phase (the reverse arrangement), methane was produced as the main CO_2 reduction product at high faradaic efficiency and at large partial current density. Ethanol, ethylene, ethane, carbon monoxide, and formic acid were also produced. The effects of the Pt catalyst, electrode arrangement, CO_2 pressure, reaction temperature, and hydrogen pretreatment of the electrode were investigated for this electrocatalytic reaction. Faradaic efficiencies of the formation of CO_2 reduction products such as methane, carbon monoxide, and formic acid depended significantly on the CO_2 pressure and temperature. The yield of CO_2 reduction products was increased by hydrogen pretreatment of the Pt-gas diffusion electrode.

Introduction

In the last decade, electrochemical and electrocatalytic reduction of CO₂ using various metal electrodes under 1 atm in aqueous electrolytes has been extensively studied by many workers. As a result it has been determined that the electrocatalytic activity of the electrode depends strongly on the metal used.¹⁻¹⁸ For example, on Hg, Pb, In, and Sn, which have large overpotentials for hydrogen formation, formic acid is predominantly formed. Methane, ethylene, and ethanol are preferential reduction products formed on a Cu electrode. However, one of the problems associated with electrochemical reduction of CO₂ in aqueous electrolytes is the low solubility of CO_2 in water (0.033 mol dm⁻³ at 25°C under 1 atm¹⁹) which leads to mass-transfer limitations for electrolysis at high current density. In order to increase the current density for CO₂ reduction, electrochemical reduction of CO₂ under 1 atm using a gas diffusion electrode (GDE) has been also studied. Mahmood et al. investigated the electrochemical reduction of 1 atm of gaseous CO_2 using GDEs incorporating metal phthalocyanines, Pb, In, and Sn. ^{20,21} They reported the formation of formic acid at a faradaic efficiency of 100% on a Pb-GDE at a current density of 115 mA cm⁻². Furuya et al. also reported CO₂ reduction using a GDE containing various metals such as Pb, Zn, Au, Ag, and Cu.²² Cook *et al.*²³ and Schwarz *et al.*²⁴ reported the electrochemical reduction of 1 atm of CO_2 on GDEs containing Cu and Cu alloys such as Cu-Ag, Cu-Pb, Cu-Zn, and Cu-Cd. 23,24 Moreover, they showed that ethanol was formed at a faradaic efficiency of 31% at a current density of 180 mA cm⁻² on a GDE containing $La_{1,8}Sr_{0,2}CuO_4$.²⁵ These results show the achievement of CO_2 reduction at a large current density due to gas-phase CO_2 reduction even under 1 atm of CO_2

We have investigated the electrochemical reduction of CO_2 under high pressure in aqueous electrolytes using various metal electrodes in order to increase the partial current density of the CO_2 reduction. As a result, the partial

* Electrochemical Society Student Member.

current density of CO₂ reduction increases with many electrodes with increasing the CO₂ pressure (concentration).26-29 Interestingly, $\bar{i}t$ has been found that CO_2 is reduced at high faradaic efficiencies under high pressure on 8 to 10 metal electrodes such as Fe, Ni, Rh, Pt, and Pd which produce predominantly hydrogen by the reduction of water (H⁺) under 1 atm of CO_2 . ^{30–32} In the cases of Fe and Pt electrodes, formic acid was formed as a preferential product for CO₂ reduction and carbon monoxide was predominantly formed on the Rh electrode. Both formic acid and carbon monoxide were formed at high faradaic efficiencies on Ni and Pd electrodes. Moreover, hydrocarbons such as methane, ethane, ethylene, and propane, which are hardly formed at under 1 atm of CO2, were formed on Fe, Co, and Ni electrodes at high pressure.³⁰ The selectivity of the reduction product was changed by CO2 pressure on these electrodes.

Therefore, very large currents for CO₂ reduction and the change in selectivity of reduction products can be expected on the electrochemical reduction of high-pressure CO₂ on GDEs containing 8 to 10 metal electrocatalysts. We have investigated the electrochemical reduction of highpressure CO₂ on the Pt-GDE for the first time.³³ As a result, CO₂ was reduced with high faradaic efficiency to methane, ethylene, ethanol, carbon monoxide, and formic acid when the Pt catalyst layer was directed toward the CO₂ gas phase while the gas diffusion layer faced the electrolyte (the reverse arrangement). Methane was produced at a faradaic efficiency of 35% with a partial current density of 313 mA cm $^{-2}$ under 20 atm CO₂ at a constant current density of 900 mA cm⁻². Interestingly, when the Pt catalyst layer was directed toward the electrolyte (the normal arrangement, *i.e.*, the gas diffusion layer faced the CO₂ gas phase), CO₂ reduction products were hardly produced and only hydrogen was formed by the reduction of water. In this publication we investigate the effects of CO₂ pressure, reaction temperature, hydrogen pretreatment of the GDE, and the current-potential curves for GDEs under Ar and CO₂ atmospheres in order to study the electrocatalytic activity of the Pt-GDE.