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Compressibility of air in fibrous materials

Viggo Tarnow
Department of Applied Engineering Design and Production, Technical University of Denmark,
Bygning 358, DK 2800 Lyngby, Denmark

(Received 10 April 1995; accepted for publication 8 December 1995

The dynamic compressibility of air in fibrous materials has been computed for two assumed
configurations of fibers which are close to the geometry of real fiber materials. Models with parallel
cylinders placed in a regular square lattice and placed randomly are treated. For these models the
compressibility is computed approximately from the diameter and mean distances between
cylinders. This requires calculation of the air temperature, which is calculated for cylinders in a
regular lattice by the Wigner—Seitz cell approximation. In the case of random placement, the
calculation is done by a summation over thermal waves from all fibers, and by a self-consistent
procedure. Figures of the compressibility in the frequency range 10—100 000 Hz, are given for
diameter of the cylinders of 6. 8m, and mean distances between them from 50 to4rhQ which
corresponds to glass wool with a density of 40 to 16 KgMihen the theoretical values for random
placement were compared with measurements, it turned out that the random model could not
describe the experimental data. However, they could be described accurately by assuming that the
fibers have a tendency to form pairs. 96 Acoustical Society of America.

PACS numbers: 43.58.Bh, 43.20.Hq, 43.20.Jr, 43.55.Ev

LIST OF SYMBOLS P air pressure

A area per cylinder Po static air pressure

B constant defined i13) p(w) acoustic pressure

a radius of fiber or cylinder R radius of cell

ag proportional to monopole-strength of heat r vector from origin of coordinate system to
source on cylinder point in air

b square root of area per fiber or mean dis-r; vector from origin to axis of cylinder
tance between plates T absolute temperature

C(w) dynamic compressibility of air To static absolute temperature

Co adiabatic compressibility T(w,r) temperature increase

Cs heat capacity of fibers per mass t time

Cp heat capacity of air at constant pressure PeRy, static volume of air in material
mass v(w) increase of volume of air in material

D integration constant27) X distance between plates

dv _ element o_f volume y space coordinate

exp(—iwt) complex t_|m_e factor 2 complex variable

F characteristic frequency for plates . .

f frequency v heat capaqty of air at constant pressure/

H3(2), HY(z)  Hankel function of zero and first order and heat capacity of air at constant volume
first kind 1) thermgl boundary-layer thlckn_ess _

H(2) sum of Bessel function&l2) K coefficient Qf thermal conduction of air

Jo(2), 31(2) Bessel functions of zero and first order P mass density of air

I(2) sum of Bessel function€l1) Po static mass density of air

K heat capacity per volume of medium P mass density of fibers

k thermal wave vector for air Pw mass density of glass wool

k, thermal wave vector for effective medium @ cyclic frequency

L length of ensemble of plates (a?) mean square radius of fibers

N number of cylinders (T(w)) mean temperature

n normal to side of unit cell (6(w)) mean normalized temperature

INTRODUCTION of the air. In the following, the compressibility will be com-

The velocity and the attenuation of sound in fibrous ma-gmeters.

puted from the average distance between fibers and their di-

terials depend on the effective mass and the compressibility we assume that the compression is linear and mono-
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chromatic, and define the complex compressibility from themodynamics one may show that the dynamic compressibility
equation C(w) divided by the adiabatic compressibilitg, can be

v(w) computed from
Vop(@)’ @D Clw)
. <, 1)(6(w)), )

Clw)y=—

wherew is the cyclic frequency and(w) is the time varying

volume of air in the material,, the static volume, and(w) wherey=1.40 is the heat capacity of air at constant pressure

is the acoustical pressure. divided by the heat capacity at constant volume, and the
The established way of predicting the acoustical propernormalized temperature increase is

ties of fiber materials is by use of the theory of porous ma-

terials, which has been described by many authdrsin (6(w))=

this theory, one assumes that the material consists of a matrix P

with circular pores of small radius. The compressibility of wherep, is the static density of aic, is the compressibility
the air in the pores can be computed if one knows the radiuger mass of air at constant presstiféw) the temperature

of the pores, but for fibrous material it is not obvious howincrease, and the integral is taken over the volume of air
one finds the radius of the pores from the diameters of thgetween the fiber¥,. The derivation of Eqs(2) and (3) is
fibers and their mean distances. The usual way of computingiven in Appendix B.

the compressibility uses the air flow resistance of the actual  |n order to compute the compressibility frai®) and(3),
material to find the radius of the pores, and from the radiugne has to know the temperature increase of the air for a

the compressibility is computed. Predictions in this way given pressure increase. The temperature can be found from
will later be compared with predictions from one of the mod-the following differential equation,

els of this paper. ) ) .
It is the goal of the work reported here to calculate the KV 1(@)FpoCpl 0T(w)=iwp(w), (4)
dynamic compressibility of fibrous materials from the micro- wherex is the coefficient of thermal conductivity of air. This
scopic geometry of the material without introducing adjust-equation was given as E(4) of Ref. 8. We use the follow-
able parameters that are used to fit predictions from modeliig complex time factor
to experimental data. The purpose is to obtain a better physi- ~ _; .
cal understanding of the dynamic compressibility of fiber € ®)
materials, in order to be able to predict it when the micro-wheret is the time.
scopic geometry is known. The diameters of the fibers can be The differential equation for the temperature Ed)
found by microscopy and the volume density from mass denshall be solved by using the proper boundary condition on
sity. the fibers. In the literatufe'? one assumes that the tempera-
It is not possible to calculate the compressibility from ture rise on the fibers is zero. But this is not accurate for light
the models of the theory of porous materials, because oneommercial glass wool, because the heat capacity of the
cannot calculate the radius of the tubes of the theory from thglass fibers per volume is not infinitely great compared to the
diameters and volume density of fibers. heat capacity of the air. The proper boundary condition is
We consider models that have a geometry similar to thehat the heat flow from the air to the fiber is continuous on
microscopic geometry of fiber materials. In the models it isthe surface of the fiber
assumed that the fibers all have the same diameter and are
e . T IT(w)
parallel. A model with fibers in a regular square lattice is first 2rax
treated, and then follows a model with parallel fibers ran- A PN

domly placed. . - wherea is the radius of the cylindefiber), r is the radius of
The results of the calculation of compressibility was polar coordinate system with center in the cylindarjs

compared with measurements and it turned out that results @fe heat capacity per mass of the fiber glassis the mass
the calculations from the diameters of fibers and their de”Sit)ﬁensity of the fibers.

did not agree with the experimental data. In order to obtain 11 |efi-hand side of6) is the surface area of a unit

agreement one had to assume a lower density of the fibejgng fiber times the heat flux vector for air, this equals the
than calculated from the mass density. _ heat flow per time to the piece of fiber. The right-hand side is
This shows that in order to calculate the dynamic COMype heat capacity of the same piece of fiber times the tem-

pressibility from first principles, one has to have more infor—perature increase per time, this equals the increase per time
mation of the microscopic geometry than the mean diametets ihe heat contents in the piece of fiber.

of fibers and their volume density.

PoCp i
(@) Vo fVT(w)dv, 3)

=cipymal(—iw)T(w), (6)

II. CYLINDERS IN REGULAR SQUARE LATTICE

|. GENERAL THEORY A reasonable model of fiber material consists of parallel
cylinders because fibers in glass wool tend to be parallel. It is
The compressibility of air between fibers depends on thalifficult to compute exactly the compressibility for this
temperature rise during compression, which is isothermal ainodel, therefore one has to use approximate computations,
low frequencies and adiabatic at high ones. By standard thebut the problem is not too difficult to solve, because the
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FIG. 1. Cylinders placed in regular square lattice.
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concentration of fibers is small in glass fiber materials. The 0.2 — T T
volume concentration of fibers is 1.6% in heavy glass wool
with a mass density of 40 kgfin o151
A model with parallel fibers in a regular square lattice is
discussed in this section, and later a model with parallel fi-
bers placed randomly is treated. The model consists of cyl-
inders, with equal radius, parallel and placed in a regular
lattice, Fig. 1. This is not a very realistic model of the actual
fiber material, but it is discussed here because it is easier to
calculate the temperature in this case than for a model with o s o or o5
random placement of the cylinders, and the results from the
two models will be compared.
. We use a.cylmder coordlr?ate. system with origin On. theFIG. 2. The real and imaginary part of the dynamic compressibility divided
axis of one cylinder as shown in Fig. 1, and a square unit Ce'ﬂ)y the adiabatic one. The compressibility was calculated for parallel cylin-
of the lattice. From the symmetry of the lattice it follows that ders placed in a regular lattice and randomly. The curves with crosses is for

the boundary condition on the sides of the unit cell is placement in a regular lattice. The full line is for random placement, calcu-
lated by the self-consistent method, and the broken line by the sum method.

0.1F

Im{C/C0]

0.05

Frequency Hz

IT(w) The radius of the cylinders is 3.4m, and the mean distance between
=0, (7) cylinder axes is 75um. These figures are appropriate for glass wool with a
on density of 16 kg/m

wheren is a normal to a side of the unit cell.

Equation(4) is to be solved with the boundary condi- iwpoCp
tions (7) and(6), but the square boundary of the unit cell is =V T
replaced by a circle with the area of the unit cell, Fig. 1. The . ) _
boundary condition is now andHp(z) is the Hankel function of the zero order and first

kind of the complex variable, Jy(z) is the Bessel function
IT(w) ) b of the zero order, and
( or ) =0 with R=\/—_, (8 3
r=R iy J(ka)=Jy(ka)—BJ,(ka) (11

(10

whereR is the radius of the circle, and the square unit celland
has side lengtl. _yl _pyl
The computation method is similar to the Wigner—Seitz H(ka)=Ho(ka) ~BHy(ka), 12
approximation, which was used to compute the cohesive erwhere
ergy of metals; it is described in Sec. 10-13 of Ref. 13, which 2 kk
contains references to the original literature.
Equation(4) with the boundary condition§s) and (8)
can be solved by Bessel functions. The result for the com-  The result of a computation is shown in Fig. 2 as
pressibility is crosses, foa=3.4 um andb=75 um, which corresponds to
a density of glass wool of 16 kgfn

- iwaCfpf ) (13)

C(w) 2wka
C—0=7’_(7—1){1+m
L L Ill. CYLINDERS PLACED RANDOMLY: TEMPERATURE
H1(kR)J;(ka)—Hi(ka)Ji(kR) BY SUMMATION
( Hi(kR)J(ka) —H(ka)J;(kR) ” ©

We now assume that the cylinders are randomly distrib-
where a is the radius of the cylinders, arid the thermal uted, but still parallel. The method of the computation is
wave vector, which can be written as{1)/8, wheresis  similar to the one used by Rayleighwho computed the

called the thermal boundary-layer thickness, conductivity of a medium with cylinders in a rectangular

3012 J. Acoust. Soc. Am., Vol. 99, No. 5, May 1996 Viggo Tarnow: Compressibility of air in fibrous materials 3012
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(6(w))= 1+,Tp(c‘;a0J Hi(kr)27r dr. (20)

O Integration yields
"i Npoc,2maHl(ka
2al O O (0(w)) = 1 a NPocr2Talitka) 21)
Ap(w)k
O O r O If one sets Eq(17) into (21), one obtains the normalized

temperature increase. The dynamic compressibility divided
by the adiabatic one is found frof2), (17), and(21). The
broken line in Fig. 2 shows the calculated compressibility
ratio as a function of frequency fa=3.4 um andb=75
lattice. The temperature rise can be written as the temperagsm, where the square root of the area per fibeis defined
ture rise without cylinders plus a temperature wave fromby
each cylinder A

b2=—. (22)

p(“’) > agH3(KIr—ri), (14 N

FIG. 3. Random placement of cylinders.

T(w,r)=

A simple formula for the compressibility can be useful.

wherea, is proportlonal to the monopole strength of heat!t can be found by assuming infinite heat capacity of cylin-
sources on the cylinders, ands a vector from the origin of ders, and expanding the Bessel functions in series. In this

the coordinate system to a point in the air, ands a vector W&y, one obtains

from the origin to the center of a cylinder, Fig. 3. In order to C(w) y—1
fulfill the boundary condition, one places a cylinder at the c. 1+4i/(kb)?[(2i/m)In(0.8905&a) + 1]’
origin, and sets Eq14) into the boundary conditiof6), and 0 (23)

puts the field point in (14) on the surface of the cylinder at
the origin. Thus

p(w)

PaCp

which is a good approximation fa<6 um.

The computation can be checked in the high-frequency
limit by a simple physical argument, because the thermal
boundary layer is thin at high frequencies. When it is thinner

(15  than the mean distance between cylinders, one need only
‘think of one cylinder. Therefore only one term in E44)

where the summation now excludes the cylinder at the Or'needs to be kept, and the temperature at the cylind&t4n
gin. The sum can be replaced by an integral because tt] € sero at high frequencies: thus

cylinders are randomly distributed, and we want a meal
value ofa,. The cylinders are assumed to be distributed W|th _ plw)/peCy

+ag| Hi(ka)+ >, "Hi(kr)—BHi(ka)|=0,
I

constant density in the plane, therefore 0=~ Hy(ka) 249
, N (= This yield
D Hé(kri)=zf H(kr)2mr dr, (16) 'S YIels
2a Clw) 2mraHi(ka)
N is the number of cylinders in area A. After integration, the Co 1=(y= (b°— waz)kHé(ka) ' @9
result is

It can be shown by expanding in series that the high-
—p(w)/(poCp) frequency limit of the compressibility ratio computed from
H1(ka)—BHl(ka)—N4waH(2ka)/(Ak' - (2D isequalto25. o
The low-frequency limit of the compressibility is much
The mean temperature can be found friv) more difficult to compute from simple physical arguments,
() because the heat waves from each cylinder have a very long
(T(w))= —+ - fz Ho(K/r—ri)dS, (18  range at low frequencies, and multiple reflections from the
cyIinders must be taken into account. Therefore the compu-

of the cylinders. Froni18) one gets the normalized tempera- improved by the calculation in the f0”0W'”9 section.
ture rise, defined iri3),

a0:

1 IV. SELF-CONSISTENT CALCULATION
poC Pop

(0(w))=1+ 4 o( aof > 'Hyklr=rihds. (19 The foregoing calculation of the temperature by summa-
tion of contributions of thermal waves from all cylinders to

Exchange the integration and summation. Each integral ithe one at the origin of the coordinate system, neglected

equal, as can be seen by changing the origin of the coordreflections of thermal waves from the cylinders between the

nate system for théth term tor;, and remember that the start point of the wave and the origin. This is not accurate at

integration is over the whole plane. Therefore low frequencies, where the thermal boundary layer contains

3013 J. Acoust. Soc. Am., Vol. 99, No. 5, May 1996 Viggo Tarnow: Compressibility of air in fibrous materials 3013
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many cylinders. It is very difficult to take into account all 1.4
these reflections directly, therefore a self-consistent method
of computation is used, which is thought to be new in this
connection. Similar methods have been used in the theory of
flow resistance of fibers.

The heat equation for air is modified by adding the un-
known mean heat capacity per volume of the fib&rsThis
equation is solved, and one finds the heat flow per time to the Loy -
cylinder at the origin. The self-consistent condition is that

TSI T T T T T T T T

1.2+

Re[C/CO]

this heat flow is set equal to the heat flow Kotimes the S
volume per fiber. From this one finds and fromK the
temperature.
Instead of Eq(4), we solve a new equation o2
kV?T () +iw(peCp+K)T(w)=iwp(w), (26)
. . . 0.15
whereK is a constant equivalent to the effective heat capac- __
ity per volume of the medium. This equation is solved with §
one cylinder at the origin of the coordinate system and the % o-1r
boundary condition in Eq6) for this cylinder. =
A solution to Eq.(26) is 0.05¢
L .
T(w)le_DHO(klr)Y (27) 0 il | [ NN 1 A1 11 1 11 (1111l 1 11 1)l
10-2 10-1 100 101 102
where Normalized frequency
T :ﬂ (29 FIG. 4. The dynamic compressibility divided by the adiabatic one calculated
! pOCp+ K’ for parallel plates. The unit of the horizontal axisHsn Eq. (A3). The top
of the figure shows the real part and the bottom the imaginary part. The
T, andD are constants, and the wave vector is broken line is for plates with equal distance, and the solid line is for ran-

domly placed plates.

_[io(peCp+K)
ko= K ) (29) From this formula and3) the normalized temperature rise is

N ) found, and the compressibility can be computed®y The
When the boundary condition E¢) is used, one gets result is shown as the full line in Fig. 2.

LE
D= Hlka) — 2ckaHi(ea) i '
olK1 kkiHi(kia)/iwcpra

(30 V. DISCUSSION OF CALCULATIONS

When the cylinders are placed in a periodic lattice, the
The heat energy that flows into one cylinder divided by thechange from isothermal to adiabatic compression occurs in a
mean area per cylinder, equals the heat energy that flows igarrower frequency band than in the case of random place-
the equivalent heat capacity per area. Thus ment. The transition from isothermal to adiabatic compres-
1 sion happens at a frequency where the thermal wavelength is
2makDk;Hi(k:a) (31) about the same length as the distance between neighbor cyl-
b? ’ inders. The density of fibers measured from one fiber is dis-
continuous for a regular lattice, Figs. 1-2 of Ref. 13. This
means that the distance to the nearest neighbor cylinders is a
single number. The corresponding density in the case of ran-
ZWaKlei(kla)/(iwbz) @2 dom plarc]:te)ment isdcont:)nuogs, and the distanﬁes to the Eear—
— T T - . est neighbors are distributed over a range in this case. There-
Ho(kea) =2rcksHi(kea)iwcipia fore the transition is more gradual in the case of random
Equations(29) and (32) are transcendental equations placement of cylinders. This is confirmed by a computation
from which k; can be computed by iteration. First one as-0f compressibility for a one-dimensional slab geometry, be-
sumes thak is zero, and calculatds, from (29) thenK is cause in this case one can make an exact computation. The
found from(32). A new value ofk; is found from(29), and  results are shown in Fig. 4, and the details of the calculation
this procedure is continued un#l has a stable value. The are inthe Appendix. It seems that the most reasonable model
calculations for the graphs were done with 4 iterations, beof fiber materials is the one with random placement of cyl-
cause the graphs were unchanged after the 4th iteration. THeders.

whereb? is the mean area per cylinder. In order to fldve
set(30) into (31), and find

K:

mean temperature rise can be found by The computation in which one sums over waves from
the cylinders is not reliable at low frequencies because mul-
T(w)= p(w) 33 tiple scattering of the thermal waves has not been taken into
poCpt K’ account.
3014 J. Acoust. Soc. Am., Vol. 99, No. 5, May 1996 Viggo Tarnow: Compressibility of air in fibrous materials 3014
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The self-consistent computation is thought to be the bet- 1.4
ter. This is confirmed by the fact that the self-consistent
method gives a precise value for the resistance to direct cur-

== l*l T T T T TTTT77 T T T TTTTIT T T T TTTI7

rent air flow parallel to parallel fibers with random placement e
according to table VII of Ref. 16. The differential equation §
for the velocity in this case is the same as for the tempera- 121
ture; and the boundary condition the same, if one assumes *
infinite heat capacity of the cylinders. It is therefore reason- L.1r
able to assume that the self-consistent method is reliable in
the present case. Y S A SV TY TH A SR RTY ]
The zero frequency compressibility divided by the adia- ot 102 108 1o¢ Loe
batic compressibility is different from 1.4@or air), because
the heat capacity of the fibers is finite. The zero frequency 02
compressibility divided by the adiabatic one can by calori- ' T TTTT T e
metric calculations be shown to be
0.15¢

C(0) _ 1+ y(ctpw/Cppo) (34
Co 1+cipw/Copo

0.1}

Im{C/C0)

VI. COMPARISON WITH MEASUREMENTS 0.05|

The compressibility has been measured for glass wool
manufactured by Glasuld, Scan-Gobain Glass, Denmark. The OM T T R U1 i
mean diameter of the fibers was €u#é, and their standard 10! 102 108 Lot 10°
deviation was 2.7um. The mean distance between fibers can

be found from the mass density of the glass wapland the ) i i
densitv of the fiber FIG. 5. Experimental values compared with theoretical ones for glass wool
mass Yy 1y with a density of 16 kg/m The cross curve was computed by the self-

b= <a > / (35) consistent method, wita=3.4 um andb=75 um, and the full line in the
N7 Py Pws same way but witte=5 um andb=112 um. The broken line shows the

where(a2> is the mean value of the square of the radii Forresults of the Allard/Champoux empirical model, and was computed from
. . . the flow resistance of 5500 kgsm™=.
glass wool with a density of 16 kgfinthe mean distance
between fibers wab=75=5 um. The compressibility was
: he broken line in the figure is calculated by the theory of
measured in the frequency range 30—-1600 Hz. The measurg
q y rang orous materials Eq6) of Ref. 9, with a resistance of 16900

t method i i in Ref. 17.
ment method is described in Re kg s m™3, which was found as the value that gave the best

The measurements were compared with the selfftt dat f d t d d f FEi 6
consistent computation with=3.4 um andb=75 um, and nd08 ifaRgfr io7un wave vector, and impedance of Figs.

this is shown as with crosses in Fig. 5. The fit between thé The heat t (f ir to fibers is determined by th
measured and computed values is not perfect. The reason for. € heat transport from air 1o Tibers 1S determined by the
nicroscopic geometry of the glass wool. The fibers seem to

the discrepancy between the theoretical curve and the expe | A el wh d it is th
mental one could be explained by assuming that the fiber; e almost parallel when viewed in a.mlcroscope AL
ore reasonable to assume parallel fibers.

tend to assemble in pairs. If this is the case, the effectiv In the th " d that the fib Ih th
distance between the fibers becomes greater than the value n the theory it was assumed that the fioers afl have the
me diameter, which is not the case for real material, but

found from the mass density and the assumption that eac

fiber is place randomly. This view is confirmed by the fact this has only a limited influence on the computation of the

that a good fit can be obtained with=5 um andb=112 compressibility, because the compressibility depends on the

pm, whereb was found from Eq(35). If we replace the pair logarithm of the f|_ber radius as one can see from @3).

with one fiber with the same area as the pair, the new radiu ut the computations are sensitive to the distance between
' ibers.

b =3.4v2=4.8~5 . The density of the gl .
ecomesa pm © densry ot Ihe giass The experimental data for the real part of the compress-

wool is the same, therefore according (85), b=75-v2 . . L
=106~112 um. This is shown as the solid line in Fig. 5. ibility S(:]emshto ?pproach asymptot;]cally a lower “m'tldbilow
P o 1.40 when the frequency approaches zero as would be ex-
Th f the All h I I ' ;
e prediction of the Allard/Champoux empirical mode pected from Eq(34). From this equation one gets 1.36 for

fi Eq. f Ref. 9 is sh th ken i hich T . X o
V:g; baqse(g) 0?1 a Eies?stlzn?:eomnsgim Ebk;;% e\?vhliZE, v\\//vaslc light glass wool with a mass density of 16 kgirthis is close
. dp the experimental value.

measured by a resonance method described in Sec. Il of R
17.

Measurements have also been done on glass wool with \é” CONCLUSION
density of 40 kg/m, and the results are shown in Fig. 6. In The compressibility of air in fiber material has been cal-
this case the fibers seem to form pairs to a higher degree thalated for models of the fiber material consisting of parallel
in the low density case, because a good fit between the catylinders placed in a regular lattice and randomly. In the last
culation and the measurements requires a radius gfn7  case the calculations of temperature were done by summing

Frequency Hz
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1.4 . e —— and axis perpendicular to the plates. The distance between
the plates id. One gets the mean temperature rise

1.3+
_ p(w) tan(kb/2)
g ol <T(w)>_ pOCp 1 kb/2 (Al)
> 1
= The compressibility divided by the adiabatic compressibility
11l can be found when this equation is set into ), and(3)
into (2);
1 It it 1o Ll 1 i aaat [ AT C((l)) tar(kblz)
10t 102 108 104 105 _— =y — e —
c, 7 (y 1)[1 v (A2)

The broken line in Fig. 4 shows the ratio between the two
0'2 T T T UTrrrrT T T T TTrrrIT T L LA T T T TTTIT H HHH H H

compressibilities as a function of frequency. The horizontal
axis is the frequency divided by the normalized frequeRgy
which equals

TK

F= —Zponb2 . (A3)
2. Randomly placed plates
olamEmemett™ 0 T The case of random placed plates has not been described
10t 102 108 104 10% P .
before. The prescription for calculating the mean temperature

Frequency Hz

IS

FIG. 6. Experimental values compared with theoretical ones for glass wool 1

with a density of 40 kg/m The cross curve was computed by the self- (T(w)>= — f T(w,y)dv, (A4)
consistent procedure, witti= 3.4 um andb=48 um, and the full line in the Vv

same way but witha=7 um andb=99 um. The broken line shows the

results of the Allard/Champoux empirical model, and was computed from avhere the volumé/ contains many “fibers.” For one mem-

flow resistance of 16900 kgém™>. ber of a statistical ensemble of plates, the mean value is

1 (L
contributions from all cylinders, and by a self-consistent pro-  (T(w))= lim r j T(w,y)dy, (A5)
cedure, which gave results close to each other, but the self- Lo 0

consistent method is thought to be the most reliable one. Th

result of th lculations w mpared with m rem n%(/?/hereL is the total length of the ensemble apds a space
esuft ot the calculations was compare measuremen'S, ordinate perpendicular to the plates. We assume that the
on glass wool of density 16 and 40 kginiThis requires

knowledge of the fiber radius, which was found by micros_plates are placed randomly on a line with a mean distance of

copy, and the distance between fibers, which was found fro b. The distances between the plates are Poisson distriblited,

the mass density of the material and the fiber radius. But%ﬂﬁiiedir?sbabllltwp of finding a plate distance between

radius greater than the observed one is required in order to fi

the calculation to the measurements; this can be understood 1
if one assumes that the fibers tend to form pairs close to- dp= b€ dx. (AB)
gether.

The Poisson distribution was chosen because it is the most
simple; the only parameter it requires is the mean density.
APPENDIX A: ONE-DIMENSIONAL MODELS The integral of the temperature over the space between

. . e two plates is computed. The mean of this integral is com-
One-dimensional models for compressibility that can be P P g

ved tv will be treated. th <t of llel plat £uted and the mean temperature is found by dividing by the
solved exactly will be treated, they consist of parallel plate average distance between plates. Thus the mean value of the
of infinitely small thickness and infinite heat capacity. Two

. . . temperature is
cases will be treated here. In the first case the distances be- P
tween the plates are equal, and in the second case the dis-

tances are randomly distributed. (T(@) =12 JO e P dx, (A7)

fOXT(w.wdy

1. Equidistant plates wherex is the distance between two platgsis the distance

We treat now the case of equidistant plates, this has bedinom one plate to a point in the air, ant{ w,y) is found
treated by many authofs. Equation (4) is solved with  from Eq.(36). The mean temperature rise becomes
T(w)=0 at the plates, and we find the mean value of the

temperature increase. It is most easily found if one uses a (T(w))= p(w) 1— 3 - ta kbx e *dx|. (A8)
coordinate system with origin midway between two plates PoCp kb Jo 2
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When this is substituted into E¢3), one gets from2) the
dynamic compressibility divided by the adiabatic compress- C(w)= A J\,Cm(‘”)dv' (BS)
ibility
Clw) ( 1){1 5 fx - r<kbx)d The adiabatic compressibility is
—=y—(y— —— | e *tan ——|dx|.
O .
(A9) ¥Po
This is shown in Fig. 4 as the solid line. It is obvious From (B4), (B5), and(B6) one gets
that the change from an isothermal compression to an adia-
. ) ) C(w) 1 aT
batic one is much more gradual than in the case of regularly =y=poCp(y—1) o J — dv, (B7)
spaced plates with the same mean density. At high frequen- 0 Vo Jv dp

cies the two curves apprloach each other_ asymptotically, l{’@/vhich is the same as Eq&) and (3).
cause the change from isothermal to adiabatic compression
occurs in a thin skin layer on the plates. As long as the skin'C. Zwikker and C. W. Kosteround Absorbing MateriakElIsevier, Am-
; ; ; sterdam, 1949

layer (boundary Iayer IS th_mner t_han the mean distances 2R. F. Lambert, “The acoustical structure of highly porous open-cell
between the plates, there is no difference between a regu_larfoamyn J. Acoust. Soc. Am72, 879—887(1982.
and a random placement of the plates. But when the skirfK. Attenborough, “Acoustical characteristics of rigid fibrous absorbents,”
layer is thicker than the mean distance between the platesz,ge- AFcoliJst. bSo;:. ,?Dm73, 78t'5—79f9(1983;1.' - | elact

. . . F. Lambert, “Propagation of sound in highly porous open-cell elastic
the two arrangem(_aljts give a different freguency dependepc oams.” J. Acoust. Soc, An73, 113111381983,
of t.he CompreS§|b|l|tY- The change from_|50therma| to adia-sR. F. Lambert and J. S. Tesar, “Acoustic structure and propagation in
batic compression occurs over a much wider frequency rangehighly porous, layered, fibrous materials,” J. Acoust. Soc. Af.1231—

if the plates are randomly distributed. (1237(1984. _
H.-S. Roh, W. P. Arnott, and J. M. Sabatier, “Measurement and calcula-
tion of acoustical propagation constants in array of small air-filled rectan-
APPENDIX B: CALCULATION OF COMPRESSIBILITY gular tubes,” J. Acoust. Soc. AnB9, 2617—2624199)).
FROM MEAN TEMPERATURE "Michael R. Stinson, “The propagation of plane sound waves in narrow

. . . . and wide circular tubes, and generalization to uniform tubes of arbitrary
The microscopic compressibilit€,(») can be defined  cross-sectional shape,” J. Acoust. Soc. A88, 550—558(1991).

by 8Michael R. Stinson and Yvan Champoux, “Propagation of sound and the
assignment of shape factors in models of porous materials having simple
1 dp pore geometries,” J. Acoust. Soc. A1, 685—-695(1992.
Cm(w) = E ﬁ7 (B1) 9Jean-F. Allard and Yvan Champoux, “New empirical equations for sound

propagation in rigid frame fibrous materials,” J. Acoust. Soc. A,
wherep is the mass density of air, arfél the air pressure. 10333?:6—:;'3531392- o of Sound i b Mediglsevier Aoplied
The ideal gas law can be written écie'ncea[(;ndrgﬁafgggn of Sound in Porous Medi&lsevier Applie

ll ! ! ..
P=pc.(1—v 1T B2 M. Henry, P. Lemarinier, J.-F. Allard, J. L. Bonardet, and A. Gedeon,
p p( Y )T, (B2) “Evaluation of the characteristic dimensions for porous sound-absorbing
whereT is the absolute temperature. If this is logarithmically HQaEEfIaISY,’J- AII\DADI-HPhysﬁj 1F7—A2|CIJ(1(?9§)-L Bonard i A Ged
; ; . Lemarinier, M. Henry, J.-F. Allard, J. L. Bonardet, and A. Gedeon,
differentiated one gets “Connection between the dynamic bulk modulus of air in a porous me-

1 ap 1 1 T dium and the specific surface,” J. Acoust. Soc. A8V, 3478-3482
Crlw)=——5=5—= =, (83 (190,
po dP Py TodP 13A. J. Dekker,Solid State PhysicéPrentice Hall, New Jersey, 1962

. . . . . 143, W. S. Rayleigh, On the influence of obstacles arranged in rectangular
wherepy is the static mass densitf, is the static air pres- qer upon the properties of a medium,” Philos. M, 481-502

sure, andT is the static absolute temperature. We find the (1892.

absolute temperature from the ideal gas law and set this intGJ. D. Howells, “Drag due to the motion of a Newtonian fluid through a
: space random array of small fixed rigid objects,” J. Fluid. Me6#,
the last equation, thus 449_475(1974),

1 poc (1- y_l) oT 1A, S, Sangani and C. Yao, “Transport processes in random arrays of
Cr(w)=—— rowpr= 7 77 (B4) cylinders. Il. Viscous flow,” Phys. Fluid81, 2435-24441988.
Po Po P 17y, Tarnow, “Measurement of sound propagation in glass wool,” J.

. Acoust. Soc. Am97, 2272—-2281(1995.
We need the average of the compressibiltyw) over a 183 . ziman, Models of Disorder(Cambridge U.P., Cambridge, MA,

volumeV, that contains many fibers: 1979, Eq. (2.6), p. 39.
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