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Synopsis

The stress in the startup of uniaxial elongational flow until steady state, followed by stress
relaxation, has been measured for a narrow molar mass distribution polystyrene melt with a
molecular weight of 145 kg /mol. The experiments are conducted on a filament stretching
rheometer, where a closed loop control of the midfilament diameter ensures controlled uniaxial
extension. The closed loop control algorithm is extended to apply to the stress relaxation part of
the experiment. It ensures a constant midfilament diameter, by controlling the motion of the end
plates. By dividing the measured stress with the theoretically predicted stress from the Doi and
Edwards model during relaxation, the stretch factors corresponding to each imposed stretch rate
are obtained. These stretch factors converge to a unique envelope and eventually converge to unity
for long times for all measured elongational rates. © 2008 The Society of Rheology.
�DOI: 10.1122/1.2930872�

I. INTRODUCTION

The progress in the understanding of the nonlinear properties of polymer melts in
elongational flow seems to be limited by the scarcity of data for well-characterized
narrow molar mass distribution �NMMD� polymer melts. Bach et al. �2003a�, Luap et al.
�2005�, Nielsen et al. �2006a�, and Rasmussen et al. �2008� have presented transient and
steady elongational viscosity of NMMD linear polystyrene melts. Nielsen et al. �2006b�
have presented data on branched melts in the form of a multiarm An−C−C−An pom-pom
polystyrene and an An−C asymmetric star polystyrene where n is the average number of
arms.

a�Author to whom correspondence should be addressed; electronic mail: kromann_@hotmail.com
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None of the repetation-based models developed prior to the publishing of these data
were effectively able to predict the extensional flow behavior of these polymers melts.
They include the pom-pom model �McLeish and Larson �1998�� for branched polymers
and an immense variety of concepts for linear polymers, such as Doi and Edwards
�1979�, Marrucci and Grizzuti �1988�, Pearson et al. �1989�, Mead et al. �1998�, Fang et
al. �2000�, Ianniruberto and Marrucci �2001�, and Schieber et al. �2003�. Recently Mar-
rucci and Ianniruberto �2004� introduced the idea of “interchain pressure” and Likhtman
�2005� creation and destruction of “slip links” into the basic repetation picture for linear
melts. The interchain pressure concept agrees well with experimental findings and was
adopted by Wagner et al. �2005, 2008� within an integral molecular stress function
formulation.

Here we will present a new technique for direct measurements of the stress relaxation
following steady uniaxial extensional flow in an NMMD linear polystyrene melt in order
to gain further insight into the dynamics of polymer melts.

To our knowledge the only published results for highly nonlinear stress relaxation
after extension of polymer melts are those of Sentmanat et al. �2005� and Wang et al.
�2007�. They presented uniaxial elongational startup data, for broadly distributed low
density polyethylene and NMMD styrene-butadiene respectively, followed by stress re-
laxation performed on a new extensional rheometer, the sentmanat extensional rheometer.
On this kind of rheometer the polymer sample is placed between two cylindrical drums
that are rotated in opposite directions, and thereby stretch the sample generating an
elongation flow. The drums are stopped, and the stress is measured in the following
relaxation. This technique is limited at high strains by the appearance of a progressive
thinning of the sample ending with a ductile necking.

The first controlled filament stretching rheometer �FSR� was developed by Sridhar et
al. �2003�. A general description of the FSR may be found in the review by McKinley and
Sridhar �2002�. The FSR has been used to examine the stress relaxation following uni-
axial extension on polymer solutions �Spiegelberg and McKinley �1996a�; Orr and
Sridhar �1996�; Nieuwkoop and von Czernicki �1996�; Doyle et al. �1998�; Bhattacharjee
et al. �2003�; Shaqfeh et al. �2004��. In these experiments a cylindrical polymer sample is
placed between two cylindrical end plates that are moved apart. The velocity of the
moving end plates can be arrested whereby the imposed deformation stops and the fluid
relaxes. Applying this method on polymer melts results in a progressive thinning of the
sample.

The use of laser microscopy in the FSR has enabled online strain confirmation, and
subsequently closed loop control of the filament diameter by actively controlling when
the end plate separation is initiated. This was proposed by Anna et al. �1999�. In our
paper we present a new method of measuring the stress relaxation, after startup of
uniaxial elongational flow, that uses a closed loop control of the end plates in the filament
stretching rheometer to ensure true cessation of the flow, corresponding to no change in
the midfilament diameter during stress relaxation.

II. MATERIAL

The polystyrene used in this work has been synthesized by anionic polymerization in
an argon atmosphere according to the procedure suggested by Ndoni et al. �1995�. The
synthesis is performed with cyclohexane as solvent and styrene is initiated by sec-butyl
lithium at room temperature. When the styrene has reacted fully we added degassed
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methanol to terminate the reaction. The polystyrene was precipitated in iso-propanole,
filtered, and vaccum dried according to the protocol described in Schausberger and
Schindlauer �1985� before rheological use.

The molar mass was determined by size exclusion chromatography with tetrahydro-
furan as eluent and employing a column of a 5 �m gaurd column 300�8 mm2 column
�PLgel Mixel C and Mixed D�. The system is equipped with a differential diffractive
index detector. Based on calibrations with narrow molecular weight polystyrene stan-
dards, the values of Mw and Mw /Mn were determined to be, respectively, 145 kg /mol and
1.03.

A. Mechanical spectroscopy and linear viscoelasticity

The linear viscoelastic properties were obtained using small amplitude oscillatory
shear measurements on an AR2000 rheometer from TA Instruments. We used a 25 mm
plate-plate geometry and measured the loss and storage moduli, G� and G�, at tempera-
tures ranging from 120 to 150 °C. The data were converted to 120 °C using time-
temperature super positioning with a shift factor aT=23 between 120 and 130 °C and
aT=44 between 130 and 150 °C. These numbers represent the ratio between frequencies
for the crossover of G� and G� at the respective temperatures.

The measurements for the loss modulus G� and the storage modulus G� are shown in
Fig. 1 as function of the angular frequency � in the oscillation. The linear viscoelastic
�LVE� data are fitted with a continuous BSW �Baumgaertel-Schausberger-Winter� relax-
ation spectrum, given by Baumgaertel et al. �1990�.
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FIG. 1. Measured loss, G� �open circles; �� and storage moduli, G� �bullets; •� both as a function of the angular
frequency, �. The data are obtained from small angle oscillatory shear rheometry. The experiments have been
performed at 120, 130, and 150 °C, and shifted to a reference temperature of T0=120 °C. The solid lines �—–�
are the least-squares fitting to the BSW model in Eq. �2�.
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H��� = neGN
0�� �

�max
�ne

+ � �

�c
�−ng	h�1 − �/�max� , �2�

where h�x� is the Heaviside step function, ne is the slope of the �log��� , log G�� curve at
intermediate frequencies �, ng is the slope of �log��� , log G�� for �→�, and �c is the
crossover relaxation time.

The lines in Fig. 1 are the best fit �Rasmussen et al. �2000�� of the BSW model. The
parameters are given in Table I.

We define a characteristic relaxation time:

�a =

�
0

�

G�s�sds

�
0

�

G�s�ds


 �max�1 + ne

2 + ne
� , �3�

which is also given in Table I. We use the relaxation time �a to define a Deborah number
for the elongational flow, De= �̇ ·�a, since it is given that �a within 5% is equal to the
Doi–Edwards repetation time, as discussed in Bach et al. �2003a�.

III. ELONGATIONAL TECHNIQUE

The elongational experiments were performed using an FSR surrounded by a thermo-
stated environment as described by Bach et al. �2003b�. The polystyrene samples were
molded into cylindrically formed pellets with height �Li� of 2 mm and diameter of �2Ri�
of 9 mm. The pellet is placed in the rheometer between two parallel steel cylinders
having the same diameter as the pellet.

All polystyrene samples are prestretched to a radius of R0 �and length L0� at approxi-
mately 150 °C prior to the elongational experiments. The rate at which we prestretch
correspond to a Deborah number much less than unity. After prestretching the tempera-
ture inside the rheometer is decreased to 120 °C, at which temperature all the elonga-
tional experiments are run, except for one. Before starting the experiments the polysty-
rene samples are relaxed until all residual forces are gone. This is verified by measuring
the vertical force, F, on the load cell.

TABLE I. Linear viscoelastic and molecular weight properties of the
NMMD polystyrene melts at 120 °C. The ne ,ng and �c constants in the
BSW model are obtained from Jackson and Winter �1995� and GN

0

=244 kPa from Bach et al. �2003a�. The two parameters �W and �MI are the
time constants for specific models for the nonlinear relaxation of stretch.

Mw�kg /mol� 145 kg /mol
Mw /Mn 1.03
GN

0 244 kPa
ne 0.23
ng 0.67
�max 14 000 s
�c 12 s
�a 7700 s
�W 7000 s
�MI 5500 s
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Our experiments are performed under conditions such that the midfilament plane is
also the plane of symmetry of the sample. Gravitational sagging is found to be negligible
as the sag time is much longer than the duration of the experiments. Therefore we can
monitor this potential region of necking, and the distance between the end plates adjusted
online obtaining a predefined stretch rate at the neck. Hencky strain is defined and
calculated from the radius at the symmetry plane, R�t�, from the equation ��t�
=−2 ln�R�t� /R�0��. Moreover, the closed loop proportional regulator from Bach et al.
�2003b� has been extended to control the fixed midfilament diameter during the stress
relaxation.

An expression for the difference between the axial and radial stress in the midfilament
plane can be obtained from a force balance on the lower half of the filament �Szabo
�1997�; Szabo and McKinley �2003��. In the absence of inertial and surface tension
effects we write the equation in the form:

��zz − �rr� +
1

2
��rr − ���� +

1

2
�r�rz�� =

F�t� − mfg/2
	R�t�2 , �4�

where the angular brackets denote an average over the symmetry plane, F�t� is the axial
force, g the gravitational acceleration, and mf the weight of the polymer filament. For
v�=0 it can be shown that the second term on the left side is zero for Newtonian fluids.
McKinley and Sridhar �2002� state that this argument may be extended to apply for
memory fluids. The third terms on the left side have an effect at small extensions when a
significant shearing component may be present in the gap. However, we correct for this
effect later by the McKinley–Sridhar reverse squeeze flow correction in Eq. �7�. Neglect
of the interfacial tension 
 is justified since ratio of the Laplace pressure, 
 /R, to the
measured stress �zz−�rr stays below 0.02 in all presented data.

We therefore retain the following terms in the force balance:

��zz − �rr� =
F�t� − mfg/2

	R�t�2 . �5�

Based on the arguments that follow we assume moreover that the stress and strain are
uniform in the radial direction in the symmetry plane so the angular brackets in Eq. �5�
may be omitted. An estimate of the error in the strain may be obtained by consideration
of a cylinder �initially of radius R0 and length L0� deformed into one of the shapes in Fig.
3 with length L. The material line at the axis will on average have been stretched by the
ratio �min=L /L0 which is clearly less than the average stretch of a material line on the
surface. However, we may obtain an upper bound on the stretch of a material line at the
surface as �max= �L+2R0� /L0. Therefore, the radial variation in stretch ratio will be less
than ��max−�min� /�min=2�R0 /L0�exp�−��. For the Hencky strains and initial aspect ratios
under consideration this term is of order 5% during stress relaxation. In practice we
expect most of the inhomogeneity in the material stretch to take place near the end plates
and not at the symmetry plane so we feel it is justified to neglect the radial variation in
stretch.

In the absence of a constitutive equation it is less clear how the inhomogeneity in
stress may be estimated. Kolte et al. �1997� performed numerical simulations of filament
stretching of a dilute and a semidilute poly�isobutylene� solution, modeled respectively
by a multimode Oldroyd-B model and a Papanastasiou–Scriven–Macosco model �Bird et
al. �1987��. Based on these simulations �Figs. 19 and 20� we again estimate the error
made by omitting the averaging operation in Eq. �5� to be less than about 5%. With these
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remarks in mind we assume in this work that stress and strain values in the symmetry
plane correspond to values in ideal elongation within experimental accuracy.

In the start-up of elongational flow, the sample is at rest for t�0, and is applied a
constant elongation rate, �̇, for t0. This is followed by no change in the midfilament
radius during the stress relaxation starting at a Hencky strain of �0. Generally, the relative
deviation between measurement and expected radius never exceeded 3%. The average
strain rate, �̇, is calculated from the measurement of the diameter by fitting an exponential
function R�t�=R0e−�̇t/2.

The viscosities during start-up and stress relaxation are defined as

�̄+ =
�zz − �rr

�̇
and �̄− =

�zz − �rr

�̇
�6�

respectively. The viscosity during the stress relaxation is defined using the elongational
rate from the preceding flow.

Due to the small aspect ratios used in the stretching experiments, an extra shear
contribution adds to the measured elongational force during the start-up of the extension
flow. This shear contribution is negligible during the stress relaxation. This reverse
squeeze flow originates from the no-slip boundary condition at the steel end plates, and is
especially important at small Hencky strains. The effect of the additional shear may be
eliminated by a correction factor �Spiegelberg and McKinley �1996b�� to yield for the
corrected transient uniaxial elongation viscosity:

�̄corr
+ = �̄+�1 +

e−7��+�pre�/3

3�i
2 �−1

. �7�

Here �pre=2 ln�Ri /R0� is the Hencky strain of the prestretched configuration while �i

=Li /Ri is the aspect ratio computed from the initial sample prior to prestretching, fixed at
a value of �i=0.444 in all experiments. This correction is analytically correct for very
small strains and aspect ratios for all types of fluids. However, the correction is less
accurate at increasing strains where the effect of the correction fortunately vanishes
�Kolte et al. �1997��. The values of �pre in the presented data are given in Table II together
with the initial value of the viscosity correction �Eq. �7��.

One of the characteristics of elongational flow in a filament stretching apparatus is that
the extension is not uniform in the vertical direction of the fluid. Because of the no-slip
boundary condition at the end plates, the elongation is highest in the middle of the
filament, and smallest close to the end plates. When stopping the motion of the end plates
the polymer will start to relax, but due to the uneven stretch and therefore stress along the
vertical direction, the different fluid elements will relax differently and not necessarily
without flow, as illustrated in the following.

We performed a stretching experiment with a rate of �̇=0.03 s−1. After 100 s at a
Hencky strain of �0=3 the motion of the end plates L�t� was stopped. It is seen in Fig. 2
that the filament diameter continues to decrease after 100 s, and finally at about 150 s the
sample ruptures. The value of the initial filament diameter D0 and the initial plate sepa-

TABLE II. At 120 °C Prestretch values.

�̇ �s−1� 1�10−5 0.0003 0.001 0.003 0.01 0.03

�pre 0.57 0.84 1.27 1.28 1.71 1.97
�̄corr

+ �0� / �̄+�0� 0.6914 0.81 0.92 0.92 0.97 0.98
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ration L0 are given in the label to the figure. The same type of filament thinning for less
viscous solutions is seen and utilized in the capillary breakup extensional rheometer to
measure the extensional properties of low viscosity liquids �Rodd et al. �2005��. We,
however, wish to avoid this, and therefore the concept of closed loop control of the
diameter is used to stop the elongation, simply by moving the end plates back together, as
illustrated in Figs. 2 and 3. Figure 3 shows quenched samples. We performed stretching
and relaxation experiments with the same elongational rate of �̇=0.03 s−1 until a strain of
�0=3. This was followed by a quench of the polystyrene samples at several times after
cessation of the flow. Note in Fig. 3 that the diameter at the thinnest place, located at the
midfilament plane, is the same for all seven filaments.
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FIG. 2. Evolution of filament diameter, D�t�, and plate separation, L�t�, for an elongational rate of �̇
=0.03 s−1 at 120 °C, stretched for 100 s and then relaxed. During the relaxation, the diameter is kept constant
by the closed loop controller in the experiment in the left figure, and the distance between the end plates is kept
constant in the experiment in the figure to the right. The initial filament diameter D0 and the initial plate
separation L0 for both the controlled and uncontrolled experiments are: D0=3.40 mm and L0=8.82 mm.

FIG. 3. Quenched polystyrene filaments after cessation of flow. The elongational rate at startup is �̇
=0.03 s−1, the strain at relaxation is �0=3, and the temperature 120 °C in all performed experiments. The
samples are relaxed, respectively �0 s 7 s 47 s 126 s 350 s 3000 s 7000 s�, before the quenching. The ruler to
the right shows the length in millimeters.
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The elongational stress for the controlled and uncontrolled stress relaxation is shown
in Fig. 4. In both cases we calculate the true stress based on the measured diameter,
�zz−�rr. The measured stress from the uncontrolled relaxation experiment is almost
constant for about 40 s after stopping the end plates, and finally increases rapidly. The
stress in the controlled relaxation experiments decreases immediately after cessation of
flow. The importance of having a direct strain verification provided by the laser microme-
ter is further illustrated in Fig. 4. It includes stress curves calculated with the assumption
of a constant midfilament diameter during the relaxation as �zz−�rr

= �F�t�−mfg /2� / �	R0
2e−�0�. It is equal to the true stress in a controlled relaxation experi-

ment but clearly not in an uncontrolled relaxation experiment. The difference between the
stresses calculated this way, and the real stress for the uncontrolled experiments is sig-
nificant.

While the feedback control is crucially needed to follow the stress relaxation after
large strain states �as seen in Figs. 2–4� it is less important for relaxation after small
strain. To illustrate this we performed an experiment at a rate of �̇=0.03 s−1 and stretched
to �0=0.2 at 120 °C, as seen in Fig. 5�b� displaying the measured diameter, end plate
separation, and stress. The required separation of the plates in this experiment is only
about 8% after cessation of flow. This means that the effect of the closed loop control in
this case is not vital. At that small extension the elongational stress is expected to be in
good agreement with linear viscoelasticity theory. The elongational viscosity, both at
startup and relaxation, is found to be in good agreement with the linear viscoelasticity
predictions, as seen in Fig. 5�a�.

IV. REPTATION-BASED CONSTITUTIVE MODELS

It is of interest to compare the experimental observations with predictions from repe-
tation based constitutive theories, since these have monodisperse polymers as the model
molecule.

No control, (σzz − σrr)relax = F (t)

πR2
0e

−ε0

No control, σzz − σrr = F (t)
πR(t)2

Control, σzz − σrr = F (t)
πR(t)2

t [s]

σ
zz
−

σ
rr

[k
Pa

]

3002001000

104

103

102

FIG. 4. Measured stress �at 120 °C� as a function of time at startup ��̇=0.03 s−1� and relaxation ��0=3� of
elongational flow, as in Fig. 2. The diameter is kept constant by the closed loop controller in one of the
experiments �+�. In the two other curves is the plate separation, L�t�, stopped at t=100 s. The boxes ��� are the
calculation of the true stress �rr−�zz, where the open circles ��� curve are calculated with the assumption of a
constant midfilament diameter during the relaxation as �F�t�−mfg /2� / �	R0

2e−�0�.
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The first repetation based model was introduced by Doi and Edwards �1979�. To
explain the disagreements between mainly elongational flow, Doi and Edwards �1986�
incorporated a stretch factor in this model. Based on a strain measure for an entanglement
network with instantaneous chain retraction, the stress tensor is

�ij = ��t�2�DE,ij�t�  ��t�2�
−�

t

M�t − t��5�EinunEjmum

�E · u�2 �dt�, �8�

where the stretch of the tube segments, ��t�, is an explicit function of the present time t.
We have used the strain tensor introduced in the original work by Doi and Edwards
�1979� that used the independent alignment approximation. The memory function M�t
− t�� is related to the relaxation modulus as M�t− t��=dG�t− t�� /dt�. The angular brackets
denote an average over a unit sphere �. . .�=1 / �4	���u�=1 . . .du where a tube segment of
unit length and orientation is given by the unit vector u. The vector u in the stress free
state is deformed into E ·u in the current state. Here the components of the macroscopic
displacement gradient tensor is given by Eij�x , t , t��=�xi /�xj�, i=1,2 ,3; and j=1,2 ,3;
�x1� ,x2� ,x3�� are the coordinates of a given particle in the stress free reference state �time
t��, displaced to coordinates �x1 ,x2 ,x3� in the current state �time t�.

This equation needs a stretch evolution equation, and an immense variety of concepts
have been published: Doi �1980�, Marrucci and Grizzuti �1988�, Pearson et al. �1989�,
McLeish and Larson �1998�, Mead et al. �1998�, etc. None of these models have effec-
tively been able to predict the extensional flow behavior of monodisperse polymer melts,
although the stretch factor in the Doi–Edwards model is in principle expected to be
capable of doing this.

Wagner et al. �2005� recently adopted the interchain pressure concept introduced by
Marrucci and Ianniruberto �2004� into an integral molecular stress function �MSF� for-
mulation �Wagner and Schaeffer �1992��:
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FIG. 5. Figure �a� shows the measured startup and relaxation viscosity performed at an elongational rate of
�̇=0.03 s−1. In one experiment the filament is stretched for 100 s and then relaxed �pluses, +�, and in the other
experiment the filament is stretched for 6.6 s and then relaxed, �boxes, ��. The two dotted lines �- - -� are the
linear viscoelastic prediction for startup and relaxation after 6.6 s. Figure �b� is the evolution of filament
diameter, D�t�, and plate separation, L�t�, for the experiment with elongational rate of �̇=0.03 s−1 at 120 °C,
stretched for 6.6 s and then relaxed. The diameter is kept constant by the closed loop controller in this
experiment.
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�ij
MSF = �

−�

t

M�t − t��f�t,t��25�EinunEjmum

�E · u�2 �dt� �9�

where

�

�t
f�t,t�� = f�t,t��� �

�t
�ln�E · u�� −

1

�W
f�t,t���f�t,t��3 − 1�	 . �10�

�w is called the tube diameter relaxation time. The Doi–Edwards model operates with an
averaged orientation factor and stretch, whereas the molecular stress function formulation
considers a stretch for all deformed segments. The MSF model from Eq. �9� and �10�
agrees well with measured startup and steady uniaxial elongational flow of monodisperse
polystyrenes with molar masses in the range of 50–390 kg /mol �Wagner et al. �2005��.

V. ELONGATIONAL MEASUREMENTS

Figure 6 shows the measured corrected transient elongational viscosity, �̄corr
+ �t� fol-

lowed by the viscosity �̄−�t� during the stress relaxation for the NMMD polystyrene with
predictions from LVE. The elongational viscosity measurements were performed at
120 °C except for the smallest elongational rates. That was measured at 150 °C and then
subsequent time-temperature superposition shifted to 120 °C. The LVE predictions were
based on the parameters in Table I. In both plots there is agreement between measure-
ments and LVE predictions up to a certain level of strain. It is seen that the transient
elongational viscosity rises above LVE at intermediate strains.

From Wagner et al. �2005� we have obtained a value of the �W=7000 s at 120 °C for
the tube diameter relaxation time, so that �W /�a=0.9. It appears that the startup and
steady elongational data in Fig. 6 are well described by the model.

ε̇ = 0.00003s−1
ε̇ = 0.0003s−1
ε̇ = 0.001s−1
ε̇ = 0.003s−1
ε̇ = 0.01s−1
ε̇ = 0.03s−1

ε̇=.00003s−1
ε̇=.0003s−1

ε̇=.001s−1

ε̇=.003s−1

ε̇=.01s−1

ε̇=.03s−1

t [s]

η̄
− ,

η̄
+

[M
Pa

·s]

10000100010010

1000

100

10

1

FIG. 6. The measured corrected startup and relaxation viscosity performed at rates of �̇
= �0.03 0.01 0.003 0.001 0.0003 0.00001�s−1 at 120 °C. In all cases the flow is stopped at an extension of �0

=3 and allowed to relax for 4 h, 14 400 s. The solid lines �——� are the Doi–Edwards predictions of the
transient elongational viscosity, Eq. �8� with ��t�=1. The dashed lines �- - - -� are the MSF model prediction
from Eq. �10� with a tube diameter relaxation time of �W=7000 s.
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To appreciate the scaling of the steady elongational viscosity with molar mass we plot
the measured steady state elongational stresses as ��zz−�rr� /GN

0 versus �̇�MI. �MI is the
tube diameter relaxation time, which is defined by Marrucci and Ianniruberto �2004�
�MI�. Marrucci and Ianniruberto report �MI at 130 °C for PS200 to be �MI=1·103 s, i.e.,
�MI=23·103 s at 120 °C, and the scaling is �MI�Mw

2 . This gives a value of 14·103 for
MW=145 kg /mol which is used to plot the steady data in Fig. 7. We have included the
steady state values measured by Bach et al. �2003a� and Nielsen et al. �2006a�. It is seen
that the scaled values for all measurements collapse onto one single power law behavior
for �zz−�rrGn

0. For �zz−�rr�Gn
0 the data lie on the five lines indicating the zero shear

viscosity.

VI. STRESS RELAXATION

The stretch factor f�t , t�� in the MSF model, Eq. �9�, depends both on the time of
creation �t�� of segments and the present time �t�. Consequently, at any time, t, it is not
possible to assign a single value to the polymer stretch. If, however, one uses the con-
stitutive integral form from Eq. �8�, where the stretch factor �2 is placed in front of the
integral, it is possible to compute a single stretch factor that applies for every startup and
relaxation experiment. It is of interest to compare the experimentally observed stresses
during the relaxation with those obtained from the Doi–Edwards approach in this alter-
native representation. Following that method the stretch factor can be obtained experi-
mentally from:

��t�2 =
�zz − �rr

�DE,zz − �DE,rr
, �11�

where �zz−�rr is the experimentally measured stress from Eq. �5� and �DE�t� is given in
Eq. �8�. The experimentally determined stretch factor is shown as a function of the
nondimensional time in Fig. 8, with the strain based on a the strain measure for an

η0,PS390K

η0,PS200K

η0,PS145K

η0,PS100K

η0,PS50K

PS145K
PS390K
PS200K
PS100K
PS50K

ε̇(Mw,i/Mw,PS200K)2τMI,PS200K

(σ
zz
−

σ
rr

)/
G

0 N

10001001010.1

100

10

1

0.1

0.01

FIG. 7. The steady stress divided with the plateau modulus against the Marrucci-Deborah number ��MI for
PS50 K, PS100 K, PS145 K, PS200 K and PS390 K at 120 °C. The value of �MI,PS200 K is 43.5 s at 120 °C. �0

is the zero-shear viscosity.
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entanglement network with the independent alignment approximation ��2�, respectively.
We note that at long times the experimental stretch values, �2, approach unity, but the
experimental accuracy seems to decrease somewhat with time. Furthermore, the curves
from several different stretch rates seem to converge on a common envelope.

Pearson et al. �1989� suggested the stretch factor follow a first order differential
equation in the present time t. For completeness we give the analytical solution
of the stretch during stress relaxation, by Pearson et al. �1989�; ��t�=1

+ ����0 / �̇�−1�exp� �0/�̇−t

C
�. C is a material dependent time constant and ���0 / �̇� is the value

of the stretch where the flow stops. This first order model will yield separate curves for
�2�t� that do not converge except for �→1 in the limit t→�. By contrast the observed
��t� curves seem to converge at a common envelope before �→1.

Adopting the interchain pressure concept within the Doi–Edwards model we may gain
more insight into the stretch mechanism. Marrucci and Ianniruberto �2004� derived an
equation for the tube diameter, a, in a uniaxial elongational flow, based on the interchain
pressure concept. The tube diameter a follows the expression:

�a

�t
= − �̇a +

a0

�MI
�c2a0

3

a3 − 1� . �12�

where �MI is a tube diameter relaxation time, a0 the initial diameter and c a nonlinear
spring coefficient represented by a relative Pade approximation �Cohen �1991��. Marrucci
and Ianniruberto �2004� did not include finite extensibility and therefore assumed c=1.
Rolón-Garrido et al. �2006� later replaced the stretch factor with the inverse tube diam-
eter, �=a0 /a, and introduced finite extensibility in Eq. �12�, obtaining an expression for
the stretch:

ε̇ = .00001s−1
ε̇ = .0003s−1
ε̇ = .001s−1
ε̇ = .003s−1
ε̇ = .01s−1
ε̇ = .03s−1

(t − ε0/ε̇)/τa

λ2

10010−110−210−310−4

10

8

6

4

2

0

FIG. 8. The stretch, �2, calculated using the measured relaxation viscosity at 120 °C in Fig. 6, as a function of
the time, from the start of the stress relaxation. The stretch is found using Eq. �11� based on the independent
alignment approximation, Eq. �8�. The solid lines are the stretch calculated using Eq. �13�, with a tube diameter
relaxation time ��MI� and stretch of the fully extended molecule ��max� of ��MI,�max

2 �= �5500 s ,22�.
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��

�t
= �̇� −

�2

�MI
�c���2�3 − 1� . �13�

From this equation we see that �MI may be interpreted also as a stretch relaxation time.
The relative Pade inverse Langevin function �Ye and Sridhar �2005�� is

c��� =
�3 − �2/�max

2 ��1 − 1/�max
2 �

�3 − 1/�max
2 ��1 − �/�max

2 �
, �14�

where �max is the stretch of the fully extended molecule. For polystyrene we use �max

=4.7 �Fang et al. �2000��.
In stress relaxation �̇=0. The corresponding solution to Eq. �13� is shown in Fig. 8

starting from the steady state values of �. We have used the constant �MI=5500 s. We
note in closing that this value is somewhat smaller than the value obtained by the mo-
lecular weight scaling argument. While the model shows the correct relaxation it does not
display the convergence of the individual curves to an envelope.

VII. CONCLUSION

A filament stretching apparatus was used to measure the uniaxial elongational viscos-
ity followed by stress relaxation using a 145 kg /mol narrow molar mass distribution
polystyrene melt. The closed loop control in the filament stretching apparatus was ex-
tended to handle the stress relaxation. Here the end plates in the filament stretching
rheometer were controlled to ensure the no flow condition, corresponding to no change in
the midfilament diameter. The main conclusions of this work are:

• The experimentally determined stretch factors all converge to unity for large time. This
supports the concept of factorization of stress into a tensorial contribution determined
by repetation dynamics, modified by a scalar factor due to stretch. In the ultimate stress
relaxation, the stress is dominated by the contribution from the repetation dynamics.

• The experimentally determined stress relaxation time is of the same order of magnitude
as the repetation time. This may seem at variance with our observation that the ultimate
stress relaxation is described by repetation. However, there is no conflict since stretch
becomes a higher order effect in the limit as �→� in Eq. �7�.

• Currently available theories do not reproduce the complex and highly nonlinear behav-
ior of the experimentally determined stretch factors.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of the Graduate School of
Polymer Science from the Danish Research Training Council, and the Danish Technical
Research Council to the Danish Polymer Center.

References

Anna, S. L., C. B. Rogers, and G. H. McKinley, “On controlling the kinematics of a filament stretching

rheometer using a real-time active control mechanism,” J. Non-Newtonian Fluid Mech. 87, 307–335

�1999�.
Bach, A., K. Almdal, H. K. Rasmussen, and O. Hassager, “Elongational viscosity of narrow molar mass

distribution polystyrene,” Macromolecules 36, 5174–5179 �2003a�.

897STRESS RELAXATION FOLLOWING EXTENSION



Bach, A., H. K. Rasmussen, and O. Hassager, “Extensional viscosity for polymer melts measured in the

filament stretching rheometer,” J. Rheol. 47, 429–441 �2003b�.
Baumgaertel, M., A. Schausberger, and H. H. Winter, “The relaxation of polymers with linear flexible chains of

uniform length,” Rheol. Acta 29, 400–408 �1990�.
Bhattacharjee, P. K., D. A. Nguyen, G. H. McKinley, and T. Sridhar, “Extensional stress growth and stress

relaxation in entangled polymer solutions,” J. Rheol. 47, 269–290 �2003�.
Bird, R. B., R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. I, Fluid Mechanics,

�Wiley, New York, 1987�.
Cohen, A., “A Pade approximant to the inverse Langevin function,” Rheol. Acta 30, 270–273 �1991�.
Doi, M., “Constitutive equation derived from the model of Doi and Edwards for concentrated polymer solutions

and polymer melts,” J. Polym. Sci., Polym. Phys. Ed. 18, 2055–2067 �1980�.
Doi, M., and S. F. Edwards, “Dynamics of concentrated polymer systems. VI. Rheological properties,” J. Chem.

Soc., Faraday Trans. 1 75, 38–54 �1979�.
Doi, M., and S. F. Edwards, The Theory of Polymer Dynamics �Clarendon, Oxford, 1986�.
Doyle, P. S., E. S. G. Shaqfeh, G. H. McKinley, and S. H. Spiegelberg, “Relaxation of dilute polymer solutions

following extensional flow,” J. Non-Newtonian Fluid Mech. 76 79–110 �1998�.
Fang, J., M. Kröger, and H. C. Öttinger, “A thermodynamically admissible repetation model for fast flows of

entangled polymers. II. Model predictions for shear and extensional flows,” J. Rheol. 44, 1293–1317

�2000�.
Ianniruberto, G., and G. Marrucci, “A simple constitutive equation for entangled polymers with chain stretch,”

J. Rheol. 45, 1305–1318 �2001�.
Jackson, J. K., and H. H. Winter, “Entanglement and Flow Behavior of Bidisperse Blends of Polystyrene and

Polybutadiene,” Macromolecules 28, 3146–3155 �1995�.
Kolte, M. I., H. K. Rasmussen, and O. Hassager, “Transient filament stretching rheometer II: Numerical

simulation,” Rheol. Acta 36, 285–302 �1997�.
Likhtman, A., “Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-

echo, Rheology, and Diffusion,” Macromolecules 38, 6128–6139 �2005�.
Luap, C., C. Müller, T. Schweizer, and D. C. Venerus, “Simultaneous stress and birefringence measurements

during uniaxial elongation of polystyrene melts with narrow molecular weight distribution,” Rheol. Acta

45, 83–91 �2005�.
Marrucci, G., and N. Grizzuti, “Fast flows of concentrated polymers—Predictions of the tube model on chain

stretching,” Gazz. Chim. Ital. 118, 179–185 �1988�.
Marrucci, G., and G. Ianniruberto, “Interchain pressure effect in extensional flows of entangled polymer melts,”

Macromolecules 37, 3934–3942 �2004�.
McKinley, G. H., and T. Sridhar, “Filament-stretching rheometry of complex fluids,” Annu. Rev. Fluid Mech.

32, 375–416 �2002�.
McLeish, T. C. B., and R. G. Larson, “Molecular constitutive equations for a class of branched polymers: The

pom-pom polymer,” J. Rheol. 42, 81–110 �1998�.
Mead, D. W., R. G. Larson, and M. Doi, “A molecular theory for fast flows of entangled polymers,”

Macromolecules 31, 7895–7914 �1998�.
Ndoni, S., C. M. Papadakis, F. S. Bates, and K. Almdal, “Laboratory-scale setup for anionic polymerization

under inert atmosphere,” Rev. Sci. Instrum. 66, 1090–1095 �1995�.
Nielsen, J. K., H. K. Rasmussen, O. Hassager, and G. H. McKinley, “Elongational viscosity of monodisperse

and bidisperse polystyrene melts,” J. Rheol. 50, 453–476 �2006a�.
Nielsen, J. K., H. K. Rasmussen, M. Denberg, K. Almdal, and O. Hassager, “Nonlinear branch-point dynamics

of multiarm polystyrene,” Macromolecules 39, 8844–8853 �2006b�.
Nieuwkoop, J. van, and M. M. O. M. von Czernicki, “Elongation and subsequent relaxation measurements on

dilute polyisobutylene,” J. Non-Newtonian Fluid Mech. 67, 105–123 �1996�.
Orr, N. V., and T. Sridhar, “Stress relaxation in uniaxial extension,” J. Non-Newtonian Fluid Mech. 67, 77–103

�1996�.
Pearson, D. S., A. D. Kiss, L. J. Fetters, and M. Doi, “Flow-induced birefringence of concentrated polyisoprene

solutions,” J. Rheol. 33, 517–535 �1989�.

898 NIELSEN, RASMUSSEN, AND HASSAGER



Rasmussen, H. K., P. Laillé, and K. Yu, “Large amplitude oscillatory elongation flow,” Rheol. Acta 47, 97–103

�2008�.
Rasmussen, H. K., J. H. Christensen, and S. J. Gottsche, “Inflation of polymer melts into elliptic and circular

cylinders,” J. Non-Cryst. Solids 93, 245–263 �2000�.
Rodd, L. E., T. P. Scott, J. J. Cooper-White, and G. H. McKinley, “Capillary breakup rheometry of low-

viscosity elastic fluids,” Appl. Rheol. 15, 12–27 �2005�.
Rolón-Garrido, V. H., M. H. Wagner, C. Luap, and T. Schweizer, “Modeling non-Gaussian extensibility effects

in elongation of nearly monodisperse polystyrene melts,” J. Rheol. 50, 327–340 �2006�.
Schausberger, A., and G. Schindlauer, “Linear elastico-viscous properties of molten standard polystyrenes,” J.

Rheol. 24, 220–227 �1985�.
Schieber, J., J. Neergaard, and S. Gupta, “A full-chain, temporary network model with sliplinks, chain-length

fluctuations, chain connectivity and chain stretching,” J. Rheol. 47, 213–233 �2003�.
Sentmanat, M., B. N. Wang, and G. H. McKinley, “Measuring the transient extensional rheology of polyeth-

ylene melts using the SER universal testing platform,” J. Rheol. 49, 585–606 �2005�.
Shaqfeh, E. S. G., G. H. McKinley, N. Woo, D. A. Nguyen, and T. Sridhar, “On the polymer entropic force

singularity and its relation to extensional stress relaxation and filament recoil,” J. Rheol. 48, 209–221

�2004�.
Spiegelberg, S. H., and G. H. McKinley, ”Stress relaxation and elastic decohesion of viscoelastic polymer

solutions in extensional flow,” J. Non-Newtonian Fluid Mech. 67, 49–76 �1996a�.
Spiegelberg, S. H., and G. H. McKinley, “The role of end-effects on measurements of extensional viscosity in

filament stretching rheometers,” J. Non-Newtonian Fluid Mech. 64, 229–267 �1996b�.
Sridhar, T., V. Tirtaadmadja, D. A. Nguyen, and R. K. Gupta, “Measurement the extensional viscosity of

polymer-solutions,” J. Non-Newtonian Fluid Mech. 40, 271–280 �1991� and “Chain connectivity and chain

stretching,” J. Rheol. 47, 213–233 �2003�.
Szabo, P., and G. H. McKinley, “Filament stretching rheometer: Inertia compensation revisited,” Rheol. Acta

42, 269–271 �2003�.
Szabo, P., “Transient filament stretching rheometer part I: Force Balance analysis,” Rheol. Acta 36, 277–284

�1997�.
Wagner, M. H., and J. Schaeffer, “Nonlinear strain measures for general biaxial extension of polymer melts,” J.

Rheol. 36, 1–26 �1992�.
Wagner, M. H., S. Kheirandish, and O. Hassager, “Quantitative prediction of the transient and steady-state

elongatiuonal viscosity of nearly monodisperse polystyrene melts,” J. Rheol. 49, 1317–1327 �2005�.
Wagner, M. H., V. H. Rolón-Garrido, J. K. Nielsen, H. K. Rasmussen, and O. Hassager, “A constitutive analysis

of transient and steady-state elongational viscosities of bidisperse polystyrene blends,” J. Rheol. 52, 67–86

�2008�.
Wang, Y., P. Boukany, S.-Q. Wang, and X. Wang, “Elastic breakup in uniaxial extension of entangled polymer

melts,” Phys. Rev. Lett. 99, 237801 �2007�.
Ye, X., and T. Sridhar, “Effects of the polydispersity on rheological properties of entangled polystyrene solu-

tions,” Macromolecules 38, 3442–3449 �2005�.

899STRESS RELAXATION FOLLOWING EXTENSION


