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Synopsis

The transient and steady-state elongational viscosity data of three bidisperse polystyrene blends
were investigated recently by Nielsen et al. �J. Rheol. 50, 453–476 �2006��. The blends contain a
monodisperse high molar mass component �ML=390 kg /mol� in a matrix of a monodisperse small
molar mass component �either MS=103 kg /mol or MS=52 kg /mol at two different weight
fractions�. The experimental data are analyzed in the framework of the molecular stress function
model of Wagner et al. �J. Rheol. 49, 1317–1327 �2005��, which is based on the assumption of a
strain-dependent tube diameter and the interchain pressure term of Marrucci and Ianniruberto
�Macromolecules 37, 3934–3942 �2004��. The dilution of the long chains in the matrix of the short
chains is identified as the origin of a drastic increase in the tube-diameter relaxation time of the
long chains, leading to a large stretching potential of the long-chain component and an increasing
steady-state elongational viscosity with increasing strain rate. In addition, in the dilution regime, a
transition from affine chain stretch to nonaffine tube squeeze with decreasing strain rate is
identified. The dilution regime ends at a critical strain rate, when the tube diameter of the
supertubes created by the interaction of the long chains among themselves, is reduced by
deformation to the tube diameter of the bulk. A nonlinear extension of the basic double reptation
concept is developed comprising all of these different phenomena, and allowing �albeit by use of

a�Author to whom correspondence should be addressed; electronic mail: manfred.wagner@tu-berlin.de

© 2008 by The Society of Rheology, Inc.
67J. Rheol. 52�1�, 67-86 January/February �2008� 0148-6055/2008/52�1�/67/20/$27.00



empirical linear-viscoelastic shift factors to correct the linear-viscoelastic predictions� for a
quantitative description of the transient and steady-state elongational viscosities of the bidisperse
polystyrene blends. © 2008 The Society of Rheology. �DOI: 10.1122/1.2807442�

I. INTRODUCTION

Based on the reptation theory first proposed by de Gennes �1971�, Doi and Edwards
�DE� developed the concept of the tube model �Doi and Edwards �1978��, in which a
polymer chain is enclosed in a tubular region delimited by the neighboring macromol-
ecules. The DE model is able to describe some rheological phenomena like the damping
function in step-shear strain �e.g., Isono et al. �1991�� as well as constant strain-rate
uniaxial and biaxial �e.g., Urakawa et al. �1995�� deformation experiments for narrow
distribution polymers in limited deformation rate regimes, but its general performance
can be rated as more qualitative than quantitative �Larson �1988��. Even for monodis-
perse polymer melts, contour-length fluctuations �Doi �1981, 1983�; Ketzmerick and
Öttinger �1989�; O’Connor and Ball �1992�; Milner and McLeish �1998�� have to be
invoked to get agreement with the experimentally observed power law index of 3.4
�Berry and Fox �1968�� between the zero shear viscosity �0 and molar mass M, while for
polydisperse systems concepts of double reptation �Tsenoglou �1987�; des Cloizeaux
�1988, 1990�; Wasserman and Graessley �1992�� or tube dilation �Milner and McLeish
�1998�� have to be considered to get quantitative agreement between linear-viscoelastic
data and modeling �e.g., van Ruymbeke et al. �2002��.

In the nonlinear viscoelastic regime, an identified shortcoming of the original DE
theory is the lack of predictive power in general extensional flows �Wagner �1990�;
Wagner et al. �2005a��, since the stress is assumed to originate by chain orientation only
�Doi and Edwards �1978, 1979��, thereby ignoring the possibility of chain stretching,
which is especially important in extensional deformations. Theories accounting for chain
stretch have been proposed either based on the general idea that chain stretching starts to
be significant at Deborah numbers De= �̇�R�1 �where �̇ is the strain rate and �R the
Rouse time of the chain� �e.g., Doi and Edwards �1986�; Marrucci and Grizzuti �1988�;
Mead and Leal �1995�; Hua and Schieber �1998�; Öttinger �1999��, or based on the
assumption that chain stretch is a consequence of tube contraction by deformation �Mar-
rucci and Hermans �1980�; Wagner and Schaeffer �1992��.

A consequence of ignoring chain stretch is that the DE theory �Doi and Edwards
�1979�� predicts a steady-state elongational viscosity �us scaling:

�us � �̇� �1�

with an exponent �=−1. However, recent elongational viscosity measurements of nearly
monodisperse polystyrene melts have shown a power-law scaling of the steady-state
elongational viscosity with approximately �=−1 /2 �Bach et al. �2003a��. The exponent
�=−1 /2 was explained by Marrucci and Ianniruberto �2004� on the basis of scalar
scaling arguments considering tube contraction due to the applied deformation, which is
balanced by an internal chain pressure against the tube wall.

Introducing the interchain pressure term of Marrucci and Ianniruberto �2004� into the
molecular stress function �MSF� model �Wagner et al. �2001��, the steady-state as well as
the transient elongational viscosities of four nearly monodisperse polystyrene melts could
be modeled quantitatively by use of a single nonlinear material parameter, the tube
diameter relaxation time �a �Wagner et al. �2005a��. It is worth mentioning that for the
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highest molar mass polystyrene PS390K, a scaling of the steady-state elongational vis-
cosity close to �us��̇−0.4 was predicted, which is in quantitative agreement with the
experiment.

The experimental results of Bach et al. �2003a� were confirmed by Luap et al. �2005�,
who simultaneously measured stress and birefringence during elongation of two polysty-
rene melts with narrow molar mass distribution. The samples did not follow the stress
optical rule. Elongational viscosity data could again be modeled quantitatively by the
MSF model of Wagner et al. �2005a�, which was modified to account for non-Gaussian
chain extension �Rolón–Garrido et al. �2006��. The tube diameter relaxation times were
found to scale with M2. While the transient elongational viscosity shows a small depen-
dence on finite extensibility, the predicted steady-state elongational viscosity is not af-
fected by non-Gaussian effects.

A further challenge is the quantitative constitutive modeling of polydisperse samples,
which are those of industrial interest. A first step in this direction has been the study of
bidisperse samples where one component has a higher molar mass than the other one
�Masuda et al. �1970�; Watanabe et al. �1985�; Ylitalo et al. �1991��. It has been eluci-
dated that in this case the concept of reptation is not sufficient to describe the linear
viscoelasticity of the samples, since the long chains move in an environment of relaxed
constraints due to the faster reptation of the short chains, or in other words, like in an
ordinary solvent �Daoud and de Gennes �1979��. The majority of the studies have been
focused on the linear-viscoelastic modeling of bidisperse blends �Marrucci �1985�;
Frischknecht and Milner �2002�; Wang et al. �2003��, which has lead to the development
of concepts like tube dilation �Doi et al. �1987�; Milner and McLeish �1998�� or double
reptation �Tsenoglou �1987�; des Cloizeaux �1988, 1990�; Wasserman and Graessley
�1992��.

The nonlinear viscoelastic regime of bidisperse systems has barely been studied in
either solution �Gupta et al. �2000�; Ye et al. �2003�� or in the melt state. Recently,
Nielsen et al. �2006� reported experimental data of bidisperse polystyrene blends mea-
sured in uniaxial elongation in a broad range of elongational rates. These data are espe-
cially interesting, since the deformations achieved were large enough to determine the
steady-state elongational viscosities.

The objective of the present contribution is to quantitatively analyze the transient and
steady-state elongational viscosities of the bidisperse polystyrene melts investigated by
Nielsen et al. �2006� on the basis of the MSF model, and identify the basic physical
phenomena that govern the rheology of bidisperse blends.

II. EXPERIMENT

The experimental data discussed are those of Nielsen et al. �2006�. Three different
polystyrene blends were investigated whose blend components are three polystyrenes
with mass-average molar masses of 52 kg mol−1 �PS50k�, 103 kg mol−1 �PS100k�, and
390 kg mol−1 �PS390k�, and polydispersities of 1.026, 1.022, and 1.060, respectively.
Table I summarizes the composition of the blends. A constitutive analysis of the elonga-
tional viscosities of the nearly monodisperse blend components has already been reported
elsewhere �Wagner et al. �2005a��. The molecular and linear-viscoelastic characterization
of the blend components are summarized in Table II.

The linear-viscoelastic experiments performed at 150 °C were shifted to 130 °C using
standard time-temperature shifting according to the WLF equation with c1=8.86 and c2

=101.6 °C at T0=136.5 °C, according to Bach et al. �2003a�. From G� and G� data of
the blends, we derived the discrete relaxation spectra with partial moduli gi and relaxation
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times �i by use of the IRIS program �Winter and Mours �2003��, which are also presented
in Table I. Elongational viscosities of the polystyrene blends were measured for elonga-
tional rates between 0.00015 and 0.3 s−1 by using a filament stretching rheometer �Bach
et al. �2003b��.

III. THEORY

The general structure of the MSF model �Wagner and Schaeffer �1992�; Wagner et al.
�2001, 2003�� is as follows: The tube diameter a of a tube segment is assumed to be
independent of the orientation of the tube segment, and to decrease from its equilibrium
value a0 to a value a with increasing deformation.

TABLE I. Composition and characterization of bidisperse blends �relaxation spectra at T=130 °C�.

Blend 1 Blend 2 Blend 3

PS50K
w/w%

95.98 85.63 0

PS100K
w/w%

0 0 85.98

PS390K
w/w%

4.02 14.37 14.02

Gr �-� 0.499 0.499 0.064
�0 �Pa .s� 1.49�106 5.91�106 1.46�107

Je
0 �Pa−1� 4.53�10−3 7.57�10−4 1.81�10−4

�w�s� 6.75�103 4.48�103 2.63�103

�D �s� 9.05�105 2.75�105 7.44�104

gi �Pa� �i �s� gi �Pa� �i �s� gi �Pa� �i �s�
5.705�105 1.111�10−1 6.187�105 9.688�10−2 3.296�105 2.383�10−1

1.023�105 1.459�100 9.702�104 1.134�100 6.568�104 2.742�100

8.248�104 6.163�100 9.919�104 5.859�100 5.957�104 1.502�101

1.418�103 9.399�101 9.908�103 2.762�101 6.675�104 6.200�101

4.409�102 7.914�102 3.126�103 1.569�102 5.086�103 3.978�102

3.460�101 5.207�103 1.550�103 7.731�102 2.166�103 2.731�103

1.291�100 8.266�104 1.116�103 2.395�103 8.535�101 1.575�104

1.452�101 3.622�104

TABLE II. Characterization of blends components �Relaxation spectra at T=130 °C� �Wagner et al. �2005a��.

PS50K PS100K PS390K

�0 �Pa .s� 8.65�105 8.13�106 7.57�108

Je
0 �Pa−1� 5.81�10−6 1.15�10−5 1.50�10−5

�R �s� 6.4 22.9 329
�w �s� 5.0 94 11351
�a �s� 141 203 1462

gi �Pa� �i �s� gi �Pa� �i �s� gi �Pa� �i �s�
9.15�106 2.91�10−3 4.10�105 6.73�10−2 4.63�105 1.04�10−1

3.71�105 9.61�10−2 1.02�107 3.06�10−3 7.79�104 1.07�100

1.40�105 9.85�10−1 1.47�105 4.77�10−1 3.00�104 9.70�100

1.05�105 6.33�100 7.73�104 3.40�100 2.55�104 5.16�101

6.77�104 1.93�101 3.33�104 2.35�102

7.39�104 8.51�101 4.31�104 1.14�103

1.11�102 1.35�103 5.15�104 5.97�103

2.28�104 1.71�104
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The extra stress tensor ��t� of the MSF model is then given by a history integral of the
form

��t� = �
−	

t

m�t − t��f2SDE
IA �t,t��dt�, �2�

where m�t− t�� is the linear-viscoelastic memory function describing the reptation kinetics
of tube segments. m�t− t�� will be represented in the following by a sum of the discrete
relaxation modes,

m�t − t�� = �
i=1

N � gi

�i
�e−�t−t��/�i. �3�

The molecular stress function f = f�t , t�� is the inverse of the relative tube diameter,

f�t,t�� =
a0

a�t,t��
, �4�

representing the relative tension or stretch of tube segments, with t� indicating the time of
creation of a tube segment due to the reptation of the macromolecule.

The relative strain measure SDE
IA �t , t�� represents the orientational contribution to the

extra stress tensor originating from an affine rotation of the tube segments assuming
“independent alignment �IA�” �Doi and Edwards �1978��, and is given by

SDE
IA �t,t�� 	 5
u�u�

u�2 �
o

= 5S�t,t�� , �5�

with S=S�t , t�� being the relative second order orientation tensor. u�u� is the dyad of a
deformed unit vector u�=u��t , t��,

u� = Ft
−1 · u , �6�

Ft
−1=Ft

−1�t , t�� is the relative deformation gradient tensor, and u� is the length of u�. The
orientation average is indicated by �¯0,

�¯o 	
1

4

� �¯�sin �od�od�o, �7�

i.e., an average over an isotropic distribution of unit vectors u.
The square of the relative stretch of the chain segments, f2, is related to the strain

energy stored in the polymeric system. It has been determined as solution of evolution
equations derived from energy balance �Wagner et al. �2001�� or force balance arguments
�Wagner et al. �2005a��, depending on the molecular architecture of the polymer melts
considered and the reaction of the polymer chains to the macroscopic deformation im-
posed. Two limiting cases are discussed below.

A. Chain stretch by “tube squeeze”

According to the tube model �Doi and Edwards �1978��, the tube represents the effect
of the mean field of the surrounding macromolecules. Wagner et al. �2001� assumed an
affine deformation of the average relative tube cross-sectional area A�t , t��=1 / f2 to de-
scribe the chain stretch of polydisperse linear polymer melts, which can be expressed as
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�A

�t
= − ��:S�A , �8�

from which follows immediately:

� f2

�t
= f2��:S� , �9�

with the initial condition f�t= t� , t��=1. � is the velocity gradient tensor. Equation �9� has
the analytical solution

f2 = e�ln�u��, �10�

i.e., f2 is an exponential of the orientational free energy 3kbT�ln u�0, with kB being the
Boltzmann constant and T the absolute temperature. Since Eq. �10� implies that f2 �rather
than f� is proportional to the average deformation e�ln�u��, Eq. �10� was sometimes called
the linear molecular stress function theory. It should be noted that while the tube cross
sectional area is deformed affinely, the physical length of the tube is not. Therefore, Eq.
�10� implies a nonaffine deformation �Wagner et al. �2000��.

This approach was used successfully to predict the transient viscosity up to steady
state in uniaxial, equibiaxial, and planar extension of polydisperse linear polymer melts
�Wagner et al. �2001, 2005b��. Regarding the hypothesis leading to Eq. �8�, it may be
stated that stretch of the test chain is caused by the “squeeze” of the surrounding polymer
chains. We call this “stretch by tube squeeze” in the following.

Equations �8� and �9� consider only the hyperelastic limit. Extending these equations
to include convective constraint release allows one to describe the steady-state viscosities
as reported elsewhere �Wagner et al. �2001��.

B. Affine chain stretch

In contrast to polydisperse linear polymer melts, modeling the strain hardening of
linear monodisperse polymer melts was only possible by assuming an �on average� affine
tube deformation. In terms of the tube diameter a�t , t��, this means that a changes with
deformation from its equilibrium value a0 according to

�a

�t
= − ��:S�a . �11�

With �a /�t=−a0�1 / f2�� f /�t follows the evolution equation for f2 as:

� f2

�t
= 2f2��:S� . �12�

Equation �12� has the analytical solution

f2 = e2�ln�u��, �13�

which was sometimes called the quadratic molecular stress function Theory �Wagner et
al. �2000��. Obviously, in this case tube stretch is caused by an �on average� affine
deformation of the tube formed by the surrounding polymer chains. We call this “affine
chain stretch” in the following. The assumption of affine chain stretch, although unbound,
has been shown to model quantitatively the slope of the transient elongational viscosities
�before reaching the steady state� of nearly monodisperse polystyrenes �Wagner et al.
�2005a��.
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At higher strains, chain stretching is balanced by the interchain pressure term of
Marrucci and Ianniruberto �2004�, which results in an evolution equation:

� f2

�t
= 2f2���:S� −

1

�a
f�f3 − 1�� , �14�

leading to steady-state viscosities. The first term on the right hand side describes affine
chain stretch as discussed previously, and the second term represents the interchain pres-
sure contribution. �a has been called the tube-diameter relaxation time, representing the
relaxation of the topological constraints caused by the many surrounding chains �Wagner
et al. �2005a��. Equation �14� has successfully been used to model the transient and
steady-state elongational viscosities of nearly monodisperse polystyrene melts of Bach et
al. �2003a� and Luap et al. �2005� �Wagner et al. �2005a�; Rolón–Garrido et al. �2006��,
and is the starting point of the following analysis.

IV. ANALYSIS OF EXPERIMENTAL ELONGATIONAL VISCOSTY DATA
OF BIDISPERSE POLYSTYRENE BLENDS

In a bidisperse system containing long �L� and short �S� molecules with MLMS,
reptation of the short molecules is much faster than reptation of the long chains. In the
case of elongation at a Deborah number DeS= �̇�w,S�1, where �w,S is the longest relax-
ation time of the short chains, the short molecules are excited in the linear-viscoelastic
regime, while all strain hardening originates from the nonlinear viscoelasticity of the long
chains only. Effectively, on the time scale of the reptation time �w,L of the long chains, the
short molecules act as a solvent. The distance between entanglements of the long chains
with each other and therefore the effective tube diameter of the “supertubes”, represent-
ing the mean field of the interactions of the long chains among themselves, increases
inversely proportional to the weight fraction w of the long chains. In contrast to the
dynamic dilution effect in linear viscoelasticity that leads to a reduction of the longest
relaxation time �w,L, the tube-diameter relaxation time �D of the diluted long chains,
which represents a nonlinear viscoelastic property, is expected to increase in comparison
to the tube-diameter relaxation time �a,L of a melt of the long molecules, according to a
relation of the form

�D =
�a,L

w� . �15�

� is a �positive� dilution exponent. �D represents the tube-diameter relaxation time of the
supertube segments. As the tube diameter of a supertube segment is inversely propor-
tional to the weight fraction w of the long chains and its cross section is inversely
proportional to the square of the weight fraction w, a dilution exponent �=2 may be
expected, i.e., relaxation of the tube diameter of the supertube increases inversely pro-
portional to the square of the weight fraction w of the long-chain component. With �D

�Eq. �15�� and restricting attention to the long chains, the evolution equation for f2 can
then be written as

� f2

�t
= 2f2���:S� −

1

�D
f�f3 − 1�� , �16�

with the initial condition f�t= t� , t��=1. Combining Eq. �16� with Eq. �2� using the relax-
ation spectra of the bidisperse blends as obtained from linear viscoelasticity �Table I�, the
strain hardening of the blends in the regime DeS�1 can be predicted. We call this the
“long-chain model” in the following, as the chain stretching of the long chains is also
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assumed to be applicable to the short-chain component. Of course, as the short chains are
expected to be stretched much less than the long chains, this model fails as soon as the
nonlinear viscoelastic regime of the short chains is reached, i.e., for DeS�1.

The time-dependent elongational viscosity data of Blend 1 �95.98% PS50K and 4.02%
PS390K� are presented in Fig. 1�a�. Also indicated are the linear-viscoelastic start-up
viscosities of the blend and of the pure PS50K. With �a,390 K=1462s as observed by
Wagner et al. �2005a� and a dilution exponent �=2, i.e.,

�D =
1462

w2 s = 9.05 · 105 s �17�

predictions of the MSF model �Eq. �2� in combination with Eq. �16�� are in reasonable
agreement with experimental data for �̇�0.1 s−1.

It should be noted that agreement of the steady-state elongational viscosity measured
and predicted essentially depends on the value of the tube-diameter relaxation time �D

according to Eq. �17�. Prediction of a steady-state elongational viscosity that is �at least
initially� increasing with increasing strain rate is only possible if �D is larger than the
longest relaxation time of the melt. This is due to the fact that while chain orientation
depends on the Deborah number DeO= �̇�w, with �w being the longest relaxation time of
the melt, chain stretch depends on the Deborah number DeD= �̇�D. If DeO�DeD, chain
orientation occurs before chain stretch, and the steady-state elongational viscosity will
decrease with increasing strain rate. On the other hand, if DeO�DeD, chain stretch will

FIG. 1. �a� Comparison of measured transient elongational viscosity data �symbols� of Blend 1 at 130 °C to
predictions �lines� of the long-chain model according to Eq. �16�. �b� Comparison of measured transient elon-
gational viscosity data �symbols� of Blend 1 at 130 °C to predictions �lines� of the long-chain model according
to Eq. �18�. �c� Strain measure data �symbols� of Blend 1 at 130 °C compared to predictions of the long-chain
model �lines� according to Eq. �18�. Upper dotted line corresponds to the affine chain stretch hypothesis �Eq.
�13��, and lower dotted line to the tube squeeze hypothesis �Eq. �10��. �d� Comparison of measured steady-state
elongational viscosity data �open dots� of Blend 1 at 130 °C to predictions of the long-chain model according
to Eq. �18� with �full line� and without the effect of dilution �dash-dotted line�.
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occur concurrently with chain orientation, and the steady-state elongational viscosity will
increase with increasing strain rate. This is clearly the case for Blend 1 with �D

=9.05·105 s, which is two orders of magnitude larger than �w=6.75·103 s �see Table I�.
The same is true in the case of pure PS50K leading to a pronounced maximum in the
steady-state elongational viscosity as discussed by Wagner et al. �2005a�. From Fig. 1�a�,
it is also obvious that the long-chain model fails as soon as stretching of the short chains
starts, and the elongational viscosity becomes grossly overpredicted. We will return to
this problem in connection with discussion of the Double Reptation model in Sec. V.

Good agreement of the slope measured and predicted is observed for �̇ equal to 0.1
and 0.03 s−1 in Fig. 1�a�, while for the two smallest strain rates the measured increase in
the transient elongational viscosity is increasingly smaller than predicted. Apparently, at
small strain rates, chain stretch is no longer caused by affine chain stretch, according to
Eq. �13�, but an additional stretch relaxation process becomes important, effectively
leading to a transition to stretch by tube squeeze as in the case of polydisperse linear
polymer melts, according to Eq. �10�. This crossover can be modeled by an evolution
equation of the form

� f2

�t
= 2f2���:S� −

w�

�a,L
f�f3 − 1� −

1

�s

f − 1

f
� , �18�

where �s is a stretch relaxation time. Prediction of the strain hardening slope at the two
smallest elongation rates is remarkably improved by using Eq. �18� with �s=1000 s �Fig.
1�b��.

An alternative approach to analyze the experimental data is to convert the time-
dependent elongational viscosity data to the strain measure S�� , �̇� by �Wagner �1978��:

S��, �̇� =
����
G���

−
1

�̇
�

0

�

�����
m����
G2����

d�� = 5f2�S11 − S33� , �19�

where � is the elongational stress and � the Hencky strain. m and G are the memory
function and the relaxation modulus, and S11 and S33 are the components of the orienta-
tion tensor in the stretching and the transversal direction, respectively. The second equal-
ity in Eq. �19� follows directly from Eqs. �2� and �5�. The converted experimental data are
presented in Fig. 1�c�. The strain measure increases with increasing strain �, reaching
plateau values at high strains that increase at first with increasing strain rate �̇, before
decreasing again for the highest measured strain rate. It is obvious that at higher strains,
time-strain separability is not observed. Also shown in Fig. 1�e� are predictions of Eqs.
�9� and �12� representing the strain measures resulting from �nonaffine� tube squeeze and
affine chain stretch, respectively, in the hyperelastic limit. In the hyperelastic regime, i.e.,
before the experimentally determined strain measures bend over to the plateau values, the
experimental data lie between the predictions of Eqs. �9� and �12�, approaching at small
strain rates the tube squeeze prediction of Eq. �9�, while at higher strain rates they follow
the affine stretch hypothesis as represented by Eq. �12�. Predictions of the chain dilution
approach as formulated by Eq. �18� are in reasonable agreement with experimental data
except, as expected, for the highest elongation rate, where the long-chain model fails.

The steady-state elongational viscosity data of Blend 1 are presented in Fig. 1�d�,
together with the steady-state elongational viscosities of the blend components PS50K
and PS390K. Prediction �full line� using the evolution equation �Eq. �18�� is in reasonable
agreement with experimental data at strain rates �̇�0.1 s−1, while at higher strain rates,
when stretching of the short chains starts, and the elongational viscosity is grossly over-
predicted. Also shown is the predicted steady-state elongational viscosity of Blend 1
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assuming no dilution effect of the tube-diameter relaxation time, i.e., by setting w=1 in
Eq. �18� �dash-dotted line in Fig. 1�d��. Comparison of the two predictions clearly indi-
cates the importance of the effect of dilution in understanding the elongational viscosity
of the bidisperse blend.

To verify the results obtained for Blend 1, the same analysis is now applied to Blend
2 �85.63% PS50K and 14.37% PS390K�. In this case, a dilution exponent of �=2.7 was
found, i.e.,

�D =
1462

w2.7 s = 2.75 · 105 s. �20�

Thus, �D of Blend 2 is significantly smaller than �D of Blend 1, which is in general
agreement with the dilution concept. The dilution exponent of Blend 2 is found to be
larger than the dilution exponent of Blend 1. However, it should be kept in mind that due
to its small molar mass, the matrix polymer PS50K possesses only a few �3–4� entangle-
ments, and deviations from any ideal scaling are to be expected.

The time-dependent elongational viscosity data of Blend 2 are presented in Figs. 2�a�
and 2�b� together with predictions of the MSF model. Again, using evolution equation
�Eq. �16�� the slope of the transient elongational viscosity is overpredicted at small strain
rates. This can be rectified by use of evolution equation �Eq. �18�� with a stretch relax-
ation time of �s=1000 s, as shown in Fig. 2�b�. The transition from affine chain stretch to
tube squeeze is clearly seen in Fig. 2�c�, where experimentally determined and predicted

FIG. 2. �a� Comparison of measured transient elongational viscosity data �symbols� of Blend 2 at 130 °C to
predictions �lines� of the long-chain model according to Eq. �16�. �b� Comparison of measured transient elon-
gational viscosity data �symbols� of Blend 2 at 130 °C to predictions �lines� of the long-chain model according
to Eq. �18�. �c� Strain measure data �symbols� of Blend 2 at 130 °C compared to predictions of the long-chain
model �lines� according to Eq. �18�. Upper dotted line corresponds to the affine chain stretch hypothesis �Eq.
�13��, and lower dotted line to the tube squeeze hypothesis �Eq. �10��. �d� Comparison of measured steady-state
elongational viscosity data �open dots� of Blend 2 at 130 °C to predictions of the long-chain model according
to Eq. �18� with �full line� and without the effect of dilution �dash-dotted line�.
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strain measures show good agreement, except for the highest strain rate. Again, the
long-chain model fails as soon as stretching of the short chains begins, i.e., at DeS

= �̇�w,S�1, as seen in Fig. 2�d�, where the steady-state elongational viscosity data are
compared to predictions of the MSF model with evolution equation �Eq. �18�� �full line�.
Also given in Fig. 2�d� is the predicted steady-state elongational viscosity of Blend 2
assuming no dilution effect of the tube-diameter relaxation time, i.e., for w=1 in Eq. �18�
�dash-dotted line in Fig. 2�d��. Again, comparison of the two predictions clearly indicates
the importance of the dilution effect in explaining the elongational viscosity of bidisperse
blends.

For Blend 3 �85.98% PS100K and 14.02% PS390K�, the difference in the molar
masses of the blend components is smaller and the molar mass of the short-chain matrix
is higher than in the cases of Blend 1 and Blend 2. Therefore, the elongation-rate regime
where the long-chain model is expected to hold is reduced and shifted to smaller strain
rates. The time-dependent and steady-state elongational viscosity data of Blend 3 are
presented in Fig. 3�a� �restricted to the five smallest strain rates measured� and Fig. 3�b�,
respectively. Also indicated are the linear-viscoelastic start-up viscosities of the blend and

FIG. 3. �a� Comparison of measured transient elongational viscosity data �symbols� of Blend 3 at 130 °C for
the five lowest strain rates measured to predictions �lines� of the long-chain model according to Eq. �16�. �b�
Comparison of measured steady-state elongational viscosity data �open dots� of Blend 3 at 130 °C to predic-
tions of the long-chain model according to Eq. �16� with �full line� and without the effect of dilution �dash-
dotted line�.
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of the pure PS100K �Fig. 3�a�� as well as the steady-state elongational viscosities of the
blend components PS100K and PS390K �Fig. 3�b��. With �a,390 K=1462 s and a dilution
exponent �=2, i.e.,

�D =
1462

w2 s = 7.44 · 104 s, �21�

predictions of the MSF model using the evolution equation �Eq. �16�� are in qualitative
agreement with experimental data for �̇�0.003 s−1. Agreement could be improved by
introducing a stretch relaxation time �s, according to Eq. �18�, but due to the restricted
validity of the long-chain model in the case of Blend 3, the improvement is minor and
therefore not shown here.

There are two factors contributing to the reduced amount of strain hardening observed
for Blend 3 in comparison to Blend 1 and Blend 2: �1� a smaller chain stretch caused by
a smaller tube-diameter relaxation time �D together with a shift of the dilution regime to
smaller strain rates. In fact, the square of the maximum stretch, fmax

2 , is given by:

fmax
2 � �DeD = ��̇�D. �22�

As both �D and �̇ are smaller, the maximum stretch is reduced. �2� The steady-state
elongational viscosity of the matrix component PS100K is much higher than in the case
of PS50K, and therefore the viscosity of the “solvent” component is masking the contri-
bution of the long-chain component. Even so, the dilution effect on the nonlinear vis-
coelasticity of Blend 3 is again demonstrated in Fig. 3�b� by comparison of predictions
with and without the effect of dilution on �D. At DeS= �̇�w,S�1, when stretching of the
short chains starts, the long-chain model fails and the elongational viscosities are over-
predicted.

V. A NONLINEAR EXTENSION OF THE DOUBLE REPTATION MODEL

Until this stage, the analysis was restricted to the terminal zone of the relaxation
spectrum of the blends, which is dominated by the long chains. A full model has to take
into account the interactions of long and short molecules, and their effect on the relax-
ation spectrum, as well as the difference in stretching of long and short chains. In recent
years, several elaborate models have been developed to relate molar mass distribution
and linear viscoelasticity of polymer melts �see, e.g., Tuminello �1986��. The extension of
these models to nonlinear viscoelasticity is beyond the scope of this article. We will
restrict ourselves to the basic Double Reptation Model, which in the bidisperse case
reduces to a quadratic mixing rule of the form �Tsenoglou �1987�; des Cloizeaux �1998,
1990�; Tsenoglou �1991�; Wasserman and Graessley �1992��

G̊�t� = �w�gL�t� + �1 − w��gS�t��2. �23�

G̊�t� is the linear-viscoelastic relaxation modulus of the blend, and gL�t� and gS�t� are the
linear-viscoelastic relaxation moduli of the long �L� and short chain �S� blend compo-
nents, respectively, which are taken from Wagner et al. �2005a�, and are presented in the
form of discrete relaxation spectra for easy reference in Table II. From Eq. �23�, the
memory function m�t− t�� is obtained as
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m�t − t�� = −
dG̊�t − t��

dt
= �G̊�t − t���w

mL�t − t��
�gL�t − t��

+ �1 − w�
mS�t − t��
�gS�t − t��

� , �24�

with the memory functions mL�t− t�� and mS�t− t�� of the long- and short-chain compo-
nents, respectively.

Unfortunately, this simple quadratic mixing rule does not allow a quantitative descrip-
tion of the linear viscoelasticity of the blends. The reason is that when the difference in
molar masses of the blend components is large, dynamic tube dilation for the long-chain
component already takes place in the linear-viscoelastic regime, reducing the reptation
time of the long chains �Doi et al. �1987��. To have a guideline when this linear-
viscoelastic tube dilation process should be taken into account, Struglinski and Graessley
�1985� defined the parameter:

Gr =
MLMe

2

MS
3 . �25�

Me is the molar mass between entanglements and is taken as 13.3 kg mol−1 here �Fetters
et al. �1994��. The tube dilation effect is considered relevant as soon as Gr�0.064 �Park
and Larson �2004��, a condition that is fulfilled by all three of the bidisperse blends
analysed here �see Table I�, although for Blend 3 only marginally so. We can account for
this linear-viscoelastic tube dilution effect empirically by shifting the spectra of the
short-chain and long-chain blend components by shift factors in the horizontal or time
direction, and in the vertical or modulus direction until reasonable agreement between
measured and predicted zero shear-rate viscosities is achieved. The shift factors used in
the following are summarized in Table III. The smallest shifts were needed for Blend 3.
Therefore we consider Blend 3 first.

We now propose a nonlinear viscoelastic extension of Eq. �23� by

G�t� = �w�gL�t�fL + �1 − w��gS�t�fS�2. �26�

The molecular stress functions fL and fS are those of the long-chain and short-chain
components. The corresponding single integral constitutive equation then takes the form

��t� = w2�
−	

t

mLfL
2SDE

IA dt� + w�1 − w��
−	

t ��gL

gS
mS +�gS

gL
mL� fLfSSDE

IA dt�

+ �1 − w�2�
−	

t

mSfS
2SDE

IA dt�. �27�

The time dependences are dropped for simplicity. The stress � is seen to be the sum of
three terms, the contribution of the long and short chains with quadratic weight, and a
mixed term representing the interaction of short and long chains.

TABLE III. Empirical shift factors to account for dynamic tube dilution.

PS50K PS100K PS390K

Shift
Factors

gi �Pa� �i �s� gi �Pa� �i �s� gi �Pa� �i �s�

B1 1 0.6 8 0.06
B2 1 0.6 2.8 0.1
B3 1 0.5 1.7 0.3
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For the molecular stress functions fS and fL, the following evolution equations are
used:

For fS:

� fS
2

�t
= 2fS

2���:S� −
1

�a,S
fS�fS

3 − 1�� , �28�

corresponding to Eq. �14�.
For fL and Blend 3:

� fL
2

�t
= 2fL

2���:S� −
1

�D
fL�fL

3 − 1�� , �29a�

corresponding to Eq. �16�, and for Blends 1 and 2:

� fL
2

�t
= 2fL

2���:S� −
1

�D
fL�fL

3 − 1� −
1

�s

fL − 1

fL
� , �29b�

corresponding to Eq. �18�.
Figures 4�a� and 4�b� present the transient and steady-state elongational viscosities

measured for Blend 3 as well as predictions of the nonlinear Double Reptation Model
using Eq. �27� to Eq. �29� together with the parameters �D according to Eq. �21�, and
�a,S=�a,100 K=203 s. It is clearly seen that the model in its present form gives a reason-

FIG. 4. �a� Comparison of measured transient elongational viscosity data �symbols� of Blend 3 at 130 °C to
predictions �lines� of the Double Reptation Model according to Eq. �27�–Eq. �29�. �b� Comparison of measured
steady-state elongational viscosity data �open dots� of Blend 3 at 130 °C to prediction of the Double Reptation
Model according to Eq. �27�–Eq. �29� with �full line� and without the effect of dilution �dash-dotted line�. The
transition from the dilution to the undiluted regime, according to Eq. �31�, is indicated �heavy dotted line�. �c�
fmax

2 of long-chain �full dots� and short-chain �open dots� component of Blend 3 as a function of elongation rate.
�D is the tube-diameter relaxation time of the long-chain component, according to Eq. �31�. �d� Comparison of
measured transient elongational viscosity data �symbols� of Blend 3 at 130 °C to predictions �lines� of the
Double Reptation Model, according to Eq. �27�–Eq. �29� and Eq. �31�.
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able description of the elongational viscosities at small and intermediate strain rates,
while it fails for the two highest strain rates. This is due to the assumption of a continuous
increase in stretching of the long chain component as prescribed by Eq. �29�. In contrast,
it is obvious from Fig. 4�b� that the steady-state elongational viscosity measured at the
highest elongation rate of �̇=0.3 s−1 is comparable to a viscosity predicted without taking
into account the effect of dilution, i.e. by use of Eq. �21� with w=1 �dash-dotted line in
Fig. 4�b��. Thus, it appears that there exists a transition from the dilution regime to a
regime where the tube-diameter relaxation time of the long-chain component corresponds
to the tube-diameter relaxation time of the bulk. To account for this effect, we propose the
following hypothesis: The dilution regime ends as soon the tube diameter aL of the
supertube created by the interaction of the long molecules among themselves, has been
reduced by deformation from its equilibrium value aL0 to the tube diameter a0 of the bulk
polymer. The critical maximum stretch fLc of the long-chain component which defines the
end of the full dilution regime is then given by:

fLc
2 =

aL0
2

aL
2 =

aL0
2

a0
2 =

a0
2/w�

a0
2 =

1

w� . �30�

We thereby assume that the dilution exponents of the supertube cross section aL0
2

=a0
2 /w�, and of the tube-diameter relaxation time are the same. It then follows from Eqs.

�22� and �30� that the tube-diameter relaxation time is not a constant anymore, but a
function of the elongation rate applied. As soon as the full dilution regime ends, the
tube-diameter relaxation time �D of the long chains decreases from the fully “diluted”
value of �D=�a,L /w� to the bulk value of �D=�a,L in such a way that the maximum stretch
of the long chains remains constant at fL max

2 = fLc
2 . For constant strain-rate elongational

flow, this can be expressed by the equations:

�D =
�a,L

w� for �̇ �
1

�a,Lw� = �̇c, �31a�

�D =
1

w2��̇
for �̇c � �̇ �

�̇c

w� , �31b�

�D = �a,L for �̇ �
�̇c

w� . �31c�

�̇c is the critical strain rate, at which fLc is reached. Equations �31�, together with pre-
dictions of Eqs. �28� and �29�, are presented in Fig. 4�c� for Blend 3 with �=2. �D

remains constant until the critical strain rate �̇c is reached, and then decreases inverse
proportional to �̇ to a value of �D=�a,L. During the decrease of �D, the maximum stretch
of the long chains remains constant at fL max

2 = fLc
2 . At still higher strain rates, the stretch-

ing of the long-chain component is expected to show the same behavior as in a melt of
long chains, i.e., increasing proportionally to the square root of the strain rate as pre-
scribed by Eq. �22�. Figures 4�b� and 4�d� show that indeed, the high strain-rate predic-
tions of the Double Reptation Model for both the steady-state and the transient elonga-
tional viscosities are greatly improved.

Of course, instead of the Eqs. �31�, a generalized and deformation invariant crossover
function from the dilution regime �Eq. �31a�� to the bulk regime �Eq. �31c�� could be
proposed. However, in view of the limited data basis, we refrain from doing so here.

Using the same approach, predictions of the nonlinear Double Reptation Model for
Blend 2 �Fig. 5� and Blend 1 �Fig. 6� with a tube diameter relaxation time for the matrix
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PS50K, �a,S=�a,50 K=141 s, a stretch relaxation time �s=1000 s, and a dilution exponent
of �=2.7 �Blend 2� and �=2 �Blend 1� are seen to be in general agreement with experi-
mental evidence. Again, it seems reasonable to assume that the tube-diameter relaxation
time of the long-chain component returns to its value in the undiluted bulk, and conse-
quently, at higher elongation rates, the steady-state elongational viscosity approaches the
values predicted without the dilution effect, although the experimental evidence is more
restricted than in the case of Blend 3.

VI. CONCLUSIONS

In this contribution we have analyzed the transient and steady-state elongational vis-
cosity data of three bidisperse polystyrene blends investigated recently by Nielsen et al.
�2006�. The framework applied for the constitutive analysis is the MSF model of Wagner
et al. �2005a�, which is based on the assumption of a strain-dependent tube diameter and
the interchain pressure term of Marrucci and Ianniruberto �2004�.

FIG. 5. �a� Comparison of measured transient elongational viscosity data �symbols� of Blend 2 at 130 °C to
predictions �lines� of the Double Reptation Model, according to Eq. �27�–Eq. �29� and Eq. �31�. �b� Comparison
of measured steady-state elongational viscosity data �open dots� of Blend 2 at 130 °C to prediction of the
Double Reptation Model, according to Eq. �27�–Eq. �29� with �full line� and without the effect of dilution
�dash-dotted line�. The transition from the dilution to the undiluted regime, according to Eq. �31�, is indicated
�heavy dotted line�.
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In analyzing the strain-hardening behavior of the bidisperse blends with the long
chains representing the minority component with a weight fraction w�1, several distinc-
tive phenomena can be identified in different strain-rate regimes. For elongational flows
with Deborah numbers DeS= �̇�w,S�1, the short chain matrix represents a solvent. Inter-
actions of dilute long chains among themselves create supertubes with enormously large
tube-diameter relaxation times �D, which are larger by a factor 1 /w� than the tube-
diameter relaxation time �a,L of a melt of long chains. For the dilution exponent �, values
of 2 and 2.7 were found. Considering the fact that the matrix polymers PS50K and
PS100K have only few entanglements, it is not surprising that no unique scaling behavior
is found. A large tube-diameter relaxation time �D leads to a large stretching potential of
the long-chain component, and to an increase of the steady-state elongational viscosity
with increasing strain rate. In addition, in this dilution regime, a transition from affine
chain stretch to nonaffine tube squeeze with decreasing strain rate is caused by an addi-
tional stretch relaxation process.

As soon as the tube diameter aL of the supertube created by the interaction of the long
molecules among themselves has been reduced by deformation from its equilibrium value

FIG. 6. �a� Comparison of measured transient elongational viscosity data �symbols� of Blend 1 at 130 °C to
predictions �lines� of the Double Reptation Model, according to Eq. �27�–Eq. �29� and Eq. �31�. �b� Comparison
of measured steady-state elongational viscosity data �open dots� of Blend 1 at 130 °C to prediction of the
Double Reptation Model, according to Eq. �27�–Eq. �29� with �full line� and without the effect of dilution
�dash-dotted line�. The transition from the dilution to the undiluted regime, according to Eq. �31�, is indicated
�heavy dotted line�.
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aL0 to the tube diameter a0 of the bulk polymer, the dilution regime ends. We propose the
hypothesis that when the dilution regime ends, the tube-diameter relaxation time �D of the
long-chain component decreases from the fully diluted value of �D=�a,L /w� to the bulk
value of �D=�a,L in such a way that the maximum stretch of the long chains remains
effectively constant. A nonlinear extension of the basic double reptation concept was
developed, which allows �albeit by use of empirical linear-viscoelastic shift factors to
correct the linear-viscoelastic predictions� to obtain a quantitative description of the tran-
sient and steady-state elongational viscosities comprising all phenomena discussed pre-
viously.

Considering the implications of these findings for the understanding of the strain-
hardening behavior of polydisperse linear melts, we may make three statements. �1�
Whenever a maximum in the steady-state elongational viscosity is observed this is most
likely due to the effect of diluted long chains. �2� The effect is expected to be larger the
higher the molar mass and the smaller the mass fraction of this component, provided that
the mass fraction is high enough so that the long chains remain entangled with each other.
�3� The origin of a constant maximum stretch fmax, which has been observed in many
polydisperse linear melts for a wide range of strain rates �see, e.g., Wagner et al., 2001�,
may be related to the end of the dilution regime, when �D decreases inversely propor-
tional to the strain rate, leading to a constant maximum stretch fmax.

ACKNOWLEDGMENTS

V.H.R.-G. wishes to thank the Consejo Nacional de Ciencia y Tecnología and Deut-
scher Akademischer Austauschdienst �CONACyT-DAAD� for the financial support. Fi-
nancial support of the German Research Foundation �DFG� for part of this work is
gratefully acknowledged.

References

Bach, A., K. Almdal, H. K. Rasmussen, and O. Hassager, “Elongational viscosity of narrow molar mass

distribution polystyrene,” Macromolecules 36, 5174–5179 �2003a�.
Bach, A., H. K. Rasmussen, and O. Hassager, “Extensional viscosity for polymer melts measured in the

filament stretching rheometer,” J. Rheol. 47, 429–441 �2003b�.
Berry, G. C., and T. G. Fox, “The viscosity of polymers and their concentrated solutions,” Adv. Polym. Sci. 5,

261–357 �1968�.
Daoud, M., and P. G. de Gennes, “Some remarks on the dynamics of polymer melts,” J. Polym. Sci., Polym.

Phys. Ed. 17, 1971–1981 �1979�.
de Gennes, P. G., “Reptation of a polymer chain in the presence of fixed obstacles,” J. Chem. Phys. 55,

572–579 �1971�.
des Cloizeaux, J., “Double reptation vs. simple reptation in polymer melts,” Europhys. Lett. 5, 437–442 �1988�.
des Cloizeaux, J., “Relaxation and viscosity anomaly of melts made of long entangled polymers, time-

dependent reptation,” Macromolecules 23, 4678–4687 �1990�.
Doi, M., and S. F. Edwards, “Dynamics of Concentrated Polymer Systems. Part 2.- Molecular Motion under

Flow,” J. Chem. Soc., Faraday Trans. 74, 1802–1817 �1978�.
Doi, M., and S. F. Edwards, “Dynamics of Concentrated Polymer Systems. Part 4.- Rheological Properties,” J.

Chem. Soc., Faraday Trans. 75, 38–54 �1979�.
Doi, M., “Explanation for the 3.4 power law of viscosity of polymeric liquids on the basis of the tube model,”

Polym. Lett. 19, 265–273 �1981�.
Doi, M., “Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model,”

J. Polym. Sci., Polym. Phys. Ed. 21, 667–684 �1983�.

84 WAGNER et al.



Doi, M., and S. F. Edwards, The Theory of Polymer Dynamics �Oxford University Press, Oxford, 1986�.
Doi, M., W. W. Graessley, E. Helfand, and D. S. Pearson, “Dynamics of polymer in polydisperse melts,”

Macromolecules 20, 1900–1906 �1987�.
Fetters, L. J., D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, “Connection between polymer molecular

weight, density, chain dimensions, and melt viscoelastic properties,” Macromolecules 27, 4639–4647

�1994�.
Frischknecht, A. L., and S. T. Milner, “Linear rheology of binary melts from a phenomenological tube model of

entangled polymers,” J. Rheol. 46, 671–684 �2002�.
Gupta, R. K., D. A. Nguyen, and T. Sridhar, “Extensional viscosity of dilute polystyrene solutions: Effect of

concentration and molecular weight,” Phys. Fluids 12, 1296–1318 �2000�.
Hua, Ch. C., and J. D. Schieber, “Segment connectivity, chain-length breathing, segmental stretch, and con-

straint release in reptation models. I. Theory and single-step strain predictions,” J. Chem. Phys. 109,

10018–10027 �1998�.
Isono, Y., K. Itoh, T. Komiyatani, and T. Fujimoto, “Differential dynamic modulus of polyisobutylene with high

molecular weight 1, single-step large shearing deformations,” Macromolecules 24, 4429–4432 �1991�.
Ketzmerick, R., and H. C. Öttinger, “Simulation of a Non-Markovian process modelling contour length fluc-

tuation in the Doi-Edwards model,” Continuum Mech. Thermodyn. 1, 133–124 �1989�.
Larson, R. G., Constitutive Equations for Polymer Melts and Solutions �Buttherworths, USA, 1988�.
Luap, C., Ch. Müller, T. Schweizer, and D. C. Venerus, “Simultaneous stress and birefringence measurements

during uniaxial elongation of polystyrene melts with narrow molecular weight distribution,” Rheol. Acta

45, 83–91 �2005�.
Marrucci, G., and J. J. Hermans, “Nonlinear viscoelasticity of concentrated polymer liquids,” Macromolecules

13, 380–387 �1980�.
Marrucci, G., “A model for polydisperse polymers,” J. Polym. Sci., Polym. Phys. Ed. 23, 159–177 �1985�.
Marrucci, G., and N. Grizzuti, “Fast flows of concentrated polymers: Predictions of the tube model on chain

stretching,” Gazz. Chim. Ital. 118, 179–185 �1988�.
Marrucci, G., and G. Ianniruberto, “Interchain pressure effect in extensional flows of entangled polymer melts,”

Macromolecules 37, 3934–3942 �2004�.
Masuda, T., K. Kitagawa, Z. Inoue, and S. Onogi, “Rheological properties of anionic polystyrenes II. Dynamic

viscoelasticity of blends of narrow-distribution polystyrenes,” Macromolecules 3, 116–125 �1970�.
Mead, D. W., and L. G. Leal, “The reptation model with segmental stretch. I. Basic equations and general

properties,” Rheol. Acta 34, 339–359 �1995�.
Milner, S. T., and T. C. B. McLeish, “Reptation and contour-length fluctuations in melts of linear polymers,”

Phys. Rev. Lett. 81, 725–728 �1998�.
Nielsen, J. K., H. K. Rasmussen, O. Hassager, and G. H. McKinley, “Elongational viscosity of monodisperse

and bidisperse polystyrene melts,” J. Rheol. 50, 453–476 �2006�.
O’Connor, N. P. T., and R. C. Ball, “Confirmation of the Doi-Edwards model,” Macromolecules 25, 5677–5682

�1992�.
Öttinger, H. C., “A thermodynamically admissible reptation model for fast flows of entangled polymers,” J.

Rheol. 43, 1461–1493 �1999�.
Park, S. J., and Larson, R. G., “Tube dilation and reptation in binary blends of monodisperse linear polymers,”

Macromolecules 37, 597–604 �2004�.
Rolón–Garrido, V. H., M. H. Wagner, C. Luap, and T. Schweizer, “Modeling non-Gaussian extensibility effects

in elongation of nearly monodisperse polystyrene melts,” J. Rheol. 50, 327–340 �2006�.
Struglinski, M. J., and W. W. Graessley, “Effects of polydispersity on the linear viscoelastic properties of

entangled polymers. 1. Experimental observations for binary mixtures of linear polybutadiene,”

Macromolecules 18, 2630–2643 �1985�.
Tsenoglou, C., “Viscoelasticity of binary homopolymer blends,” Polym. Prepr. �Am. Chem. Soc. Div. Polym.

Chem.� 28, 185–186 �1987�.
Tsenoglou, C., “Molecular weight polydisperse effects on the viscoelasticity of entangled linear polymers,”

Macromolecules 24, 1762–1767 �1991�.
Tuminello, W. H., “Molecular weight and molecular weight distribution from dynamic measurements of poly-

85A CONSTITUTIVE ANALYSIS OF BIDISPERSE BLENDS



mer melts,” Polym. Eng. Sci. 26, 1339–1347 �1986�.
Urakawa, O., M. Takahashi, T. Masuda, and N. G. Ebrahimi, “Damping functions and chain relaxation in

uniaxial and biaxial extensions: Comparison with the Doi–Edwards theory,” Macromolecules 28, 7196–

7201 �1995�.
van Ruymbeke, E., R. Keunings, and C. Bailly, “Determination of the molecular weight distribution of en-

tangled linear polymers from linear viscoelasticity data,” J. Non-Newtonian Fluid Mech. 105, 153–175

�2002�.
Wagner, M. H., “A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt,”

J. Non-Newtonian Fluid Mech. 4, 39–55 �1978�.
Wagner, M. H., “The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its compari-

son to the Doi-Edwards model,” Rheol. Acta 29, 594–603 �1990�.
Wagner, M. H., and J. Schaeffer, “Nonlinear measures for general biaxial extension of polymer melts,” J. Rheol.

36, 1–26 �1992�.
Wagner, M. H., H. Bastian, P. Hachmann, J. Meissner, S. Kurzbeck, H. Münstedt, and F. Langouche, “The

strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows,” Rheol.

Acta 39, 97–109 �2000�.
Wagner, M. H., P. Rubio, and H. Bastian, “The molecular stress function model for polydisperse polymer melts

with dissipative convective constraint release,” J. Rheol. 45, 1387–1412 �2001�.
Wagner, M. H., M. Yamaguchi, and M. Takahashi, “Quantitative assessment of strain hardening of low-density

polyethylene melts by the molecular stress function model,” J. Rheol. 47, 779–793 �2003�.
Wagner, M. H., S. Kheirandish, and O. Hassager, “Quantitative prediction of transient and steady-state elon-

gational viscosity of nearly monodisperse polystyrene melts,” J. Rheol. 49, 1317–1327 �2005a�.
Wagner, M. H., S. Kheirandish, and M. Yamaguchi, “Quantitative analysis of melt elongational behavior of

LLDPE/LDPE blends,” Rheol. Acta 44, 198–218 �2005b�.
Wang, S., S. Q. Wang, A. Halasa, and W. L. Hsu, “Relaxation dynamics in mixtures of long and short chains:

Tube dilation and impeded curvilinear diffusion,” Macromolecules 36, 5355–5371 �2003�.
Wasserman, S. H., and W. W. Graessley, “Effects of polydispersity on linear viscoelasticity in entangled

polymer melts,” J. Rheol. 36, 543–572 �1992�.
Watanabe, H., T. Sakamoto, and T. Kotaka, “Entanglements in linear polystyrenes,” Macromolecules 18,

1436–1442 �1985�.
Winter, H. H., and M. Mours, IRIS Developments, �http://rheology.tripod.com/ �2003�.
Ye, X., R. G. Larson, C. Pattamaprom, and T. Sridhar, “Extensional properties of monodisperse and bidisperse

polystyrene solutions,” J. Rheol. 47, 443–468 �2003�.
Ylitalo, C. M., J. A. Kornfield, G. G. Fuller, and D. S. Pearson, “Molecular weight dependence of component

dynamics in bidisperse melt rheology,” Macromolecules 24, 749–758 �1991�.

86 WAGNER et al.


