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Synopsis

Elongational behavior of four narrow molar mass distribution polystyrene melts of masses 50 000,
100 000, 200 000, and 390 000, g/mol, respectively was investigated up to Hencky strains of 5. All
melts show strain hardening behavior. For the two highest molar mass polystyrenes, strain
hardening starts at elongation rates larger than the inverse reptation time, and the steady-state
elongational viscosities decrease with increasing elongation rate according to a power law with a
power-law index of approximately −1/2 instead of −1 as predicted by the original Doi–Edwards
tube model. Marrucci and Ianniruberto �Macromolecules 37, 3934 �2004�� have introduced an
interchain pressure term arising from lateral forces between the chain and the tube wall into the
Doi–Edwards model to account for the latter effect. Based on the molecular stress function theory
allowing for a strain-dependent tube diameter, we show that the transient and steady-state
elongational viscosities of the nearly monodisperse polystyrene melts can be modeled
quantitatively by assuming affine chain deformation balanced by the interchain pressure term of
Marrucci and Ianniruberto. The interchain pressure is governed by a tube diameter relaxation time
�a, which is found to be larger than the Rouse time �R of the chain, and which is the only
parameter of the model. For monodisperse polystyrene melts of sufficient low molar mass, �a is
larger than the reptation time, and a maximum in the steady-state elongational viscosity is
predicted. © 2005 The Society of Rheology. �DOI: 10.1122/1.2048741�

I. INTRODUCTION

Recent progress in experimental techniques to measure nonlinear properties of poly-
mer melts and solutions has led to major breakthroughs in the rheology of polymeric
systems �Schweizer �2000�; McKinley and Sridhar �2002��. Particularly, the filament
stretching technique has enabled reaching elongation rates in regimes beyond the inverse
Rouse time, and has revealed very interesting and unexpected aspects in steady-state
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elongational properties of solutions and melts of monodisperse and polydisperse poly-
mers �see, e.g., Bhattacharjee et al. �2002� and �2003�; McKinley and Sridhar �2002��.

In elongational flow, the Doi–Edwards �DE� model with the so-called independent
alignment assumption predicts an upper limit of the tensile stress equal to five times the
plateau modulus, GN. This limiting stress is a consequence of the assumption of instan-
taneous chain retraction and, therefore, the absence of any chain stretching. According to
the DE model, the macroscopic stress is a consequence of chain orientation only, result-
ing in a scaling of the steady-state elongational viscosity at strain rates �̇ larger than the
inverse reptation time with �̇−1. Relaxing the assumption of instantaneous chain retrac-
tion, various reptation-based models have invoked chain stretch when the deformation
rate is larger than the inverse Rouse time �R of the chain �see, e.g., Pearson et al. �1989�;
Mead et al. �1995, 1998�; Fang et al. �2000��. However, recent elongational viscosity
measurements of Bach et al. �Bach et al. �2003�� on narrow molar mass distribution
polystyrene melts have revealed that chain stretch is already detectable at elongation rates
larger than the inverse reptation time, and the elongational viscosity scales approximately
with �̇−1/2. Marrucci and Ianniruberto �Marrucci and Ianniruberto �2004�� have introduced
an interchain pressure term arising from lateral forces between the chain and the tube
wall into the DE model to account for this effect. However, their analysis is restricted to
scalar arguments and to the steady-state viscosity. Here, we present a full constitutive
equation which describes time-dependent as well as steady-state rheology of nearly
monodisperse polymer melts, and compare predictions to the elongational viscosity data
of Bach et al. �Bach et al. �2003�� and Hassager �2004�.

II. EXPERIMENTAL DATA

The experimental data discussed are those presented by Bach et al. �Bach et al.
�2003�� and Hassager �Hassager �2004��. Elongational viscosities of four polystyrene
melts with narrow molar mass distribution were measured using a filament stretching
rheometer capable of measuring at high temperatures. Most measurements were per-
formed at 130 °C, several measurements on polystyrene PS390K performed at 150 °C
were shifted to 130 °C by standard time-temperature shifting. From linear-viscoelastic
mastercurves of G� and G�, discrete relaxation spectra with relaxation times �i and
fractional relaxation moduli gi were derived using the IRIS program �IRIS Development,
Amherst, MA—Winter and Mours �2003��. Polymer characterization and spectra are
summarized in Table I. The Rouse time �R and the longest relaxation time �w �identified
with the reptation time here� were calculated according to well-known relations �Osaki et
al. �1982�; Takahashi et al. �1993�; Isaki et al. �2003��,

�R =
12M�0

�2�RT
�Mc

M
�2.4

, �1�

�w = Je
0�0, �2�

where Mc of polystyrene was taken as 35 000 g/mol.

III. PREDICTIONS OF THE DOI–EDWARDS MODEL

The intermolecular interaction of concentrated systems of linear polymer chains is
modeled by the tube concept: The mesh of constraints caused by surrounding chains
confines the macromolecular chain laterally to a tubelike region. Doi and Edwards as-
sumed that the diameter a0 of the tube is not changed even by large nonlinear deforma-
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tions, or equivalently that the tension in the deformed macromolecular chain remains
constant and equal to its equilibrium value �Doi and Edwards �1986��. The main contri-
bution to the extra stress tensor ��t� is then given by the orientation of the tube segments
due to the flow. The resulting constitutive equation is of the single integral form,

��t� = �
−�

t

m�t − t��SDE
IA �t,t��dt� �3�

if the tube segments are assumed to align independently of each other in the flow field
�the “independent alignment �IA�” approximation�. m�t− t�� is the memory function with
m�t− t��=�i

gi

�i
e−�t−t��/�i, and the relative strain measure SDE

IA is given by

SDE
IA �t,t�� 	 5
u�u�

u�2 �
0

= 5S�t,t�� , �4�

where S is the relative second-order orientation tensor. The bracket denotes an average
over an isotropic distribution of unit vectors u�t�� at time t�, and can be expressed as a
surface integral over the unit sphere,

�0 	
1

4�
� ��sin 	od	od
o. �5�

At time t, the unit vectors are deformed to vectors u�, which are calculated from the
affine deformation hypothesis �with F−1�t , t�� as the relative deformation gradient tensor�
as

u��t,t�� = F−1�t,t�� · u�t�� , �6�

where u� indicates the length of the vector u�.

TABLE I. Molecular characterization and discrete relaxation spectra �relaxation moduli gi and relaxation times
�i� of PS samples at 130 °C.

PS50K PS100K PS200K PS390K

Mw=51 700 g/mol Mw=102 800 g/mol Mw=200 000 g/mol Mw=390 000g/mol
MWD=1.10 MWD=1.11 MWD=1.04 MWD=1.06

Je
0=5.81�10−6�Pa−1� Je

0=1.15�10−5�Pa−1� Je
0=1.16�10−5�Pa−1� Je

0=1.50�10−5�Pa−1�
�0=8.65�105�Pa s� �0=8.13�106�Pa s� �0=8.26�107�Pa s� �0=7.57�108�Pa s�

�R=6.4 s �R=22.9 s �R=91.5 s �R=329 s
�w=5.0 s �w=94 s �w=961 s �w=11351 s
�a=141 s �a=203 s �a=384 s �a=1462 s

gi�Pa� �i�s� gi�Pa� �i�s� gi�Pa� �i�s� gi�Pa� �i�s�

9.15�106 2.91�10−3 4.10�105 6.73�10−2 2.38�105 4.75�10−1 4.63�105 1.04�10−1

3.71�105 9.61�10−2 1.02�107 3.06�10−3 3.71�104 5.29�100 7.79�104 1.07�100

1.40�105 9.85�10−1 1.47�105 4.77�10−1 2.71�104 1.96�101 3.00�104 9.70�100

1.05�105 6.33�100 7.73�104 3.40�100 5.46�104 9.20�101 2.55�104 5.16�101

6.77�104 1.93�101 4.96�104 4.43�102 3.33�104 2.35�102

7.39�104 8.51�101 4.33�104 1.26�103 4.31�104 1.14�103

1.11�102 1.35�103 5.15�104 5.97�103

2.28�104 1.71�104
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As shown by Currie �Currie �1982��, the strain energy function of the DE model is
given by

wDE

3kT
= �ln u�0 �7�

which represents the free rotational energy of a tube segment. Consequently, the DE
model does not account for any strain hardening. This is demonstrated in Figs. 1 and 2,
where predictions of the DE model are compared to start-up and steady-state elongational
data of PS390K. As expected, predictions and data deviate increasingly with increasing
strain rate. However, Fig. 1 reveals the interesting fact that the experimentally determined
steady-state elongational viscosity is reached at the same time, when the orientation
saturates as described by the DE model.

Doi and Edwards �Doi and Edwards �1986�� incorporated a stretch process with a
stretch � of the tube segments due to the flow in order to explain the discrepancies of the
DE theory at the startup of shear and extensional flows. Preaveraging the stretch, i.e.,
assuming that the stretch is uniform along the chain contour length and an explicit
function ��t� of the observation time, which operates on the orientational configuration
resulting from the integration over the strain history, the extra stress tensor is given by

FIG. 1. Comparison of measured transient elongational viscosity data of PS390K �symbols� to predictions by
DE theory �full lines� and assumption of affine chain stretch �dotted lines�.

FIG. 2. Comparison of steady-state elongational viscosity data of PS390K measured at 130 °C �full symbols�,
and at 150 °C �shifted to 130 °C, open symbols�, to predictions by DE theory �full line�.
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��t� = �2�t��
−�

t

m�t − t��SDE
IA �t,t��dt�. �8�

Equation �8� generated the necessity to find a stretch evolution equation, and a vast
variety of concepts based on different kinetic ideas have been proposed in recent years
�see, e.g., Doi �1980�; Pearson et al. �1989�; McLeish et al. �1998�; Mead et al. �1998��.

IV. AFFINE CHAIN STRETCH AND THE ROUSE TIME OF THE CHAIN

While in models with preaveraged stretch, the tube diameter is invariably assumed to
stay constant and equal to its equilibrium value a0, stretch can also be introduced by the
assumption of a strain-dependent tube diameter, as first suggested by Marrucci and de
Cindio �Marrucci and de Cindio �1980��. In this way, also the preaveraging of the stretch
can be avoided, which is inherently present in models based on Eq. �8� or its differential
approximations.

A generalized tube model with strain-dependent tube diameter was presented by
Wagner and Schaeffer �Wagner and Schaeffer �1992, 1993, 1994��. In the molecular
stress function �MSF� theory, tube stretch is directly related to the tube diameter a, which
decreases from its equilibrium value a0 with increasing stretch. Taking into account that
the tube diameter a represents the mean field of the surrounding chains, it is assumed that
the tube diameter is independent of the orientation of tube segments. The extra stress is
then given as

��t� = �
−�

t

m�t − t��f2SDE
IA �t,t��dt�, �9�

where the MSF f = f�t , t�� is the inverse of the relative tube diameter,

f�t,t�� = a0/a�t,t�� . �10�

In contrast to Eq. �8�, stretch in Eq. �9� does not only depend on the observation time t,
but also on the strain history, i.e., for time-dependent strain histories, chain segments with
long relaxation times �i.e., at the center of the chain� see higher stretches than chain
segments with short relaxation times �i.e., at the chain ends�.

Assuming now �on average� affine stretch, the evolution equation for f is simply given
by

� f

�t
= f��:S� , �11�

with velocity gradient �, which can be integrated to

f = e�ln u�0. �12�

Realizing that the power input of the stress tensor per chain segment corresponds to the
change in the free energy wMSF of a chain segment,

1

3kT

�wMSF

�t
= f2��:S� , �13�

this corresponds to a strain energy function of the form
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wMSF

3kT
=

1

2
�f2 − 1� �14�

i.e., the chain segments behave as linear springs. As shown in Fig. 1, the assumption of
affine chain stretch, although unbound, describes the onset of strain hardening quantita-
tively, at least at higher strain rates.

Following conventional arguments �e.g. Pearson et al. �1989��, we now assume that
the affine chain deformation is balanced by the linear spring force, i.e., the evolution
equation for f takes the form

� f

�t
= f��:S� −

1

�R
�f − 1� , �15�

where �R is the Rouse time of the chain. For PS390K, a value of �R=329 s is obtained
from Eq. �1�. As demonstrated in Fig. 3, this clearly does not describe the steady-state
elongational viscosity of PS390K. As the exact value of the Rouse time may depend on
the method applied, we also show the predictions for �R /10 and �R /100. It is obvious
from Fig. 3 that a linear spring force will quench chain stretch as long as the product of
̇�R is much smaller than 1, while chain stretch will diverge in the limit of ̇�R→1,
resulting in a diverging steady-state elongational viscosity. This is clearly seen by setting
the left-hand side of Eq. �15� to zero, which gives the maximum stretch fmax as

fmax =
1

1 − ̇�R

. �16�

�We will not discuss finite extensibility here, which is usually invoked to rectify the
situation to some extent and to remove the singularity.�

V. THE INTERCHAIN PRESSURE TERM

Considering a chain composed of N Kuhn segments of length b, confined within a box
of dimensions Lx, Ly, and Lz, where the overall length of the chain is much larger than the
dimensions of the confining box, one can write the pressure acting on the box wall
normal to the x axis as the gradient of free energy A in the x direction �Doi and Edwards
1986�,

FIG. 3. Comparison of measured steady-state elongational viscosity data of PS390K �symbols� to predictions
by MSF model with chain stretch balanced by Rouse-type spring force �dotted lines, from left to right: �R

=329 s /32.9 s /3.29 s� and by interchain pressure �full line, �a=1462 s�.
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px = −
1

LyLz

�A

�Lx
=

�2Nb2

3Lx
2

kBT

V
. �17�

With Lx�Ly �a and V=a2LTube this leads to �Marrucci and Ianniruberto �2004��

px = py � kT
Nb2

a4LTube
. �18�

As Nb2 is a constant, and considering that the product aLTube is constant even at large
deformations �see, e.g., Wagner and Schaeffer �1992��, the relative radial pressure p / p0

will increase inversely proportional to the third power of the tube diameter a from its
equilibrium value p0,

p

p0
=

a0
3

a3 . �19�

Marrucci and Ianniruberto assumed that this radial pressure increase is balancing the tube
diameter reduction, and they derived the following evolution equation for the tube diam-
eter a �Marrucci and Ianniruberto �2004��,

�a

�t
= − ̇ a +

a0

�a
�a0

3

a3 − 1� . �20�

We call �a the tube diameter relaxation time.
We now replace the first term on the right-hand side of Eq. �20� by the general

tensorial description in analogy to Eq. �11� above �see, e.g., Wagner et al. �2001��, which
leads to:

�a

�t
= − ��:S�a +

a0

�a
�a0

3

a3 − 1� �21�

Inserting the definition of the MSF, f =
a0

a , and considering that �a
�t can be expressed as

�a
�t =−a0

1
f2

�f
�t , we obtain from Eq. �21� the following evolution equation for the tension in

a chain segment:

� f

�t
= f���:S� −

f�f3 − 1�
�a

� . �22�

Equation �22� together with Eq. �9� represents a full constitutive equation with only one
parameter, the tube diameter relaxation time �a.

The maximum stretch fmax is reached, when the orientation saturates, i.e., when � :S
→ ̇. Due to the nonlinear restoring pressure term on the right-hand side of Eq. �22�, the
divergence of the maximum stretch fmax in constant strain-rate elongation is now re-
moved, and fmax is given by

fmax�fmax
3 − 1� = ̇�a, �23�

or for fmax�1

fmax
2 � �̇�a. �24�

For fast deformations, the extensional stress � is proportional to fmax
2 ,

� � fmax
2 �25�

and, therefore, the steady-state elongational viscosity scales with
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�us =
�

̇
�

�̇�a

̇
= ��ȧ−1/2 �26�

which corresponds to the results of Marrucci and Ianniruberto �Marrucci and Ianniruberto
�2004��. However, due to the width of the relaxation spectra even for nearly monodis-
perse melts �see Table I�, the actual decrease of the viscosity observed is smaller than
predicted by Eq. �26�, and is closer to a power of −0.4. As shown in Fig. 3, the steady-
state elongational viscosity as predicted from Eqs. �9� and �22� for PS390K with the
value of the tube diameter relaxation time fitted to �a=1462 s is in excellent agreement
with the data.

Figures 4�a�–4�d� present comparisons of the transient elongational viscosity data of
Bach et al. �Bach et al. �2003�� and Hassager �Hassager �2004�� to predictions of Eqs. �9�
and �22�. The time-dependent increase, including the plateau value of the elongational
viscosities, is well modeled for all four PS samples by fitting the tube diameter relaxation
time �a to the values given in Table I. Slight deviations between data and predictions are
only seen for some elongation rates in the case of PS100K.

In Fig. 5, the steady-state elongational viscosities of all samples as calculated from
Eqs. �9� and �22� are presented and compared to the experimental data, and excellent
agreement is observed. For PS100K and PS50K, a maximum in the steady-state elonga-
tional viscosity is found. For these two melts, the tube diameter relaxation time �a is
larger than the reptation time �w as shown in Fig. 6, where tube relaxation time �a, the
reptation time �w, and the Rouse time �R are plotted as a function of molar mass. This
means that chain stretch is already significant at elongation rates which are smaller than
the inverse reptation time. Figure 6 also reveals that for the two PSs with the highest
molar masses, PS390K and PS200K, the tube diameter relaxation time �a seems to scale
in a similar way as the Rouse time �R, i.e.,

FIG. 4. Comparison of measured transient elongational viscosity data to predictions by MSF model with chain
stretch balanced by interchain pressure: �a� PS390K, �a=1462 s; �b� PS200K, �a=384 s; �c� PS100K, �a

=203 s; and �d� PS50K, �a=141 s.
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�a � M2 �27�

and �a is about 4.4 times larger than �R, while for the two lower molar masses, PS100K
and PS50K, a scaling of the order

�a � M1/2 �28�

seems to be appropriate. An argument in favor of the latter relation might be that for
melts with few �some three to eight� entanglements, where the difference between rep-
tation time and Rouse time becomes small or even vanishes as for PS50K, the radius of

FIG. 5. Comparison of measured steady-state elongational viscosity data of four narrow molar mass distribu-
tion PS melts �symbols� to predictions of MSF model with chain stretch balanced by interchain pressure �lines�.

FIG. 6. Reptation time �w, Rouse time �R, and tube diameter relaxation time �a as a function of molar mass M.
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gyration of the coil might be more important for the tube diameter relaxation than the
length of the chain. One may argue that the tube concept becomes vague for melts with
only a few entanglements, but it should be noted that the reptation time �w still shows the
expected scaling, i.e., �w�M3.6.

VI. CONCLUSIONS

The elongational behavior of narrow molar mass distribution PS melts as determined
previously �Bach et al. �2003� and Hassager �2004�� can be explained quantitatively by
assuming affine chain stretch, which is balanced by interchain pressure as introduced by
Marrucci and Ianniruberto �Marrucci and Ianniruberto �2004��. These ideas can readily be
introduced into the MSF concept allowing for a variation of the tube diameter, resulting
in a single integral constitutive equation for the stress tensor, and an evolution equation
for the tension in the chain. The interchain pressure, which is inverse proportional to the
third power of the tube diameter a, represents a force that is restoring the tube diameter
to is equilibrium value a0, and is governed by a tube diameter relaxation time �a. The
nonlinearity of the pressure term is essential for removing the divergence of the chain
stretch caused by the Rouse time catastrophe, and for explaining the scaling of the
steady-state elongational viscosity observed. As the tube diameter relaxation time �a

represents the relaxation of topological constraints caused by many surrounding chains
and is therefore the result of a highly cooperative effect, it is perhaps not surprising that
it is found to be larger than the Rouse time of the chain. For PS melts with more than ten
entanglements per chain, �a seems to scale with the square of the molar mass, while for
melts with fewer entanglements, a dependence closer to a power of 0.5 is found. Further
experimental investigations are needed to confirm these scaling relations.
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