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ParPor: Particles in Pores. Stochastic Modeling of Polydisperse Transport 
 

Abstract  
Liquid flow containing particles in the different types of porous media appear in a large variety of practically 

important industrial and natural processes. The project aims at developing a stochastic model for the deep bed 

filtration process in which the polydisperse suspension flow in the polydisperse porous media. Instead of the 

traditional parabolic Advection-Dispersion Equation (ADE) the novel elliptic PDE based on the Continuous Time 

Random Walk is adopted for the particle size kinetics [1, 2]. The pore kinetics is either described by the stochastic 

size exclusion mechanism or the incomplete pore plugging model[3, 4]. In the current phase of the project the 

computation is only performed for the polydisperse suspension flow in monodisperse porous media. The slower 

transport speed of the peak and larger tail indicates that the elliptic model is more adaptable for anomalous 

diffusion. Porosity decline of the porous media and convection acceleration of the flow are observed from the 

modeling results which agree with the general experimental observation.  

Introduction 

Liquid flow containing particles in the different types of 

porous media appear in a large variety of practically 

important industrial and natural processes. A large body 

of applications has resulted in a large body of research; 

the researchers from the different areas have scarcely 

exchanged results and ideas though. The studies may 

roughly be classified into the two categories: 

Microscopic, detailed analysis of the particle-pore 

interactions and of the individual or collective particle 

behavior on the pore level; and modeling of the particle 

suspension flows in porous media on the macroscopic 

level, in the volume larger than REV containing a 

number of particles and pores. The latter is being 

focused on in the project. 

Macroscopic modeling of the suspension flows in 

porous media is often based on a hydrodynamic model 

of the advection-dispersion type, which typically takes 

the parabolic PDE form (ADE). Particle deposition is 

modeled similar to “the first order chemical reaction”. 

Such approach does not account for polydispersity: both 

particles and pores may be of different sizes and possess 

different properties, which strongly affects both 

transport and deposition. Several discrepancies between 

predicted and observed pictures of filtration were 

observed in the experiments [5, 6]. These discrepancies 

are important for practice: for example, porous media 

lead to separation of the different particles. The particles 

of the different sizes move with the different 

microscopic velocities and may be dispersed in the 

different ways, which leads to the different kind of 

transport than the classical “diffusion-like” evolution. 

This may happen even with the particles of the same 

size (and even with the molecules of a tracer). They 

may be delayed indefinitely in the pores and then move 

further. Variability on the pore level leads to dispersion 

of the particle flight times and to non-conventional 

transport equations.  

The process of suspension flow in porous media is 

stochastic in nature, and it calls for stochastic modeling. 

Several stochastic models emerged recently. The 

continuous-time random walks (CTRW) approach [7, 

8]has been applied suspension and tracer flows [6, 

9]with effectively monodisperse, but randomly 

“walking” particles. This approach has managed to 

explain some (but not all the) experimental results 

relevant to time dispersion of the particle flights. Based 

on this theory Pavel and Shapiro developed a novel 

elliptic model differing from the conventional parabolic 

ADE [1, 2].  

The pore kinetics is either described by the size 

exclusion mechanism, adsorption, bridging, or other 

mechanisms which may cause incomplete pore 

plugging[3, 10]. The porosity decline leads to the 

convection acceleration of local fluid velocity. This 

leads to the non-linearity of the elliptic PDE which 

requires special technique to implement fast 

computation. 
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Particle size kinetics 

The equation of particle size kinetics should be obtained 

from a microscopic and stochastic point of view. 

Following a similar procedure to that in Ref[2], we start 

with a so-called continuous-time random walker which 

represents a particle carried by the advection flux from 

one pore to another, as seen in Figure 1.  

 
Figure 1: an arbitrary continuous-time random walker’s 

step 

As mentioned above the particle may pass through the 

same pore along different paths. The portion of particles 

along one path is denoted by c(l,τ,rs,x,t), in which the 

flow direction and the flight time reflect the particle 

velocity. c(l,τ,rs,x,t) is better to be understood as the 

probability of the condition (l,τ,rs,x,t) to happen. p is the 

probability for the particle to pass the pore under the 

condition (l,τ,rs,x,t), p ranges from 0 to 1.   
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The probability distribution for the walker to appear at 

(x, t) is associated with the PDF for walker to appear at 

(x-l, t-τ) by the convolution law: 
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where the superscript ‘
d
’ represents the number of 

dimensions. C(x,t,rs) is the number of particles of rs at 

(x,t). c(l,τ,rs,x,t) is the PDF for the particles of rs 

randomly walking along the vector l. Further 

reformations of the equation above lead to the following 

elliptic PDE for one particle size finally: 
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where the detailed coefficients and moments, when time 

interval is infinitesimal, are: 
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The last sink term in represents the retention rate which 

reflects the capture probability (1-p) on the microscopic 

level, and this coefficient physically represents the 

retention probability per unit length of porous media 

and per unit time. The first coefficient u which is the 

average of step length divided by the average of waiting 

time is actually the average particle velocity in the pore.   

 

Pore kinetics 

The pore structure is changed only when the particles 

are captured by the pores. To reveal the random process 

the introduction of a probability for the pore size change 

is convenient and also necessary for the case of 

incomplete pore plugging[3]. Let us introduce such a 

probability (rp→rp’) as the probability of the pore radius 

changing from rp to rp’ while capturing a particle of rs, 

i.e. when a particle of rs is captured at x,t the pore radius 

is changed from rp into rp’, the distribution of rp is 

f(rp|rs,x,t), the distribution of rp’ is f(rp’|rs,x,t), the total 

probability is: 
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The second equation above corresponds reflects the fact 

that the particle will and can only decrease the size of 

the pore. The resulted integration pd (rs,rp,x,t) the total 

probability for the particles of rs being captured by the 

pores of rp at (x,t). The introduction of such a 

probability is nontrivial in the following sense. The pore 

kinetics is described on the premise of the pore of rp 

capturing a particle of rs; both of the pore and particle 

shape parameters are known. Nonetheless the pore size 

change is still random. This can be illustrated by Figure 

2, in which the resulted pore shape parameter is random 

due to the random capture process. 

 
Figure 2: the random capture process of a particle 

smaller than the pore 

Here the governing equations for the pore evolution are 

obtained following a similar procedure as in Ref[3]. The 

change of the pore distribution of rp is revealed by the 

increasing term and a decreasing term. Larger pores 

than those of rp capturing particles may increase the 

number the pores of rp. Pores of rp capturing particles 

leads to decreasing the number of pores of rp. 

s p s p s p s pH( ,t,r ,r )-H( ,t- ,r ,r ) ( , ,r ,r ) ( , ,r ,r )I t D tτ = −x x x x
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where I represent the increase rate and D represents the 

decrease rate of the number of pores of rp during the 

time τ. Since the particle capture does not influence the 

pore length, the pore distribution adopted here does not 

depend on the pore length.  Define the probability to 

have 1-p for a particle to be captured simultaneously 

with the setting (l,τ,rs,p,x,t): 

( , , , , , ) ( , , ) ( , , | , , )d s d s sP p r t P r t f p r tτ τ=l x x l x  

where Pd(rs,x,t) is total probability for a particle of rs 

being captured, this is defined in the same fashion as 

regarding the particle passing the pore. The probability 

for a particle to be captured with the setting (l,τ,rs,p,x,t): 

( )

(1 ) ( , , , , , )

1 ( | , , , , ) ( , , , , )

d s

s s

p P p r t

pf p r t c r t

τ

τ τ

− =

−

l x

l x l x
 

According to definition of microscopic pd the 

probability for the particle of rs being captured, with the 

particle flight as (l,τ,p) and the pore of rp to be changed 

into rp’: 
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With the obtained probability above the decreasing term 

can be formulated as: 
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According to the property of pd the integral for rp’ can 

be reduced to: 
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Taylor expansion of the inside of the integral leads to 

the total equation for the pore kinetics:
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Further reformations lead to the following elliptic PDE 

form inside the integral: 
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where the coefficients with the subscript ‘d’ possess 

almost the same definitions as in the particle kinetics, 

only the probability for the moments calculation is pd. 

 

CFD implementation 

The numerical solution to this non-linear problem is 

non-trivial. The present computation is confined to the 

mechanism of size exclusion, in which the increasing 

term I in the equation above disappear (one particle 

remains, one pore dies). Setting the constant flow the 

fluid is accelerated due to convection. We adopt the 

matrix form of the elliptic PDE for the particle kinetics, 

where the four boundary conditions are set as: inject 

suspension for one fifth of the total injection time then 

inject water to ‘wash away’ the particles, so that at the 

end of time the suspension concentration is zero. After 

solving once the concentration profile we solve the 

equations of porosity evolution and the velocity profile 

with convection acceleration. The iteration with this 

pattern of calculation continues until converge. 

 

Results 

The behavior of the elliptic PDE for the particle kinetics 

is shown in Figure 3. It can be observed that the velocity 

of the peak is slower and the tail at the outlet is larger in 

the elliptic model than those in the parabolic ADE. 

 
Figure 3: difference between the elliptic model and the 

parabolic ADE[2] 

The concentration profile for the particles of a certain 

size can be found in Figure 4, in which at the end of 

injection time all particles are washed away. For 

particles of n sizes there are n similar profiles like this. 

The porosity profile in Figure 5 shows that the porosity 

decline is most dramatic at the inlet. The velocity profile 

shows that the fluid is accelerated due to convection as 

in Figure 6. The deposition profile shows that the 

deposition accumulates mostly at the inlet as seen in 

Figure 7. This corresponds to the porosity decline 

profile and the velocity profile. 
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Figure 4: suspension concentration profile 

 
Figure 5: porosity decline profile 

 
Figure 6: fluid velocity profile 

 
Figure 7: deposition accumulation profile 
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