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General Method for Calculating the Response and
Noise Spectra of Active Fabry–Perot Semiconductor

Waveguides With External Optical Injection
Søren Blaaberg and Jesper Mørk

Abstract—We present a theoretical method for calculating
small-signal modulation responses and noise spectra of active
Fabry–Perot semiconductor waveguides with external light in-
jection. Small-signal responses due to either a modulation of the
pump current or due to an optical amplitude or phase modulation
of the input field can be calculated. Both responses and noise
spectra are given through semianalytical expressions taking into
account the longitudinal extent and finite end-facet reflectivities
of the active device. Different examples of responses and spectra
are presented for semiconductor optical amplifiers and an injec-
tion-locked laser. We also demonstrate the applicability of the
method to analyze slow and fast light effects in semiconductor
waveguides. Finite reflectivities of the facets are found to influence
the phase changes of the injected microwave-modulated light.

Index Terms—Fast light, Green function, injection locking, semi-
conductor lasers, semiconductor optical amplifiers (SOAs), slow
light.

I. INTRODUCTION

M ODULATION responses of optical semiconductor de-
vices subject to injected light are of interest in, e.g., mi-

crowave photonics and in optical communications. Direct mod-
ulation of the current of injection-locked semiconductor lasers
may be used for generation of pulse trains or for direct data
encoding in optical communications. Direct phase modulation
[1] and amplitude modulation with a suppressed magnitude of
chirp [2] are well-known properties for injection-locked lasers.
In addition, the modulation bandwidth in injection-locked semi-
conductor lasers can be enhanced compared with their solitary
counterparts [3], and the frequency of the response resonance
may be shifted [3], [4] due to the injection of light. Also, direct
current modulation of SOAs has been investigated [5], [6]. Re-
cently, there has been a growing interest in responses due to op-
tical modulation of a signal injected into semiconductor devices.
Slow and fast light effects in active semiconductor waveguides
[7]–[9] can be utilized to impose phase changes on an injected
RF-intensity modulated optical signal, suitable for applications
in microwave photonics. Slow and fast light are caused by wave
mixing in the semiconductor when a single RF-intensity modu-
lated optical carrier signal is injected into an active waveguide.
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One can interpret slow and fast light as a phase shift of the RF
envelope with a magnitude controlled by, e.g., the applied dc
pump current or bias voltage.

Fluctuations due to spontaneous emission noise and charge
carrier noise are potential sources for disturbances of the in-
jected signal; see [10] for a recent detailed treatment. The rela-
tive intensity noise (RIN) spectrum can, e.g., be of importance
in applications such as phase-arrayed devices. Shtaif et al. [11]
calculated noise spectra for an SOA assuming perfectly anti-re-
flection (AR)-coated end facets.

Recently, there has been a renewed interest in the modulation
response of injection-locked lasers. As already mentioned, the
bandwidth properties of a semiconductor laser can be modified
when injection-locked as a slave laser. When the injected field
from the master laser has a frequency detuned from the cavity
mode(s) of the slave laser, enhanced modulation response may
be seen at modulation frequencies equal to the detuning of the
master laser from the shifted cavity modes in the optical spec-
trum. Usually, when the slave laser is relatively short, only one
cavity mode is relevant as the longitudinal mode spacing is too
large for secondary modes to play a role. However, for rela-
tively long slave lasers, more than one mode can become im-
portant. Commonly, theoretical work on injection-locked semi-
conductor lasers has been done using a lumped description of
the slave laser [12]–[14] not resolving the laser axis and thus
only including one cavity mode. Modulation responses both
due to current modulation [15] and RF-intensity modulation
of the injected optical signal [16] are of current interest. In
[16], RF-phase shifts of intensity modulated signals in injection-
locked slave VCSELS were investigated and large RF-phase
shifts of 360 degrees were found, albeit not continuously tun-
able from 0 to 360 degrees.

The intention of this paper is to present a general method to
obtain small-signal responses and noise spectra in active semi-
conductor devices with finite facet reflectivities and subject to
injected light. The method allows for theoretical studies of de-
vices where reflective end facets are necessary, e.g., injection-
locked lasers and reflective SOAs [17], as well as devices where
poorly AR-coated facets, may alter the performance of the de-
vice in an undesired way. A major part of the presented numer-
ical examples concerning modulation responses address cases
where the input field is optically modulated while holding the
pump current constant. In coherent communications and RF
photonics, the conversion from one optical modulation format
to another, for example, phase to amplitude, is of interest [18].
As we discuss in this paper, a phase-modulated input signal will
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Fig. 1. Diagram of a Fabry–Perot amplifier or laser with external incident fields
� and intra-cavity fields � . Amplitude reflectivities of end facets are denoted
� and � .

only give rise to a device response if reflections occur at the
facets.

This paper is organized as follows. In Section II, the basic
equations for the field and carrier density are given. Then, in
Section III, the mathematical formalism of the small-signal
analysis are discussed. The small-signal analysis relies on the
Green’s function method presented for DFB lasers in [19]. Due
to injection of light into the active semiconductor waveguide
the boundary conditions differ from the case of a solitary laser,
implying modifications of the semianalytical solutions to the
linearized field equations. In Section IV, expressions for modu-
lation responses are given explicitly in terms of functions found
in the previous section. Examples of calculated modulation
responses for an SOA are presented in Section V. Noise spectra
are formulated in Section VI and examples for SOAs given in
Section VII. With sufficiently high end-facet reflectivities the
active waveguide may act as an injection-locked laser for which
examples of responses and spectra are given in Section VIII.
Finally, Section IX presents the main conclusions.

II. BASIC EQUATIONS

We consider the generic structure in Fig. 1 consisting of a one-
dimensional (1-D) active semiconductor waveguide of length
with end facets at and with amplitude reflectivities

and , respectively. The complex electric field inside
the waveguide is assumed to be a sum of a forward and a back-
ward traveling wave, i.e., . Using
envelope functions , the fields are written as

with the carrier frequency of the in-
cident signal and a reference wavenumber

, where is a reference frequency (wavelength),
is the modal refractive index at , and is the vacuum speed

of light. Incident on the end facets are the external fields and
.
In the time domain, the field equations for the signal inside

the device are given as [19]

(1)

where is the complex wavenumber, which is in gen-
eral a function of optical frequency , carrier density , and
photon density , here taken at the optical frequency as

(2)

Here, is the group velocity, is the linewidth enhancement
factor, is the modal gain, is the internal loss, and

is the detuning. The Langevin noise terms
are due to spontaneous emission noise. In (2), it has been as-
sumed that the signal is sufficiently narrowband for gain dis-
persion to be neglected. The particular gain model used for the
example calculations in this paper is described in Appendix A.
The boundary conditions for at the end facets are given as

(3a)

(3b)

where are external fields incident on the left and right facets,
is the reflection coefficient of the left (right) facet, and
is the transmission coefficient of the input field incident

on the left (right) facet. Energy conservation implies
and . The relation between

photon densities and field envelopes is

(4)

Neglecting beating and standing wave effects the total signal
photon density becomes . is
the transverse area of the active layer and the area
is the cross-sectional area of the transverse photon distribution
with the confinement factor . is the effective group index.
The fields have unit V and the photon densities have
unit m .

We consider the general case where the carrier density varies
along the -axis, as it is the case when the amplifier is neither
unsaturated nor completely saturated. The rate equation for the
carrier density can be stated as

(5)

where is the pump rate, is the recombination rate
due to spontaneous emmision and nonradiative recombination,
while is the stimulated emission rate due to signal photons
and is the Langevin driving term representing the carrier
noise. The recombination rates used here are

(6a)

(6b)

The term is the stimulated emission rate due to amplified
spontaneous emission (ASE) causing gain saturation and is de-
scribed in Appendix A. is significant only at low input
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powers. The signal output powers and from the left and
right facets are written as

(7a)

(7b)

Here, the effective index experienced by the signal has been ap-
proximated to be while the relation between the input fields

and the left and right input powers just outside the end facets
are

(8a)

(8b)

For and a steady pump distribution
, we can calculate stationary solutions

from the expressions (1) and (5) for given
stationary input fields using standard methods [20]. A
small-signal analysis may then be performed around stable
stationary solutions as described in subsequent sections.

III. SMALL-SIGNAL ANALYSIS

A linear expansion of the field equation (1) and the carrier
equation (5) around a stationary solution consisting of a sta-
tionary field distribution and a stationary carrier distri-
bution forms the basis of the small-signal analysis [19].
Thus, and

. With real amplitudes and phases ,
the field envelopes are written as .
The linearized field equation in the time domain reads

(9)

with the stationary solution . Lin-
earization of the carrier equation yields

(10)

For the stationary carrier density distribution , the sta-
tionary photon density distribution , and,
accordingly, the stationary wavenumber ,
the differentials in (10) are given as

(11)

while is the local carrier
lifetime.

In a notation similar to that used for the field envelopes
, the incident fields just outside the facets are written as

, where and are real
functions. The boundary conditions for the small-signal fields
are found by linearizing (3). For later use, we separate into

real and imaginary parts. For , the linearized boundary
conditions become

(12a)

(12b)

Similarly, for , we have

(13a)

(13b)

The coefficients and are real numbers defined through

(14a)

(14b)

The stationary incident fields are defined as
. The four-dimensional vector , which has

real components in the time domain, is for later use defined in
the Laplace domain

(15a)

(15b)

where denotes the th component of and and are
given as

(16a)

(16b)

A tilde above symbols indicates a function in the Laplace do-
main and the Laplace variable is related to the baseband fre-
quency by . The differential of is seen to be

(17)

Next, the linearized field (9) is separated into real and imag-
inary parts and then Laplace transformed. Also, the linearized
carrier (10) is Laplace transformed and the resulting
is inserted in the Laplace transformed linearized field (9). The
Laplace transformed small-signal fields are then gathered in a
vector , where the super-
script “T” is the transpose. The components of then depend
on and . A matrix equation for can accordingly be written
as

(18)
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The 4 4 matrices and along with the 4-D
vectors and are given in Appendix B. is the Langevin
noise vector function.

With unit vectors having components ,
, the boundary conditions for the small-signal fields in

(12) and (13) may also be stated as

(19a)

(19b)

(19c)

(19d)

The differential operator in (18) has the ad-
joint operator , where the superscript “ ” in-
dicates a Hermitian conjugation. The four-component Green’s
vector functions , , for the adjoint differ-
ential operator are now defined as solutions to the equation

(20)

In order to obtain an explicit expression for , has to
obey the following boundary conditions for and :

(21a)

(21b)

(21c)

(21d)

It is further shown in Appendix C that, by calculating , the
vector can be found explicitly through

(22)

With (22), we can calculate for either a pump rate mod-
ulation , an optical modulation through , or for
a nonzero Langevin noise vector . It requires only that

be calculated.
As in [19], we only evaluate at one of the end facets where

the output is measured in an experiment. Here we choose ,
i.e., at the right facet. In this limit, we use the shorthand nota-
tion for and the limit of
for is denoted . In this limit, (20) is a homoge-
neous equation. Defining vectors and

the matrix we get the homoge-
neous equation for from (20)

(23)

The boundary conditions for given in (21) become

(24a)

(24b)

(24c)

(24d)

The vector function (23) with boundary conditions in (24) can
then be solved, as described in the remainder of this section, to
obtain and in turn the Green’s functions .

Let , , be four linearly independent solutions
to (23). Then, may be written as

(25)

At the left boundary, is chosen to satisfy the condition

(26)

for . By starting at with the conditions (26),
the functions are calculated numerically by propagation to

by the operator . Next, define the matrix
with column vectors by

(27)

and the vectors with components

(28)

Calculating for gives the small-signal devia-
tions at the right facet. Then, we need to obtain and hence
for only. From the boundary conditions (24), vectors

are obtained as

(29)

where is the matrix

(30)

Having obtained and , we may calculate from
(25). The Green’s functions to be used when obtaining

in (22) are then found using .
In the following, we only consider input from the left facet,

i.e., and hence . It should be noted
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that devices with multiple sections separated by reflective ele-
ments and/or with grating structures can be treated by following
[19]. Here we have focused on waveguides without internal re-
flections or grating sections. Notably, however, the pump rate

can be varied along the -axis.

IV. EXPRESSIONS FOR MODULATION RESPONSES

By calculating and hence , we can obtain expressions for
small-signal modulation responses at the right facet. Responses
caused by either optical modulation of the incident field or by
pump rate modulation may be obtained from (22) with
and . Since the responses are calculated in the Laplace
domain, they are in general complex giving both a magnitude
part and an argument.

A. Responses Due to Optical Modulation of Incident Field

The general procedure for deriving expressions for responses
due to optical modulation of the incident field is described in the
following. In (22) set and . The modulation
format can be either an amplitude modulation , a phase
modulation , or a frequency modulation .
Then, from (15) and (17), expressions for and in
terms of (for amplitude modulation) or (for phase or
frequency modulation) can be found. The response can be an
amplitude response, a phase response, or a frequency response.

The output power from the right facet is proportional to
at and the power response follows as

(31)

In the case of optical amplitude modulation, , we have
. Moreover, it is usually more practical to speak

in terms of a modulation of the optical power. Using (8a), the
optical power modulation may be written as

(32)

The output power response due to power modulation of the input
signal outside the left facet follows from (15), (16), (17), (22),
(31), and (32) as

(33)

The magnitude of (33) then gives the amplification while the
argument yields the phase change of the incident RF-envelope
signal at the output as compared with the input. The latter, the
RF-phase change, is used as a measure of slow/fast light in mi-
crowave photonics.

Similarly, we find that the optical phase response due to an
optical power modulation of the incident signal, i.e., how
changes at the right facet when is varied, in units [rad/W]
becomes

(34)

In the case of an optical phase modulation of the incident
field, then . The power response due to an optical phase
modulation outside the left facet becomes

(35)

with units [W/rad]. For the case , it is first seen
that , and, second, it can be shown that

. Then, according to (35), the optical power
response to a phase modulation, , is always zero. This
is understandable as a phase fluctuation at the input is not “seen”
by the semiconductor gain material. However, for finite and

, and are in general finite and
one can have a finite power response .

The optical phase response at the output caused by an optical
phase modulation of the incident field is written as

(36)

On the right-hand sides of (31)–(36), “ ” and “ ” denote the
stationary output and input powers, respectively. Again, when

, there is no resonant response now implying a
unity phase response . Nevertheless, finite
reflectivities and will in general lead to magnitudes that
can differ from unity.

In measurements of responses, one will often perform a ref-
erence measurement to calibrate the experimental setup. For ex-
ample, when using a network analyzer to measure responses at
a range of modulation frequencies, one can do a reference mea-
surement at the transparency point of an SOA, to which other
measurements can be compared.

Next, the expressions for responses due a modulation of the
current are given from [19]. They are the same for an SOA or
a laser subject to optical injection as for a laser without light
injection. The modulation current per unit length is given as

. When modulating the current over
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TABLE I
LIST OF PARAMETER VALUES

Fig. 2. Magnitude of SOA power response due power modulation of the in-
cident field, see (33), for four different chip gains. The SOA has length � �

��� mm and facet reflectivities � � � � �� .

the length of the amplifier, the power output power response,
phase response, and frequency response are given as

(37a)

(37b)

(37c)

As exemplified in [19] the allowed -dependence of the cur-
rent modulation can be used for the study of multi-electrode
devices. In all examples of calculated responses in this paper
we regard one-electrode devices and moreover set . All
shown example calculations share the parameter values listed in
Table I.

V. EXAMPLES OF SOA MODULATION RESPONSES

Figs. 2 and 3 show examples of the magnitude and the ar-
gument, respectively, of the power response due to a power
modulation of the optical input given in (33) for an SOA with
end-facet reflectivities . The stationary input
power is fixed at mW while the pump rate is varied
giving different chip gains. Here, the chip gain is defined as

Fig. 3. Argument of SOA power response due to power modulation of the in-
cident field, see (33). Same cases as in Fig. 2. Inset shows close-up for lower
frequencies.

. For low values of the chip gain (when the amplifier is
unsaturated), one sees the expected characteristics in the high-
and low-frequency limits of the magnitude in Fig. 2: for low
modulation frequencies, the response is inhibited by the car-
rier-density dynamics of the gain material [11], [23]. In the
high-frequency limit, the response approaches the chip gain of
the stationary solution since the carrier density cannot follow
the rapid fluctuations of the field. With increasing chip gain
and thus increasing intra-cavity intensity, the carrier lifetime
decreases giving a wider dip in the response for the lower fre-
quencies. Moreover, as the chip gain is increased the response
curves become increasingly modulated. The modulation period
of 25 GHz corresponds to the spacing between the Fabry–Perot
modes of the cavity, i.e., , with mm. The ar-
gument of the response shown in Fig. 3 is the phase shift of the
injected RF-envelope signal and can be interpreted as slow or
fast light depending on the sign. Positive values yield fast light,
as seen in an SOA with positive modal gain [7]. The RF-phase
shift here has an optimum of about 74 degrees and is clearly af-
fected by the reflections at high gain values.

Examples of calculated optical phase responses caused by a
power modulation of the incident field are displayed in Fig. 4.
The finite optical phase responses due to a power modulation
occur as intensity fluctuations cause carrier fluctuations which
in turn induce fluctuations in optical phase through a nonzero

. Finite facet reflectivities in the SOA are found to modify
the phase-response curves but are not imperative to have re-
sponses of finite magnitude. In contrast, responses caused by
fluctuations in the optical phase of the incident signal in an
active waveguide with zero reflectivities have the magnitudes

and , i.e., the phase modula-
tion will neither be amplified/attenuated nor cause fluctuations
in power. When the facets have finite values, however, the situ-
ation may be different. An incident phase modulated field will
travel through the device and be partly reflected at the right facet.
The left traveling field being reflected at the left facet will inter-
fere with the injected field and thus cause an intensity fluctua-
tion in the total field. The magnitude and argument of
for different chip gains are shown in Fig. 5(a) and (b), respec-
tively. Similarly, in Fig. 6, the magnitude and argument of the

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 28, 2009 at 04:45 from IEEE Xplore.  Restrictions apply. 



956 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 45, NO. 8, AUGUST 2009

Fig. 4. SOA optical phase responses due to power modulation of the incident
signal calculated from (34). (a) Magnitude. (b) Argument. Same cases as in
Fig. 2.

Fig. 5. (a) Magnitude and (b) argument of the SOA power response due to
optical phase modulation calculated from (35). The 14.7-dB plot has been mag-
nified ten times for clarity. Same cases as in Fig. 2.

optical phase response due to a phase modulation can
be seen. The magnitude is greater than unity.

Fig. 6. (a) Magnitude and (b) argument of the SOA optical phase response due
to optical phase modulation calculated from (36). Same cases as in Fig. 2.

VI. EXPRESSIONS FOR NOISE SPECTRA

Output noise spectra are calculated through (22) with
and . For this purpose, the diffusion matrix gives
the magnitudes of the Langevin forces in the correlation relation
for as

(38)

where “ ” denotes an ensemble average. The diffusion matrix
is given as [19]

(39)

In (39) the three terms on the r.h.s. stem from spontaneous emis-
sion noise, carrier fluctuations, and from the cross-correlation
between the carrier fluctuations and the spontaneous emission
noise, respectively. The matrix is diagonal with elements

and . The
diffusion coefficient is stated in Appendix B. The spectral
density of two functions and may be written as

(40)

Here, is the Fourier transform of over a time interval
going from to .

The output RIN spectrum at the right facet, , is then
given by

(41)
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Similarly, the output phase noise spectrum can be
written as

(42)

From (22) and (38), the general cross-correlation spectra in-
volving and for and are given as

(43)

The terms on the r.h.s. of (43) outside the integral are due to
fluctuations on the signal incident on the left facet. For a co-
herent input signal, i.e., a pure CW signal, these terms vanish.
The autocorrelations involving follow as

(44)

and

(45)

while the cross correlations read

(46)

Here, is the RIN of the incident signal given by

(47)

Further, is the input phase noise spectrum

(48)

and is the input cross-correlation spectrum

(49)

As previously mentioned in Section IV, for the case of perfectly
AR-coated facets ( ) we have and

. In this case, e.g., the RIN simplifies to

(50)

In (50), the first term is due to the intensity noise of the device
while the second term represents the RIN of the input signal
being transferred to the right facet by a function depending on
the baseband frequency in agreement with [11]. In correspon-
dence with the discussion regarding the power response due to
a phase modulation, the input phase-noise spectrum does not
enter in (50) because the nonlinearity of the gain material does
not depend on the phase of light.

The field power spectrum is the Fourier transform of the field
autocorrelation function

(51)

We use the following approximate expression for
(see [24] and [25]):

(52)

The symbol “ ” means convolution in the frequency domain,
and the function is the Lorentzian

(53)

For a solitary laser without an optical input, the amplitude phase
cross-spectral density diverges for . How-
ever, this is not the case when an optical input is present.

Furthermore is the frequency spectrum

(54)

whose low frequency limit gives the spectral linewidth
.

In the case of zero linewidth, the field power spectrum of the
output signal becomes

(55)

where the Dirac delta function on the r.h.s. is due to the static
part of the field.

VII. EXAMPLES OF SOA NOISE SPECTRA

In the examples of noise spectra for an SOA we assume the
input signal to be a noiseless CW signal. Maintaining a fixed
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Fig. 7. SOA RIN calculated for different end-facet reflectivities when the chip
gain equals 20 dB. Full line � � � � �, dashed line � � � � �� , and
dotted line � � � � �� .

Fig. 8. SOA RIN for � � � � �� and � � ��� mm. RIN is symmetric
in baseband frequency but is for clarity shown for both positive and negative
frequencies.

chip gain of 20 dB and a fixed input power mW, the
RIN spectra in Fig. 7 reveal a growing ripple when increasing
values of the end-facet reflectivities of the 1.5-mm-long device.
Cases with power reflectivities and (neither shown)
give RINs practically identical to the case of .

The RIN spectra shown in Fig. 8 where
clearly show how signatures of the Fabry–Perot cavity become
pronounced as the chip gain is increased for a fixed input power.
Four different cases for different values of chip gain are shown.
When increasing the chip gain, the level of the RIN becomes
lower while the dips, caused by the nonlinear response of the
SOA [11], around become shallower and wider. The
former effect is due to the increased intensity while the broad-
ened dip is caused by the shortening of the carrier lifetime, in
turn also caused by the increasing intensity following the in-
creasing gain. The bandwidth over which the gain material can
suppress the intensity fluctuations is governed by the reciprocal
carrier lifetime.

Phase noise in an SOA is, in contrast to RIN, enhanced
at lower frequencies since the carrier density fluctuations
inhibiting intensity noise, cause phase fluctuations through a

Fig. 9. SOA phase noise spectra for � � � � �� and � � ��� mm.
The phase noise spectrum is symmetric in baseband frequency but is for clarity
shown for both positive and negative frequencies.

Fig. 10. SOA field power spectra for � � � � �� and � � ��� mm.

nonzero -parameter. The phase noise spectra in Fig. 9 overall
show increased broadening as the chip gain is increased in
correspondence with the RIN.

As in [11], [23] we have omitted the dc part of the output
when calculating the field power spectrum for an SOA. When
calculating field power spectra for an injection-locked laser in
Section VIII, we shall include an input with a finite spectral
linewidth and preserve the dc part of the spectra. Fig. 10 dis-
plays the field power spectra corresponding to Figs. 8 and 9.
The field power spectra for the lowest gain case of 14.2 dB has
an asymmetric shape in agreement with [11], while broadened
and more complicated structure is seen for increasing values of
chip gain, partly as a consequence of the reflections at the facets.

VIII. INJECTION-LOCKED LASER

When the end-facet reflectivities become sufficiently high, an
active waveguide subject to injection of light can act as an in-
jection-locked laser. Here, we show examples of responses and
field power spectra for a laser with light injection. When in-
jecting light into a semiconductor laser the cavity modes of the
solitary laser will be shifted because of a change in carrier den-
sity and the frequency of the shifted cavity mode need not be
identical to the frequency of the injected signal for locking to
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Fig. 11. Normalized field power spectrum,� ������ ���� . The curves are
for detunings � � �� GHz (solid), � � � GHz (dashed), and � � 	 GHz
(dotted). Slave laser has reflectivities � � � � 	
 and length � � ��
�m.
“FP” denotes groups of each three cavity modes. Inset shows close-up: structure
visible for positive frequencies are due to four-wave mixing.

occur. It has been demonstrated that a resonance in the modula-
tion response can be achieved at a baseband frequency equal to
the difference in frequency between the injected signal and the
nearest shifted cavity mode, when the cavity mode is on the red
side of the injected signal [4], [15]. Equivalently, the carrier dy-
namics can be modified by the injected light potentially giving
a modulation-resonance frequency higher than in the absence of
injected light [26]. Moreover, injection of an RF-intensity mod-
ulated optical signal with an optical carrier detuned from the
cavity frequency into a VCSEL has been seen to give rise to
RF-phase shifts of 360 degrees [16].

Since the spatial extent of the cavity is included in the cal-
culations presented here, the presence of multiple longitudinal
modes can be seen in spectra and response curves. For three
different values of the detuning [see (2)] leading to three
different detunings between the injected signal and the nearest
shifted cavity mode, we show the field power spectrum in
Fig. 11 as calculated from (52). Here the injected signal has the
baseband frequency . The carrier signal has an input
power of mW. The linewidth of the incident signal
from the master laser is taken to be finite, namely 60 MHz. The
noise spectra of the master laser is assumed to be the spectra
of a single mode semiconductor laser with its frequency noise
spectrum [27] being dominant. In Fig. 11 the full line denotes
the case of GHz where the nearest shifted cavity
mode lies 6.2 GHz below the master frequency, the dashed
curve represents GHz for which the nearest cavity
mode is 10.0 GHz, and finally for GHz the nearest
shifted cavity mode is at 8.5 GHz below the injected signal
frequency (dotted line). Three other cavity modes are present in
the shown parts of the spectra for each value of . In Fig. 11,
the cavity modes lie in groups of three each marked “FP” for
Fabry-Perot. The length of the slave laser is here m
corresponding to a mode spacing of 50 GHz. Other small spikes
are four-wave mixing images of the cavity modes. Note that
since no gain dispersion is considered, the system is periodic
as a function of , where the frequency of periodicity is given

Fig. 12. Modulation responses for cases in Fig. 11. (a), (b) Magnitude and ar-
gument of the power response due to optical power modulation. The curves are
for � � �� GHz (solid), � � � GHz (dashed), and � � 	 GHz (dotted).

by the mode spacing. Here, GHz is thus equivalent to
GHz. It should also be noted that in this paper we

do not state the condition for phase-locking. Instead, we leave
such an analysis of the locking bandwidth for future work.

For a single-mode laser, the cavity mode of the freely running
laser is shifted towards lower frequencies when light is injected
into the laser. It has been shown that, when the difference in
frequency between the injected signal and the cavity mode is
positive, then under current modulation of the injected-locked
signal there can be a resonance at a modulation frequency cor-
responding to this frequency difference [15], [26]. It has been
argued that, of the two symmetric sidebands generated due to
a modulation, the one on the red side of the injected signal is
more strongly amplified when located at the frequency of the
cavity mode [28]. Examples of modulation responses for the
three different detunings in Fig. 11 are shown in Figs. 12–14.
First, in Figs. 12–13 responses due to modulation of the op-
tical input signal are given. The magnitude displays
resonances at 6.2, 8.5, and 10.0 GHz for the respective three
detunings in correspondence with the spectrum in Fig. 11(a),
where the cavity mode nearest the injected signal has negative
baseband frequencies. This resonance is related to the interac-
tion between the charge carriers and photon population. The
next resonance appears around 40 GHz (for and

GHz). This is a higher order resonance whose loca-
tion is given by the beat frequency of the difference between
the master frequency and the nearest cavity mode (here for the
two clearest cases 8.5 GHz and 10.0 GHz) and the mode-spacing
(here 50 GHz). The next higher frequency resonances are given
by the sum of the detuning and the cavity mode spacing (here
for the two clear cases have peaks around 60 GHz). For
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Fig. 13. Modulation responses for cases in Fig. 11. (a) and (b) Magnitude and
argument of the optical phase response due to optical phase modulation. The
curves are for � � �� ��� (solid), � � � ��� (dashed), and � � 	 ���

(dotted).

GHz the beat frequency is 43.8 GHz and the two soft reso-
nances (here the other one at 56.2) merge into one broad peak
with maximum around 53 GHz. Finally, the resonances around
90 GHz can be understood as beat frequencies involving two
times the mode spacing (i.e., 100 GHz). The higher order reso-
nances are thus related to the round-trip time of the photons in
the cavity. Similar higher order modulation resonances can be
found in long cavity DBR lasers without optical injection [29],
[30].

The behavior of the response in Fig. 13(a) is qual-
itatively very similar to Fig. 12(a). Modulating the optical phase

thus gives rise to a response in optical phase at the output,
which can be greater than 0 dB. In Fig. 14(a), the magnitude of
the power response following a current modulation
has resonances at the same modulation frequencies as seen for
the optical modulation formats.

The corresponding arguments of the responses are displayed
in Figs. 12(b)–14(b). By changing the detuning it possible to
obtain a RF-phase change of 360 degrees for modulation fre-
quencies above the lowest resonance frequencies. The behavior
of the response shown in Fig. 12(b) has been ob-
served in a VCSEL [8]. In Fig. 13(b), we see a very similar sim-
ilar appearance of the response . The main qualita-
tive difference is apparent at low frequencies where in Fig. 12(b)
a significant positive argument due to carrier fluctuations is seen
as opposed to Fig. 13(b) where the argument is close to zero de-
grees. Finally, in Fig. 14(b), even in the case of a current mod-
ulation uniformly distributed over to , we see the
possibility of a change in argument of 360 degrees when varying

.

Fig. 14. Modulation responses for cases in Fig. 11. (a), (b) Magnitude and ar-
gument of the power response due to a uniform current modulation. The curves
are for� � ����� (solid),� � ���� (dashed), and� � 	��� (dotted).

Fig. 15. Calculated stable stationary solutions for a laser with light injection
depicted as curves in the chip gain versus detuning plane. The three bullets cor-
respond to the stationary solutions used for computing responses in Figs. 12–14.
The horizontal dotted line indicates the threshold gain of the solitary slave laser.

While the modulation responses in Figs. 12–14 show pro-
nounced resonance peaks whose frequencies are given by the
relaxation oscillation frequency and its beating with multiples
of the cavity resonance frequency, the strongest features of the
responses for an SOA shown in Figs. 2–5 are chiefly a product
of the carrier lifetime albeit modified by the reflections at the
mirrors.

The three stationary solutions with -values of 1, 9, and
35 GHz are represented by the bullets in the chip gain versus

curve in Fig. 15. The laser exhibits bistability as the detuning
is varied for the fixed injection level. Bistable behavior of
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semiconductor lasers with light injection can be found both ex-
perimentally and theoretically [31], [32]. Here we find that sta-
tionary solutions with chip gain relatively close to the threshold
gain of the solitary slave laser may yield large positive RF-phase
shifts, here exemplified by GHz and GHz. Sta-
tionary solutions with chip gain relatively far from the threshold
gain, here exemplified by GHz, tend to have small pos-
itive or negative RF-phase shifts.

IX. CONCLUSION

We have presented a method for calculating small-signal
modulation responses and noise spectra of an active
Fabry–Perot semiconductor waveguide subject to external
injection of light. The method includes the longitudinal vari-
ation of carrier density in the device and reflections from end
facets. By using a Green’s function technique, semi-analyt-
ical small-signal expressions were derived for responses and
spectra. As examples of the versatility of the method, responses
and noise spectra were calculated for SOAs. For instance, the
modulation-frequency dependence of the RF-phase shift in an
SOA (slow/fast light) was susceptible to modifications due to
reflections at the facets. It was also demonstrated how a phase
modulated optical input signal can cause nontrivial responses in
an active waveguide when the end-facet reflectivities are finite.
Further, the method was used to calculate spectra and responses
of a laser with light injection, something that is usually done
using a lumped model of the slave laser. Inspection of the
calculated field power spectra led to an understanding of the
resonances seen in the responses. When varying the detuning
between the master and the slave laser, large RF-phase shifts of
360 degrees, previously seen in VCSELS with light injection,
was found for a much longer edge-emitting device.

APPENDIX A
GAIN MODEL

For the example calculations presented in this paper, a
model describing gain in quantum wells has been utilized.
The usual expression for material gain for a two-level system
(see [27, eq. (4.37)]) is supplemented by a secant lineshape
function where is the
deviation from the transition energy, is the relative half width

, and is the dephasing time (here taken
as 50 fs). The two-level gain function is convolved with the
lineshape function to obtain the material gain including line-
shape broadening (see [27, eq. (4.40)]). The considered 2-QW
structure consists of wells of thickness 7 nm, with effective
hole mass and effective electron mass , and
a transition matrix element of J kg [27]. Only two
bands are considered. The Fermi energies are calculated for
the lowest order discrete energy level of the valence band and
conduction band, respectively.

Nonlinear gain is introduced in the relation between the
modal gain and the material gain where the confinement
factor and the nonlinear gain coefficient are used as follows:

(56)

The power due to ASE entering the carrier equation is said
to be divided into a number of frequency intervals of bandwidth

[20]. Each interval around frequency is governed by equa-
tions for the forward and backward traveling ASE governed by
the equations (one for each direction)

(57)

where is the population inversion factor and is the op-
tical bandwidth. At the end facets, the boundary conditions for

are expressed as

(58a)

(58b)

The recombination rate in connection with stimulated emission
due to ASE is written

(59)

The photon density is given as
. The constants with for TE and

for TM polarization are weights for the two different
polarizations of light. For bulk material they are unity for both
polarizations, while for QWs the gain is strongly polarized
giving different weights. For QWs it is fair to make the approx-
imation and .

APPENDIX B
MATRICES

The Laplace transform of the differential in (10)
may be written as

(60)

where the vector is defined as . The
matrix in (10) follows as

(61)

where

(62)

and

(63)

In (62), is the linewidth
enhancement factor. It has been assumed that

. When the signal expe-
riences no gain dispersion, the matrix is simply the
unit matrix. Further, the matrix is diagonal matrix with

. The
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partial derivatives and in general depend on .
Finally, the Langevin driving vector function in (18) becomes

(64)

where and are given by

(65)

(66)

The diffusion coefficient for carrier density fluctuations
in the correlation relation for

(67)

is given by

(68)

Here, describes the noise of the current pump source. For
the pump source exhibits shot noise behavior, while for

it behaves sub-Poissonian. In this paper, is used.

APPENDIX C
GREEN’S FUNCTION

The expression (18) is obtained using partial integration and
by choosing the appropriate conditions for the vector Green’s
function as shown in this appendix. Partial integra-
tion gives

(69)

Boundary conditions for in (19) and in (21) at and
give the relations

(70a)

(70b)

Then, by multiplying both sides of (18) by and inte-
grating from to , utilizing (69) and (70) leads to the
explicit expression for in (22).
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