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Synopsis

The transient uniaxial elongational viscosity of BASF Lupolen 1840D and 3020D melts has been
measured on a filament stretch rheometer up to Hencky strains of 6—7. The elongational viscosity
of both melts was measured at 130 °C within a broad range of elongational rates. At high
elongation rates, an overshoot or maximum in the transient elongational viscosity followed by a
steady viscosity was observed. The steady elongation viscosity was about 40%-50% less than the
maximum at high strain rates. The steady elongational viscosity as a function of the elongation
rate, e, decreases approximately as°® in both melts at high strain rates. The transient
elongational viscosity, measured at a specific elongation rate at 170 °C on the BASF Lupolen
3020D melt, did not follow the time temperature superposition principle based on linear
viscoelasticity during the decrease in the transient elongational viscosity towards the steady
state. ©2005 The Society of RheolodypOl: 10.1122/1.1849188

I. INTRODUCTION

About 40 years ago interest in the measurement of elongational viscosity of polymer
melts started to growTanneret al. (1998]. Measurements are most frequently reported
either as steady elongational viscosity as a function of elongational rate, or as transient
elongational viscosity as function of time for a fixed elongational rate. Generally, it seems
to be assumed that the transient elongational visc¢agypposed to the transient shear
viscosity is an monotone increasing function of time. Raibteal. (1979 presented the
first measurements concerning the possible existence of an overshoot in the transient
uniaxial elongational viscosity of a polymer melt for a low density polyethyl&mPE).
Contemporary and more recent measurements of elongational viscosity of [LRBE
and Minstedt(1978; Minstedt and Laur(1979; Wagneret al. (2000; Bach et al.
(2003h] do not indicate the existence of a maximum in the transient elongational vis-
cosity. The experimental observation of a maximum in the transient elongational viscos-
ity would have important implications for the constitutive modelling of polymer melts.

dauthor to whom all correspondence should be addressed; electronic mail: oh@kt.dtu.dk

© 2005 by The Society of Rheology, Inc.
J. Rheol. 492), 369-381 March/April(2005 0148-6055/2005/42)/369/13/$25.00 369



370 RASMUSSEN et al.

TABLE I. Characterization of the BASF Lupolen 1840D and 3020D polymer melts. Linear viscoelastic spec-
trum from Bastian(200J) for the Lupolen 3020D.

Polymer melt LDPE LDPE
Product Lupolen 3020D Lupolen 1840D
Producer BASF BASF
My, (g/mol) 300 000 490 000
M, (g/mol) 37 500 16 000
My/M, 8 30.6
T, (°C) 114 106
T (°C) 170 130
Relaxation g (Pa 7 (9 g (Pa 7 (9
spectrum at the 1.117xX 1% 3.278x 1% 8.31X 17 8.23x 1(?
temperaturel 1.081x 10 5.141x 10 2.90x 10 9.55x 10t
3.904x 103 9.052x 10° 6.20x 10° 1.73x 10
1.008x 10* 1.626x 1¢° 1.27x10* 3.35x 10°
2.220x 10* 2.855x 1071 2.42x10* 5.60x 107t
3.686x 10* 4.997x 1072 4.36x 104 1.07x 10t
5.886x 10* 9.580x 1073 1.29x 10° 1.15x 102
1.542x 10° 1.472x 1073

Recent suggested constitutive equations for branched polymer melts, the Pom-Pom
model [McLeish and Larson(1998] and the molecular stress functigMSF) model
[Wagneret al. (2003)], find a monotone increase in the transient elongational viscosity.
However, some of the previously suggested constitutive equations were able to predict an
overshoot followed by a steady viscosfgee for instance Wagnet al. (1979]. Hence,
it is important to examine the question of whether or not a constitutive equation for
branched polymer melts should be able to predict a maxinffiatiowed by a steady
statg or a monotone increase in the transient elongational viscosity to the steady viscos-
ity.

We have measured the transient uniaxial elongational viscosity of two BASF LDPE
melts, BASF Lupolen 1840D and 3020D using the filament stretch rheorte$&). A
steady-state viscosity was kept for 1-2.5 Hencky strain units in all measurements.

Il. MATERIAL

The Lupolen 3020D LDPE melt used here has previously been characterized in shear
and uniaxial elongation. Bastigi2001) measured the transient uniaxial elongation vis-
cosities at 170 °C using the Rheometrics melt extensionfBdiE). Details of the RME
rheometer design and experimental procedure are given in Bagt@d). In this work,
uniaxial elongation measurements were performed at 130 °C for the Lupolen 1840D and
at 130 and 170 °C for the Lupolen 3020D LDPE melt. Note that our measurements on
the Lupolen 3020D are on the same grade as Ba&ia@y), but not the same batch. Still,
our small-amplitude oscillatory shear measureménsing a plate—plate geometry on a
TA Instruments, AR2000are in agreement with Bastiaf2001), and the elongation
measurements are in reasonable agreement with Ba&tf). The properties of the
melts are listed in Table I. The linear viscoelastic memory functi(s), and relaxation
modulus,G(s), are described as a sum of exponential function. Thus
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N
M =3 L exp-/m) (1)

and

N
G(9) = X g exp-o/m), 2

where the modulg; and relaxation times; are given in Table I.

The moduli and relaxation times for the Lupolen 3020D nigthm Bastian(2001)]
are listed at 170 °C in Table I. As our elongation measurements are mainly performed at
130 °C, the linear viscoelastic time-temperature shift facégr, was measured from
130 to 170 °C. This valuea;=6.4, was calculated as the ratio between the angular
frequenciesw, at the cross over point for the two temperatures. The crossover point is
defined as the angular frequency where the storage modulus is equal to the loss modulus;
G'(w)=G"(w). The storage modulus and loss modulus were measured in small amplitude
oscillatory shear flow using a plate-plate geometry on an AR2000 rheometer from TA
Instruments. The steady shear viscosity was also measured using the same rheometer in a
cone-plate geometrfradius 10 mm and a 1° cone angle

We have not been able to measure the largest relaxation times, and consequently the
zero-shear viscosity, for the Lupolen 1840D melt as the linear viscoelastic measurements
are affected by crosslinking at the time needed to characterize at angular frequencies
lower than 5< 1074 s™* at 130 °C. The molecular structure of the Lupolen 1840D, among
other LDPE melts, has been discussed in Nordmetieal. (1990a, 1990pb

Ill. THE FILAMENT STRETCHING RHEOMETER

McKinley and Sridhai2002 have given an extensive review of elongational rheom-
etry with particular emphasis on the filament stretch rheometer. The apparatus used in our
experiments is a vertical filament stretching rheometer, surrounded by a thermostated
environment, where the bottom plate is stationary and the upper plate is pulled. Basically
a cylindrical sample is placed between two parallel plates and at tiree®, the upper
plate is pulled decreasing the midradius in the sanf(B, exponentially in time. This
applies a constant elongation ratg, at the centre of the sample from 0. At t<0 the
strain rate is 0. A laser is used to measure the mid-diameter of the filament during an
experiment. The average strain ragg,is calculated from the measurement of the diam-
eter by fitting an exponential functidR(t) =R, exp(—egt/2) whereR, is the initial sample
radius andR(t) the actual sample radius. Generally, the relative deviation between mea-
surements and fit never exceeded 4%. At elongation rates lower thant@hk sleviation
between measurements and fit was never above 2% and usually within 1%.

The advantage of the FSR compared to conventional techniques for elongation rhe-
ometry is the ability to predict the location of the symmetry pléie necking of the
sample. Subsequently this critical region can be monitored, and the distance between the
end plates adjusted online obtaining a constant stretch rate at the neck. Notice that the
laser simultaneous measures the diameter of the filament and records video images of the
area surrounding the place where the diameter is measured, giving a good assessment of
the local sample deformation as a function of strain. Thus it is ensured that the sample
stays centere@symmetric neckingand the radius of curvature of the neck in the axial
direction is sufficiently large.
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FIG. 1. The uncorrected transient elongation viscositigof Lupolen 3020D measured at 130 °C, using Eq.
(3), shown as a function of the Hencky straén,;* are measured at five different elongational rates shown
in the figure.

Recently[Bachet al. (20033] the FSR rheometer has been improved using a closed
loop proportional regulator scheme to control the deformation of the sample. This re-
places the iterative Orr—Sridhar methidghchet al. (2003h] and has allowed measure-
ments at considerably higher strain values than presented before.

During an experiment both the sample radR&) and the axial force=(t) in the
filament were measured as a function of time. The axial force is measured on the fixed
bottom end plate, which is mounted on a weight cell placed outside the thermostated
environment.

When the average strain rate had been established, the transient elongational viscosity
7' (t) was calculated using

F(t) - mg

7'(t) = RO

)
where the measured forc&, has been corrected by the weight of lower half of the
polymer filament,m; and the gravitational acceleratian [Szabo(1997; Szabo and
McKinley (2003]. This weight is measured by forcing the filament to break in the
symmetry plane after the end of an experiment.

This paper presents measurements of transient elongational viscosity of up to a
Hencky strains of 7. The Hencky strain is definedeé$=-2 In[R(t)/ Ry] whereR; is the
initial sample radius an&(t) the actual sample radius, measured at the symmetry plane
of the filament as a function of time.
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FIG. 2. The corrected transient elongation viscositifsf Lupolen 3020D at 130 °C, using E@), shown as
a function of the timet. The measurements are the same as in Fig. 1. The line is the linear viscoelastic
prediction of the transient elongational viscosity.

IV. LDPE TEST SAMPLE

The two LDPE polymers, supplied in pellets, were pressed into cylindrical test speci-
mens by a Carver hydraulic press at 130 °C, with radygs 4.5 mm and lengthd,,
=2.5 mm, giving an aspect ratiby=Ly/Ry=0.56. A low initial aspect ratio is required
for measuring on LDPE melt at high elongation rates in the FSR. At low aspect ratio, the
location of the neck in the circular sample, during the extension, is predictably placed in
the middle of the filament, creating the symmetry plane, where the laser sheet is located.
By contrast, with a high aspect ratio, an unexpected neck located closer to one of the end
plates typically occurs. As a consequence, the filament will break asymmetrically and the
symmetry plane at the mid filament is lost. The procedure designed to apply the cylin-
drical sample to the cylindrical shaped stainless steel end plates is described in detail in
Bachet al. (2003h.

At small strains the shear components in the deformation field adds an extra force
contribution during start-up, especially at small aspect ratios. The extra shear component
originates from the no slip condition at the rigid end plates. For Newtonian fluids this
reverse squeeze flow problem can be modeled analytically eliminating the effect of the
shear by a correction factg8piegelberg and McKinley1996]:

_'*[1 , EXP-7€l3) }'1

;Zorr =7 3 A(Z) (4)

where 775, is the corrected transient uniaxial elongation viscosity.
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FIG. 3. The uncorrected transient elongation viscositigsf Lupolen 1840D measured at 130 °C, using Eq.
(3), shown as a function of the Hencky straén;" are measured at three different elongational rai&s shown
in the figure.

This correction is analytically correct for very small straiesy., basicallye=0) for all
type of fluids. At increasing strains the corrections are less appropriate, where the effect
of the correction fortunately vanishes. In this work we have chosen to present the data
both uncorrected and corrected in the presentation of the elongation measurements, as we
also prefer to present the raw data. For the aspect ratio used here, this extra force
contribution is negligible after about one strain unit. This was also demonstrated theo-
retically in Kolte et al. (1997 and experimentally in Backt al. (2003h for polymer
melts.

V. ELONGATIONAL VISCOSITY MEASUREMENTS

During extension, the molten polymer filament is surrounded by nitrogen. Hence,
there is a lower limit on the extension rate at which sagging of the filament can be
neglected during an experiment. A relevant measure of the magnitude of gravitational
forces relative to the viscous forces is the ratio of the Reynolds number to the Froude
number,L, exple)pg/ (2e57%), Wherep is the density of the polymer melt. From this we
estimate that sagging of the polymer melt can be neglected, as this number is less than 0.2
in all performed experiments.

The effect of the surface tension can be neglected as the surface elasticity number
[Spiegelberg and McKinley1996; Rasmussen and Hassa@2001)] do have values of
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FIG. 4. The corrected transient elongation viscositigsof Lupolen 1840D at 130 °C, using E@#), shown as
a function of the timet. The measurements are the same as in Fig. 3. The line is the linear viscoelastic
prediction of the transient elongational viscosity.

the order 10° for the two polymer melts. The surface elasticity numhgris calculated
as the ratio of stresses due to surface tensigR, relative to the elastic modulus @s
=o/(R-G), whereG is the plateau modulus.

We present our complete data series, measured at 130 °C, for the LDPE melts in Figs.
1-4. In Figs. 1 and 3 the uncorrected transient elongation viscosities, usirg)Eare
shown as a function of the Hencky strain. Keep in mind that our data should not be used
without correction for Hencky strains less than unity. In Figs. 2 and 4 these measurements
as a function of time are shown corrected, using @&g. Note that the theory of linear
viscoelasticity(the line in Figs. 2 and ¥may be used to predict the corrected transient
elongational viscosity atvery) small strains from the relaxation modulus. The experi-
ments show good agreement with the predictions from linear viscoelasticity. In order to
illustrate the reproducibility some of the measurements have been repeated two or three
times. As the strain or elongation rates of the repeated experiments are within 1%, the
measurements are not labeled individually. Overall the experiments show differences of
about 10%—-20%.

We notice that the elongational viscosity reaches a steady state in all experiments. The
plateau values of elongational viscosity are constant within about 10% and the steady
state has been measured during at least one strain unit for both melts. The only exception
is at the highest strain rate. At the highest elongation velocity, it has not been possible to
adjust the plate motion to avoid premature sample failure. This is due to the strong
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FIG. 5. The uncorrected extensional stress,— o, =7"(t)¢,, divided with the absolute temperatuig, as a
function of the Hencky straine of Lupolen 3020D melto,,~o,, or %'(t) are measured at 130 °C ard
=0.03 s? (the measurements are the same as in Bigntl at 170 °C an@=0.192 s?.

nonlinear elastic behavior of the LDPE melts. Note, the small fluctuations in the steady-
state values are correlated with small changes in the instantaneous strain rate.

The elongation measurements on the BASF Lupolen 3020D were also performed at
the elevated temperature 170 °C to examine the effects of time-temperature superposi-
tion. In Fig. 5 we plot the extensional strdss,— o, = 7" (t)&,] divided with the absolute
temperature as a function of the Hencky straip,.and o,, are the axial and radial stress
components, respectively. The three measurements at strain rate Dfé8rs Fig. 1 (at
130 °O and the three measurements performed at 170 °C at an elongation rate of
ar-0.03 §1=0.192 s* are shown.

To test whether or not the elongation measurements at 170 °C are affected by
crosslinking during the thermostating of the LDPE sample, measurements were per-
formed decreasing the time of the thermostating period of about a factor of 2. All mea-
surements were within the experimental accuracy.

VI. DISCUSSION

The measurements below elongation rates of 0:Fsach Hencky strains of 6-7,
showing a convincing steady plateau at high strain. This plateau is reached after going
through a significant maximum in the transient elongational viscosity at high strain rates.
Depending on the elongational rate, the steady elongational viscosities are reduced by
factors in the range 1.0—1.9 for both melts. A monotone increase in the transient elon-
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FIG. 6. Interpretation of reduction in stress in terms of Pom-Pom picture. At the maximum in stress, the arms
contribute to the tension in the backbone. At steady state, the molecule becomes effectively a linear polymer
without arms.

gational viscosity to its steady viscosity is measured at low elongation rates. At high
strain rates the maximum can erroneously be interpreted as a steady viscosity, as the
transient viscosity does not change more than 10% within one Hencky strain unit. How-
ever, the steady viscosity is reached about one strain unit later than the maximum. We
interpret the relatively steep drop in the transient elongational viscosity as a result of a
sudden retraction of sidechains from the backbone of the branched polyethylene mol-
ecule, into the tube occupied by the backbone. This is illustrated in Fig. 6. Notice that the
Pom-Pom moddIMcLeish and Larsor1998] does not predict a reduction in the stress,
since the authors did not consider a reduction in crossbar tension as a result of arm
retraction into the backbone tube. The earlier maximum in the transient elongation vis-
cosity is related only to branched polymer melt. Linear melts do show a monotone
increase in the transient elongational viscosity to its steady visd@styhet al. (2003a,
2003b].

In Fig. 5 we compare measurements performed at 130 °C with measurements per-
formed at 170 °C, but shifted to 130 °C by the shift factor obtained in linear viscoelastic
measurements. Up to a Hencky strain somewhat below 3, practically all data collapse on
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FIG. 7. The steady elongation viscositieg(x andJ), and three times the steady shear viscositigs,-8 and
o), of Lupolen 1840D(C] and°) and Lupolen 30200X and +), measured at 130 °C, shown as a function of
the elongation rates, and shear ratg, respectively.

a single curvésee also Miinstedt and Lagh979]. Hence, the measurements follow the
time temperature superposition principle based on linear viscoelasticity. Above a Hencky
strain value of 3, the deviations between the measurements at 170 and 130 °C, as pre-
sented in the figure, are up until 40%. This is due to the decrease in transient elongational
viscosity at 170 °C happening about one strain unit later than the measurements at
130 °C. As the steady state is reached, all the measurements in Fig. 5 match within the
relative large experimental scattering. The delay of the decrease in the transient elonga-
tional viscosity emphasize that the time constant in the underlying dynamics, which we
expect is the sudden retraction of side chain, do scale differently than the overall dynam-
ics of the polymer.

In Fig. 7 we show the steady shea;, &nd elongational viscosity;, as a function of,
respectively, the sheay, and elongation rate, for the Lupolen 1840D and 3020D melt.

At high elongation rates the viscosity decreases approximately%sin both melts.
Bachet al. (20033 and by Gupteet al. (2000 have observed the same slope within the
experimental accuracy, measuring steady elongational viscosity on monodijperage
polystyrene melts and solutions, respectively. Bachl. (2003h have also observed this
phenomenon measuring on linear low density polyethylgh®PE) melts.

The observation that the steady elongational viscosity decreases with the same slope
as linear melts and follows the time temperature superposition principle indicate that all
sidechains in fact retract, leaving only one effective chain expected to behave similar to
a linear polymer. We take this as an indication, that the LDPE arms are indeed collapsed
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into the tube occupied by the backbone, concluding that the LDPE in the steady state
behaves effectively as a linear polymer. The asymptotic behavior of elongational viscos-
ity for large elongational rates has been analyzed by McKinley and Sri@0@2. In
particular they show that the inclusion of finite extensibilfiyiest (1989] in the
Giesekus anisotropic friction dumbbell model yields an asymptotic relatiyd which
is close to our observations.

Notice that the steady shear viscosity changes with almost the same exponent as the
elongational viscosity. The steady elongational viscosity is only about four times higher
than (three timeg the steady shear viscosity.
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APPENDIX

In this paper we have reported and discussed experimental observations of time de-
pendent uniaxial elongation viscosities of LDPE melts. One of the classical theoretical
discussions in the literature is whether or not a constitutive equation for branched poly-
meric melt should be separable in time and strain. See Wagnak. (2001) for more
details. A constitutive model as the Pom-Pom model is not separable in time and strain
whereas the MSF model is. In this appendix we will apply the assumption of time and
strain separability on our Lupolen 3020D elongation data as a contribution to the ongoing
discussion. In the start-up of an uniaxial elongation flow the time and strain separability
requires that the stress or viscosity can be writtehsas Wagne(f1978]:

. t
PECUE G f Mt~ t) S et~ t)]dt, (A1)

€ €Jo

whereS(e) is a strain dependent functionthe present time, an@(t) and M(t—t’) are
the linear viscoelastic relaxation modulus and memory function, respectively. The
memory function and relaxation modulus are defined in Etjsand (2).

Using Eq.(Al) the strain function can be calculated from the viscosity data as

7](:0”(6) .60 € — M (6’/.60)
= o= N————de’' A2
e Glee) Jo 7’°°”(6)G(e'/'eo)2 € (A2)

from Wagner(1978.

Note that we use the corrected viscosity from K. in this formula. As mentioned
before this correction is analytically correct for very small strding., basicall=0) in
all types of fluids. The correction is less appropriate at increasing strains, where the effect
of the correction fortunately vanishes. The strain func0¢), based on the assumption
of time and strain separability, is written as a function of the Hencky strain in Fig. 8,
using the measurements from Fig. 2. The time strain separability turns out to be an
excellent assumption up to a Hencky strain value of 3, where the assumption is no longer
valid. This is the same strain as the failing of time-temperature superposition. On the
basis of our performed experiment we cannot preclude that the principle of time strain
separability may be valid at higher strain rates than shown in Fig. 8.
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FIG. 8. The strain functionS(e) defined in Eq.(Al), as a function of the Hencky straim, The viscosity
measurements, of Lupolen 3020D measured at 130 °C, are used to cafffu)attom Eg. (A2) and from
Fig. 1.
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