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Abstract

In this paper we provide a method for evaluating in-
terest point detectors independently of image descriptors.
This is possible because we have compiled a unique data
set enabling us to determine if common interest points are
found. The data contains 60 scenes of a wide range of ob-
ject types, and for each scene we have 119 precisely located
camera positions obtained from a camera mounted on an in-
dustrial robot arm. The scene surfaces have been scanned
using structured light, providing precise 3D ground truth.
We have investigated a number of the most popular inter-
est point detectors. This is done in relation to the number
of interest points, the recall rate as a function of camera
position and light variation, and the sensitivity relative to
model parameter change. The overall conclusion is that the
Harris corner detector has a very high recall rate, but is
sensitive to change in scale. The Hessian corners perform
overall well followed by MSER (Maximally Stable Extremal
Regions), whereas the FAST corner detector, IBR (Intensity
Based Regions) and EBR (Edge Based Regions) performs
poorly. Furthermore, the repeatability of the corner detec-
tors is quite unaffected by the parameter setting, and only
the number of interest points change.

1. Introduction

The ability to match descriptors obtained from local in-
terest points is widely used for obtaining image correspon-
dence. This is based on the assumption that it is possible
to find common interest points. For this to be useful for
e.g. geometric reconstruction, corresponding interest points
have to be localized precisely on the same scene element,
and the associated region around each interest point should

Figure 1. Example of data and setup. Two images of the same
scene with one close up (a), one distant from the side (b), and
the reconstructed 3D points (c). Corresponding interest points can
be found using the geometric information of the scene with known
camera positions and 3D scene surface as schematically illustrated
in (d).

cover the same part of the scene. In general it is hard to
determine if correspondence exist between interest points,
because it requires ground truth of the geometry of the ob-
served scene.

A wide range of applications are based on matching lo-
cal image descriptors obtained from image interest points.
These applications include object recognition [8], image re-
trieval [15, 20], and similar, but for these types of appli-
cations the precision of the spatial position is less impor-
tant. However in applications for 3D geometry reconstruc-
tion from interest points it is important to have a precise
point correspondence [21, 22, 24].

It is common to distinguish between detecting interest
points and computing the associated descriptor. This could
indicate that the two steps are independent, see e.g. [11, 12].
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The question is, however, if this assumption is reasonable.
Interest points and the associated regions are found from
salient image features, and the same image features will be
part of the actual characterization. As a result the two parts
are not independent, and the choice of interest point detec-
tor will influence the description of the region around the
interest point. This will limit the subspace spanned by the
descriptors and this way reduce the specificity of the de-
scriptor. An alternative to feature based interest points is
to pick the interest points at random, but it will be unlikely
to obtain precise spatial correspondence between a sparse
set of randomly picked point. So, the ability to detect corre-
sponding interest points, in a precise and repeatable manner,
is a desirable property for obtaining geometric scene struc-
ture. In this paper we will investigate exactly that property.

Early work on correspondence from local image features
was based on rotation and scale invariant characterization
[8, 18], and interest points from planer scenes was evaluated
in [19]. Later the interest points has been adapted to affine
transformation, making the characterization robust to larger
viewpoint change. These methods have been surveyed in
[12], but the performance has been evaluated on quite lim-
ited data-sets, consisting of ten scenes each containing six
images. The suggested evaluation criteria have since been
used in numerous works together with this small data set.

The ground truth in the data from [12] was obtained by
semi-manually fitting an image homography. As a conse-
quence this limits the scene geometry to planar surfaces
or images from a large distance where a homography is
a good approximation. To address this issue Fraundorfer
and Bishof [4] generated ground truth by requiring that a
matched feature should be consistent with the camera ge-
ometry across three views. In Winder et al. [7, 27, 28] re-
sults from Photo Tourism [21] was used as ground truth.
These approaches use feature matching to evaluate the
matching of features, which can be problematic. If er-
rors occur in the ground truth there can be a bias towards
wrong correspondences in the proposed matching. As a re-
sult these wrong correspondences will not be detected.

Moreels and Perona [13] evaluated interest point features
similar to [4] based on pure geometry by requiring three
view geometric consistency with the epipolar geometry. In
addition to this they used a depth constraint based on knowl-
edge about the position of their experimental setup. Hereby
they obtained unique correspondence between 500-1000 in-
terest points they obtain from each object. The limitation of
their experiment is relatively simple scenes with mostly sin-
gle objects resulting in little self-occlusion, which is very
frequent in real world scenes and typically many interest
points are found near occluding boundaries.

We have compiled a large data set that provides a unique
basis for this study. It consists of 60 scenes of varying object
types and complex surface structures resulting in a total of

Figure 2. Illustration of data collection setup. The camera is
mounted on a robot arm (a) capturing images of the scene (b).
LED point light sources illuminate the scene from 18 individual
positions (c). Photos of the real setup (d,e).

almost 150.000 images1. Figure 1 shows an example from
our data set. The experimental setup consists of a camera
mounted on an industrial 5-axis robot-arm, providing accu-
rate and repeatable positioning. In addition the scenes have
been surface scanned using structured light, and together
with the camera positions these scans supply ground truth
for feature correspondence. As a result we can easily find
corresponding interest points on the scene surface. We eval-
uate nine established interest point detectors on this data set
and provide new insight into the stability of these detectors
with respect to large viewpoint and scale change.

The paper is organized as follows. Section 2 describes
the image data and details of how we obtained ground truth.
In Section 3 our method for geometric based correspon-
dence is described, and in Section 4 the details of the ex-
periments are given. We discuss and conclude the approach
and obtained results in Sections 5.

2. Data
The setup for data acquisition is illustrated in Figure 2,

and a detailed description of the data is available in [1]. The
entire setup is enclosed in a black box and the scenes can be
up to about half a meter, but the closest images depict about
25 × 35 cm. Scenes have been selected to show a large
variation in scene type and they contain elements that are
challenging for computer vision methods, like occlusions
and various surface reflectance properties. There are 60
scenes with varying type of material and reflectance proper-
ties, including model houses, fabric, fruits and vegetables,
printed media, wood branches, building material, and art
objects. Image examples are shown in Figure 4. Color im-
ages of 1200× 1600 pixels have been acquired, but we use
600 × 800 down-sampled versions in grayscale, which is
done for computational reasons.

1http://www.imm.dtu.dk/robotData
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Camera positions The images are acquired from a cam-
era mounted on a robot arm. This gives a freedom to po-
sition the camera in any direction. Figure 3 illustrates the
camera path that we used for each scene. We have chosen
the center frame closest to the scene as a key frame. The key
frame is used as the reference image for evaluation, and in
our experiments feature correspondence is found relative to
that frame. The camera positions are very accurate with a
standard deviation of approximately 0.1 mm, and the stan-
dard deviation on the back projected pixel was 0.2 to 0.3
pixels.

Light The scene is illuminated by 18 individually con-
trolled light emitting diodes (LEDs), which can be com-
bined to provide a highly controlled and flexible light set-
ting, see e.g. [6]. We use this in an experiment with varying
illumination, and in the other experiments we have simple
combination of all light sources for diffuse illumination.

Surface reconstruction We use structured light to obtain
3D surface geometry of the scenes. Figure 1 (c) shows an
example of our surface reconstruction. We use a stereo cam-
era setup and gray encodings to solve the correspondence
problem. This method is recommended as one of the most
reliable methods in both Scharstein and Pal [17] and Salvie
et al. [16]. The scene surfaces have been scanned using two
camera pairs at two distances from the scene. This is done
to cover as much of the scene visible from the key frame
as possible, see Figure 3. We obtain a varying number of
surface points from around 100.000 to 500.000 points de-
pending on the size of the scene.

3. Method

Our goal is to analyze invariance properties of interest
points found in corresponding images. The design of our
data set enables us to answer questions like what happens
to interest points with change in view point? How many of
the interest points are actually relevant? Are interest points
precisely located? Answers to these and related questions
will provide an improved basis for choosing the appropriate
methods for extracting interest point for computer vision
system design. Evidence for interest point correspondence
is obtained by fulfilling three criteria. We will now provide
the details of our analysis.

The normal procedure for image matching using interest
point descriptors contains the following three steps. First
interest points are detected providing a spatial localization
of the regions of interest. Secondly a descriptor is assigned
to the detected interest point, which is invariant to scale,
rotation, and affine transformation. In the third step the de-
scriptors are matched to find correspondence.

Key Frame

Arc 1

Arc 2

Arc 3

Scene

Linear Path

Figure 3. Camera positions. The camera is placed in 119 positions
in three horizontal arcs and a linear path away from the scene. The
central frame in the nearest arc is the key frame, and the surface
reconstruction is attempted to cover most of this frame. The three
arcs are located on circular paths with radii of 0.5 m, 0.65 m and
0.8 m, which also defines the range of the linear path. Further-
more, Arc1 spans +/− 40◦, Arc2 +/− 25◦ and Arc3 +/− 20◦.

Evaluation criteria Evaluation of the performance of in-
terest point detectors cannot be based on the associated de-
scriptor, because the descriptors might not be unique. As a
result it is impossible to tell if a given correspondence is cor-
rect or a mismatch between similar looking image regions.
Therefore the evaluation has to be done independently of
the interest point detection. We utilize the geometry of both
the 3D scene surface and the camera positions to obtain this
independent evaluation basis. Our evaluation criteria, with
regard to pixel distances and scale, are based on a trade-
off between as few double matches as possible and not dis-
charging points because of small variations in position of
the interest points.

For each point in the key frame there has to be at least
one interest point in the corresponding image fulfilling all
three criteria, for the point to count as having a potential
match. If more than one point fulfill all criteria it still counts
as a one potential match.

Epipolar geometry Consistency with epipolar geometry
is the first evaluation criterion. The camera positions of all
images in our data set is known with high precision, which
provides basis for the relationship between points in one
image and associated epipolar lines in another. This is used
for removing false matches for a given interest point. We
discharge points that are further away than 2.5 pixels or-
thogonal to the epipolar line, as illustrated in Figure 5 (a).
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Figure 4. Example images from our data set. The images show a diffuse relighting obtained by a linear combination of the 18 directional
illuminated images. From left the scenes are examples of houses, books, fabric, greens, and beer cans, which has been used in our feature
matching experiment with light variation.

Figure 5. Matching criteria for interest points. This figure gives
a schematic illustration of a scene of a house and two images of
the scene from two viewpoints. (a) The consistency with epipo-
lar geometry, where corresponding descriptors should be within
2.5 pixels from the epipolar line. (b) Window of interest with a
radius of 5 pixels and corresponding descriptors should be within
this window, which is approximately 3 mm on the scene surface.
Ground truth is obtained from the surface geometry. (c) The scale
consistency, where corresponding descriptors are within a scale
range factor of 2 from each other.

Surface geometry 3D surface reconstruction is used in
the second evaluation criterion. Two points are considered
a positive match if their 3D position is close to the scene sur-
face obtained from the structured light reconstruction. This
is fulfilled if there is a point from the surface reconstruction

within a window of 10 pixels around a point, which corre-
sponds to a box of approximately 6 mm on the scene sur-
face. The surface reconstruction is not complete, so points
in regions without surface reconstruction are discharged,
which only few points were. The surface geometry con-
straint is illustrated in Figure 5 (b).

Absolute scale A region around each interest point pro-
vides the basis for an image descriptor. The interest points
are detected in a multi-scale approach and the size of this
region is dependent on what scale the interest point is de-
tected. This image region corresponds to an area on the
scene surface and corresponding descriptors should cover
the same scene part. This area correspondence provides the
basis for the third evaluation criterion, which is illustrated
in Figure 5 (c), and the area of this region has to be within
an area range of 0.5 - 2 of each other.

4. Experiments
We have investigated a number of interest point de-

tectors namely Harris and Hessian corner detectors [10],
Maximally Stable Extremal Regions (MSER) [9], Intensity
Based Regions (IBR) and Edge Based Regions (EBR) [26],
and the Fast Corner Detector [25], and our experiments are
based on the implementations presented in [11, 12]2. As
an evaluation measure we use recall rate, similar to that of
[11], which is the ratio

Recall =
Potential Matches

Total Interest Points
.

The potential matches are points from the key frame fulfill-
ing all three correspondence criteria. The total number of
interest points is the number of interest points found in the
key frame, see Figure 3.

Methods for interest point detection should ideally iden-
tify the same scene regions independently of camera posi-
tion and illumination. As a result we have investigated the
recall rate of the interest point detectors relative to varia-
tion in camera position and light over the 60 scenes in our

2http://www.robots.ox.ac.uk/˜vgg/research/
affine/index.html
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Detector # Interest Points Std. Interest Points
Harris 925 665
Harris Laplace 736 538
Harris Affine 718 524
Hessian Laplace 1045 635
Hessian Affine 839 560
MSER 354 261
EBR 423 614
IBR 250 139
FAST 1539 1644

Table 1. Average number of interest points detected and the stan-
dard deviation over the 60 scenes.

data set. Furthermore, we have varied the input parameters
for the methods to test if the algorithms are sensitive to pa-
rameter variation. First we will look at the detected number
of interest points with the recommended parameter settings
according to [9, 10, 11, 12, 25, 26].

Number of interest points A varying number of interest
points are detected in each data set, but this is highly de-
pendent on the detection algorithm and the depicted scene.
Table 1 shows the number of interest points and the standard
deviation relative to the 60 scenes, where interest points
have been extracted with the recommended parameter val-
ues. Some variation in number of interest points will be ex-
pected, because of scene variation, but there is a noteworthy
difference between the methods.

Especially the FAST corner detector has some scenes
with nearly 10.000 interest points and other scenes with
close to 0. This is especially undesirable since it appears
that scenes exist for which this algorithm will not work.
The EBR also has a large variation, but much fewer inter-
est points, and the IBR has few interest points. Few interest
points is an undesirable property because it makes it hard
to estimate the image correspondence. But also large fluc-
tuations will result in unpredictable running time, and espe-
cially a very large number of interest points can slow down
the matching procedure. The Harris and Hessian corner de-
tectors gives a reasonable number and variation of interest
points, whereas MSER has relatively few points, but with a
reasonable number in all scenes.

Recall and position The recall rate of the interest point
detectors as a function of the camera position is shown in
Figure 6. Interest point detectors are sensitive to the camera
position, and both changing the angle to the scene and the
distance will reduce the recall. The question is what shape
we can expect the curves to have.

The statistics of objects in ensembles of natural scene
exhibits statistical scale invariance [23]. Among other, this
arises from the fact that the empirical distribution of area

of homogeneous image segments follows a power law [2].
A recent study [5] shows that averaged over ensembles
of scenes this area distribution appears to be invariant to
change of distance to the scene. Even though our data set
consists of indoor still leben scenes, we expect it to follow a
power law behavior, especially because our scenes include
the so-called “blue-sky effect” [14] in the form of the large
black background area. Therefore, from these empirical re-
sults we may deduce that as the camera moves away from
the scene, small details, including potential interest points
at low scales, will disappear in large numbers, and few new
large scale structures will appear leading to new potential
large scale interest points. Since the distribution of structure
follows a power law the consequence is that the number of
interest points is expected to decrease as the viewing dis-
tance increases. This will in turn lead to a decrease of the
recall rate. Hence for well-behaving interest point detectors
we expect the recall rate to follow a decreasing power law
as a function of viewing distance. Furthermore, we have no
reason to prefer certain view orientations, hence we expect
at least symmetry, if not rotational invariance, in the recall
rate with respect to varying orientation.

The shape of the curves in Figure 6 behaves mostly as
expected, i.e. following a power law. But the Harris cor-
ner detector performs very well at moderate scale change,
but has a sudden drop in recall rate at a distance of 0.7 m
(Figure 6 (d)). This indicates that a lag of scale invariance
for this detector, which could be a matter of the implemen-
tation choices. To validate this further investigations are
needed. Especially the Hessian corner detectors perform
overall well, but also the Harris Affine and Harris Laplace
corner detectors have good performance. The FAST corner
detector also has a high recall rate, but exhibits asymme-
tries with respect to orientation, which might be caused by
the large variation in the detected interest points. This can
probably be explained by the large variation in the number
of interest points detected in the various scenes.

Changing light The 18 LED’s used in the data set con-
stitutes a light stage [3]. From this setup the scenes can
be synthetically illuminated by a linear combination of the
images. The synthetic illumination was used to investigate
the recall rate of the interest point detectors as a function of
changing light.

Ten different illumination settings were constructed,
varying the incident angle of the light, and furthermore the
light was changed from diffuse to directional. The recall
rate was computed between the tenth illumination with all
the illuminations at a camera position3 separated by 10◦.
Results are shown in Figure 7, where the observations are
ordered according to common LED’s used for the illumi-
nation. This proved to be the determining factor for the

3The results are similar for other positions.
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Figure 6. Mean recall rate. The graphs show the recall rate relative to the paths shown in Figure 3 with Arc 1 (a), Arc 2 (b), Arc 3 (c), and
Line Path (d). The horizontal axis is the angle relative to the scene in (a-c) and distance to the scene in (d). The vertical axis is the recall
rate.

performance of the detectors in terms of recall rate. The
observed change in recall rate is expected because scenes
change appearance with change in light, e.g. cause by shad-
ows and other reflectance effects. The least sensitivity to
light change with regard to recall rate is seen for the Harris
corner detector followed by the Hessian corner detectors.
Harris affine, Harris Laplace and MSER perform equally
well, whereas EBR, IBR and FAST have a poor perfor-
mance.

Changing model parameters In the above experiments
the recommended parameter settings were used. These

correspond to standard settings of the downloaded soft-
ware. To investigate the effect of these settings, we con-
ducted the experiments with varying position with different
cornerness setting, for the Harris and Hessian type detec-
tors. The parameter was varied on a logarithmic scale from
0.107 − 9.31× the recommended parameter settings. This
is done in 21 steps by a multiplicative factor of 1.25.

From these experiments we observe that the recall rate of
the Harris type detectors are unaffected by a change in the
cornerness parameters and that the Hessian type detectors
are only moderately affected. This is despite the corener-
ness parameter drastically affecting the number of interest
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Figure 7. Mean recall rate relative to change in light direction
for a camera position 10◦ from the key frame, averaged over all
60 scenes. The horizontal axis indicates the amount of common
LED’s being turned on, compared to the lighting used in the key
frame.

Detector Recall Rate Correlation
Harris -0.0198
Harris Laplace -0.0286
Harris Affine -0.0275
Hessian Laplace -0.2149
Hessian Affine -0.1656

Table 2. The average correlation of the recall rage by changing
the threshold parameter from 0.107 − 9.31× the recommended
parameter settings.

points extracted. These observations are quantisized in Ta-
ble 2, which shows the correlation between the recall rate
and the cornerness parameter setting. This implies that our
results are relatively insensitive to the choice of parameter
setting.

5. Discussion and Conclusion

The contribution of this paper is an investigation of nine
established interest point detectors, which provides new in-
sights to the stability of these detectors with respect to large
changes in viewpoint and scale. The investigation is based
on a data set of 60 scenes with precise ground truth of cam-
era position and scene surface, acquired with an industrial
robot arm. Furthermore, a controlled light setting has en-
abled us to perform precisely controlled relighting experi-
ments.

This unique data set enables us to investigate interest
point correspondence independently of descriptors for very
complex, non-planar scenes. The key element that we in-
vestigate is if there for a given interest point is a poten-

tial matching interest point in a corresponding image. Our
investigation is based on the same implementations as in
the extensive study of interest points by Mikolajczyk and
Schmid [12]. The novelty of our investigation is the com-
plexity of the data set, both with regard to number of scenes
and geometric surface structure.

The first investigation is the number of interest points
provided by the algorithms. Most of the algorithms provide
a reasonable number of interest points, but not the FAST
corner detector, which is highly unstable in the number of
interest points, ranging from close to 0 to around 10.000.
This is very undesirable, because this method is unreliable
for solving the correspondence problem. A similar prop-
erty is seen for the EBR algorithm, but with fewer inter-
est points, and the IBR has very few points. The best per-
formance is the Harris and Hessian corner detectors, and
MSER is also reasonably stable, but with relatively few in-
terest points.

Secondly we have investigated the recall rate relative to
camera position, which provides very interesting results.
We expect the recall rate to follow a decreasing power law
distribution as a function of viewing distance. This is also
seen for most interest point detectors, but for most view-
point changes the FAST corner detector does not show this
behavior, see Figure 6, probably due to the high variation
in number of detected interest points. The Harris corner de-
tector performs very well for small-scale changes, but has
a large drop in performance with scale change. Overall the
Hessian performs slightly better than the Harris corner de-
tector, and the corner detectors performs better than MSER.
IBR and EBR perform poorly.

We have made an experiment with change in light from
diffuse to directional. Again we obtain the best performance
with the Harris corner detector followed by Hessian corners.
Harris Laplace, Harris Affine and MSER perform equally
whereas EBR, IBR and FAST performs poorly.

In [12] the parameter of the interest point detectors,
which affects the number of detected interest points, is dis-
cussed. The claim is that a parameter choice favoring the
most stable regions will give a high repeatability score, and
with many detected interest points, clutter will similarly
give a high repeatability. Their measure of repeatability is
similar to the recall rate presented here. We have investi-
gated parameter choice for Harris and Hessian corners, and
our investigation contradicts this claim, given a reasonable
choice of parameters. Especially the Harris corners are in-
dependent of the parameter choice whereas there is a higher
correlation for the Hessian corners with higher recall for the
most stable interest points, see Table 2.

Overall the simple Hessian corner detector performs
very well, but is not invariant to scale change. Compared to
the study in [12] we also get an overall good performance
of the Hessian corner detectors. We have not seen as good a
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performance of the MSER as is reported in that study, which
might be caused by the non-planer scenes in our study.

Viewed from a pure interest point detection perspective,
corner detectors perform better than region detectors and
especially the EBR, IBR and FAST performs poorly. It
is important to note, that this study only concerns interest
points, which is just one element of solving the correspon-
dence problem, and the success of a system will depend on
the interest point descriptor and the matching procedure as
well. But the insights brought by this study show a clear
performance difference and what the effect of the interest
point detector will be in a final system.
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