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Abstract 
The paper considers the problem of sensor configuration 

for complex systems. Our approach involves definition of an 
appropriate optimality criterion or performance measure, and 
description of an efficient and practical algorithm for achiev- 
ing the optimality objective. The criterion for optimal sen- 
sor configuration is based on maximizing the overall sensor 
response while minimizing the correlation among the sensor 
outputs. The procedure for sensor configuration is based on 
simultaneous perturbation stochastic approximation (SPSA). 
SPSA avoids the need for detailed modeling of the sensor re- 
sponse by simply relying on observed responses as obtained 
by limited experimentation with test sensor configurations. 
We will illustrate the approach with the optimal placement 
of acoustic sensors for signal detection in structures. This 
includes both a computer simulation study for an aluminum 
plate, and red experimentations on a steel I-beam. 

KEY WORDS: Optimal sensor configuration, De- 
tection, Complex systems, Stochastic approximation, SPSA, 
Acoustic sensors and signals. 

1. Introduction 
It is often of interest to maximize the amount of infor- 

mation provided by the experiments that are conducted to 
draw an inference upon a system. In this paper, we study o p  
timization of sensor configurations. Configuration of sensors 
encompasses placement of sensors on an object, adjustment 
of sensor operating conditions (such as frequency response, 
potentiometer settings, pressure sensitivities), sensor orien- 
tations at  fixed locations, etc. Similar to any other general 
optimization problem, our solution requires selection of a cri- 
terion or performance measure, and selection of an optimiza- 
tion algorithm. 

We are interested in systems where the prior knowledge 
is sparse or too complex to readily offer useful models for solv- 
ing the sensor configuration problem. We assume that it is 
possible to fix the sensors at a configuration of interest, and 
experiment with the real system, a physical prototype, or a 
computer simulation to generate a realization of the process 
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underlying the sensors responses for that sensor configuration. 
The application part of the paper, which concerns nondestruc- 
tive evaluation of structures using acoustic emission (AE) (see 
e.g. [l, 2]), provides an example where such experimentations 
are possible. The application studies optimal placement of a 
number of acoustic sensors on the surface of a structure to 
provide measurements of AE signals caused by crack forma- 
tion in the structure, under the realistic assumption that no 
reliable a priori model is available for the sensor placement 
problem. The relevant experimentations may be possible in 
a variety of other applications such as biomedical signal pro- 
cessing, routine monitoring of a system, vision-based quality 
monitoring of a production, and vibration monitoring of an 
object. 

Assuming the availability of relevant data, a possible ap- 
proach is experimental modeling of the response prior to the 
design of optimal sensor configuration, similar to the widely 
applied response surface methodology (see e.g. 131). The 
methodology typically involves fitting models for the response 
as a function of design variables. The obvious advantage of 
the approach relative to those relying upon complex or over- 
simplified a priori models for response determination, is its 
reliance upon data. However, the modeling part of such ap- 
proaches, except for trivial cases, requires detailed analyt- 
ical and experimental work such as experiment design for 
modeling, determination of an appropriate model structure, 
parameter estimation, and model validation. For a discus- 
sion of similar modeling issues related to the response surface 
methodology see [3] and the references therein. Moreover, 
the approach is indirect, requiring an optimization phase in 
addition to the modeling and analysis phase. For instance, 
the response surface optimization method requires at least 
p + 1 measurements for model fitting at a point (or 2* if the 
traditional factorial design is used) where p is the number of 
parameters being optimized. This is followed by a line search 
to obtain a new point, and the process may be repeated for 
numerous iterations. Finally, most modeling issues arising 
in connection with the indirect approach to an optimization 
problem pertain to the specific problem at  hand, making the 
approach inappropriate for a unified treatment of the generic 
optimization. 

Alternative experimental approaches concern applica- 
tion of direct algorithms, which rely only on (noisy) obser- 
vations of the criterion and therefore circumvent the interme- 
diate modeling phase. This makes the direct approach both 
convenient and easily extendable to a large variety of sen- 
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sor configuration probiems. Finite difference stochastic ap- 
proximation (FDSA) izv a traditionally used direct algorithm. 
FDSA is a stochastic approximation (SA) technique in the 
Kiefer-Wolfowitz setting [4] which uses finite differencing of 
the noisy observations of the criterion for gradient approx- 
imations [5]. In this way, the optimization parameters (in 
the context of sensor configuration design, the parameters 
are the spatial coordinates of the sensors and/or other sensor 
parameters) are estimcited using an iterative procedure that 
consists of gradient approximation and parameter updating. 
Although FDSA is flexible in the respect that no gradient in- 
formation is required, the practical implementability of the 
technique is questionatde in high-dimensional problems. Re- 
call that at each iteratim, the basic two-sided FDSA requires 
2p observations for gradient approximation where p is the 
number of parameters being optimized. For example, if the 
location of the sensors is of interest, the number of parame- 
ters is equal to the number of sensors times 2 or 3 depend- 
ing on the relevant spai:ial coordinates. For high-dimensional 
cases, the large number of required observations, which in- 
volve real measurements on the system, limits the usefulness 
of the FDSA technique. 

A relatively new SA algorithm in the Kiefer-Wolfowitz 
setting, simultaneous I: erturbation stochastic approximation 
or SPSA [6], has made solution to problems of this complexity 
possible. Similar to FCISA, SPSA approximates the gradient 
using only noisy observations of the criterion, i.e. SPSA is 
a direct algorithm. 1x1 contrast to FDSA, however, SPSA 
uses only two observations, obtained by simultaneous random 
perturbation of the parameters, to form a gradient approxi- 
mation, which implies a pfold savings in the number of ob- 
servations per gradient approximation (relative to two sided 
FDSA). In [6] and [7], it is shown that under reasonably gen- 
eral conditions, the pfold savings per gradient approximation 
translates directly into a pfold savings in the total number of 
measurements for the complete optimization process. Since 
the SPSA approach reqiires no detailed modeling information 
and no experimental procedures beyond the standard input- 
output analysis of conv1:ntional experimental design methods 
(including response sudace), it provides an efficient approach 
for solving the sensor configuration problems in a large vari- 
ety of complex systems 

Although SPSA has several features that make it espe- 
cially appropriate for the sensor configuration problem, let us 
briefly compare SPSA with other relevant optimization meth- 
ods. Stochastic gradient techniques such as Robbins-Monro 
SA [5] require an input-output model of the process in or- 
der to obtain the noisy gradient observation (and determin- 
istic gradient based techniques, such as Newton-Raphson or 
conjugate gradient, are even more inappropriate since they 
assume noise-free measilrements of the gradient). Simulated 
annealing (see e.g. [SI), like SPSA, uses only measurements of 
the objective function (not the gradient). However, this algo- 
rithm is well-known to converge slowly and to be sensitive to 
noise in the function measurement (see e.g. [9, lo]). SPSA, 
on the other hand, com’erges relatively quickly and is explic- 
itly designed to cope with noise in the function measurements. 
Finally, population-based methods such as genetic algorithms 
[ll] are inappropriate here since they require multiple systems 
to form the population from which the cross-over and other 
operations in the algorithm are performed. SPSA works with 

only a single solution, corresponding to a single system for 
which the sensors must be configured, and hence is feasible in 
practical configuration settings. 

The rest of the paper is organized as follows. Section 2 
discusses the choice of optimality criterion. Section 3 offers 
a brief review of the SPSA algorithm which is central to the 
experimental methodology of the paper. Section 4 concerns 
optimal sensor location for signal detection in structures. This 
includes both computer simulation and real experimental re- 
sults for an aluminum plate and a steel I-beam respectively. 
The study has application in the nondestructive evaluation of 
structures. Finally, Section 5 offers concluding remarks. 

2. Criterion for Sensor Configuration 
The direct optimization approach using the SPSA algo- 

rithm offers a uniquely efficient alternative for sensor config- 
uration problems in complex systems. The realizability and 
the relevance of the technique, on the other hand, is condi- 
tioned on (and only on) the existence of an appropriate cri- 
terion which is computable from response recording. In this 
section, we discuss a suitable selection for the criterion. It 
should be noted, however, that the choice of a criterion to 
be used within the SPSA based optimization approach is not 
unique and may be influenced by particular design objectives 
and further available information. 

The formal setting to be considered here is as follows. 
Let {Xe(t)} ,  t = 1,2,  ..., denote a set of responses received 
by the sensors with configuration 0 under the operating con- 
dition of interest. Each element of the sequence, Xe( t ) ,  is a 
N-dimensional vector where N is the number of sensors. The 
sequences { X e ( t ) }  are realizations of some unknown random 
process, and a realization of the process can be generated by 
experimentation with the system. We seek a configuration 0 
that provides good measurements of all possible realizations 
of the process. We introduce the following criterion: 

E{ (det { Xe ( t )Xe(  t)’}) IN} 
t 

where the expectation E{.} is with respect to the process 
generating { X e ( t ) } ,  and the summation is taken over a time 
window of interest. 

The rationale for selecting the criterion is as follows. 

1. Defining the overall response of a sensor as the sum of 
squares of the sensor responses over the time window 
of interest, it is evident that the diagonal elements of 

Xe(t)Xe(t)’ account for the overall response of the 

The determinant of a positive semi-definite 

2. The off-diagonal elements of C Xe(t)Xe(t)’ account for 

the correlation among the sensors responses. The de- 
terminant of a positive semi-definite matrix decreases 
with large-in-magnitude off-diagonal elements. 

3. The 1 / N  exponent scales the units properly such that 
the criterion is measured in the same physical units as 
the overall response. 

4. The quantity (det{C Xe(t)Xe(t)’})’lN is readily com- 

putable given that a response realization {Xe( t )}  is 
available. This computed value obviously gives an un- 
biased estimate of (2.1). 

t 
sensors. 
matrix increases with its diagonal elements. 

t 

t 
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5. The criterion can be related to detection of the signal 
X, ( t )  in presence of additive mean zero measurement 
noise with unknown covariance, which is uncorrelated 
with the process generating X, ( t ) ,  see [la]. 

We wish to emphasize again that the direct approach using 
the SPSA algorithm is not uniquely related to the criterion 
presented in this section. Any criterion that is a suitable per- 
formance measure, and is computable from response record- 
ings can be used within the experimental methodology of the 
paper as follows in the next section. 

3. Overview of the SPSA algorithm 
Since the SPSA algorithm plays a central role in the ex- 

perimental methodology, this section provides a brief overview 
of the generic technique. A step by step implementation of the 
algorithm for the sensor configuration problem is presented in 

Consider the problem of determining a parameter 0 E 
R P  that maximizes a differentiable objective function J(O),  
where the explicit dependence of the loss function upon 6 is 
unknown, but where for each 6 a noisy value for the objective 
function can be obtained (i.e., no gradient information is di- 
rectly available). The SPSA algorithm has recently attracted 
considerable attention for challenging optimization problems 
of this type in application areas such as adaptive control, 
pattern recognition, discrete event systems, neural network 
training, and model parameter estimation, see e.g., [13], [14], 
[15], [16], [IO], and [17]. In this section, we briefly present the 
SPSA algorithm. The reader i s  referred to [6] for a detailed 
treatment, 

Let 6 k  denote the estimate for the parameter 0 at the 
kth iteration and g ( 0 )  denote aJ/ae. The SPSA algorithm 
has the form 8k+1 = 8, + akf&(8k),  where the gain sequence 
{ak) satisfies certain conditions (as follows) and i j k ( 8 k )  is a si- 
multaneous perturbation approximation to g ( 8 k )  at iteration 
k .  We define the simultaneous perturbation estimate for the 
gradient as follows. Let A k  E R p  be a vector of p mutually 
independent mean zero random variables { & I ,  A k 2 ,  ..., A k p }  

satisfying certain conditions (see Lemma 1 and assumption 
A2 of [6]; note especially the important finite inverse moments 
condition that precludes normal and uniform distributions but 
admits, e.g., the symmetric Bernoulli f l  distribution). Con- 
sistent with the usual framework of stochastic approximation, 
we have noisy observations of the objective function. In par- 
ticular, at the kth iteration, consider the two observations: 

[121. 

ji’) = J ( 8 k  + C k A k )  + Ci” 

ji-) = J ( 8 k  - C k A k )  + Ci-) 

where { c k }  is a gain sequence, and ci’) and CL-) represent 
noise terms that satisfy E{~j;f’ - C i - ) @ k r  A k }  = 0. The gain 
sequences { a k }  and { c k }  are positive for all k and tend to 

zero as k 3 00. Moreover, a k  = 00, 

mate of g(-) at the lcth iteration is then 

00 M 

( a k / C k ) ’  < 00. 
k=O k=O 

The basic simultaneous perturbation form for the esti- 

Note that at each iteration, only two observations are needed 
to form the estimate regardless of the number of parameters. 

In [6], it is shown that under fairly general conditions, 
the SPSA iterates converge almost surely to the true opti- 
mum. The same reference derives the asymptotic distribu- 
tion of the iterate, which under reasonably general conditions 
is shown to be Gaussian. This result is important for quan- 
tifying the accuracy of the estimate. The reference [6] also 
compares the asymptotic behavior of SPSA and FDSA, both 
theoretically and through numerical studies. The results in- 
dicate that under fairly general conditions, SPSA requires p 
times fewer number of measurements in order to achieve a 
specified level of accuracy (in terms of the asymptotic mean 
square error of the estimate). Finally, [18] treats constrained 
optimization via SPSA. The constrained algorithm is of par- 
ticular interest since possible sensor configurations are often 
subject to e.g. geometric restrictions. 

4. Application: Signal Detection in 
Complex Structures 

In this section, we consider an application of the pro- 
cedure to sensor placement for signal detection in complex 
structures. A very important problem in this connection is 
the nondestructive evaluation of structures by acoustic signal 
sensing. The use of acoustic emission (AE) signal sensing has 
recently received considerable attention in problems related 
to the nondestructive evaluation, see e.g. [l]. As a result 
of crack formation in a structure, acoustic emission signals 
are generated and propagated throughout the structure. I t  
is then possible to detect a forming crack by doing acous- 
tic signal measurements using a number of acoustic sensors 
placed on the surface of the structure. As a result of structure 
complexity and material and geometric irregularities in many 
practically important objects such as highway bridges, it is 
often not possible to develop models for response determina- 
tion solely based on physical and geometrical considerations. 
The lack of reliable models and the convenient availability 
of data (including laser induced simulations of AE cracking 
events) point to the experimental methodology of the paper 
as a promising tool for solving this challenging sensor place- 
ment problem (see also the discussions in Section 1). In this 
section, we present an application of the methodology of the 
previous sections to a simulated aluminum plate (Subsection 
4.1) and to an actual steel I-beam (Subsection 4.2). 

4.1. Simulation Results for Sensor Place- 
ment on a Plate 

Here, we present a computer simulation-based optimiza- 
tion of the sensor location for detection of impulse pressure 
inputs to a plate. We apply the developed procedure and find 
the optimal Cartesian coordinates of 10 sensors placed on the 
surface of a l m  x l m  plate (hence the number of optimization 
parameters is equal to 20). Notice that in a real application, 
the experimental procedure typically involves real experimen- 
tations and not computer simulations. In this spirit, the opti- 
mization procedure will have no knowledge of the plate equa- 
tions implemented within the simulation. For the simulation 
purpose, we use the following partial differentia!. equation (see 
[191, page 233) 

(m3/12(1  - y2))v4w(2,y, t )  + 
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where x and y denote respectively the horizontal coordinate 

is the biharmonic operator, w(x, y, t )  denotes the deflection, 
q ( x ,  y, t )  denotes the input pressure, E is the Young module, p 
is the density of the plate, h is the thickness of the plate, and 
finally 0 < v < 1 is the Poisson ratio (relating the orthogonal 
strain-stress couples). The following constants are used in the 
simulations: E = 69.0 x 1C19 N/m2,  p = 2.7 x lo3 kg/m3 (these 
values of E and p are typical for an aluminum plate; see any 
relevant standard table), v = 0.01, h = 2.0 x 10-5m. The 
plate is subject to clamped edge boundary conditions, i.e. for 
all t ,  w(x, y, t )  = 0 and duf(x, y, t ) / d t  = 0 along x = 0, x = 1, 
y = 0, and y = 1. 

and the vertical coordinate, V4 = (& + 28saay2 8 4  + v) 8 4  

The input pressure is taken to be 

1 0 4 6 ( t ) ~ / m 2  I = x0,y = yo 
Otherwise 

where 6 ( t )  is the Dirac deha function. The prior knowledge of 
(20, yo)' is embedded in a distribution obtained by truncating 
a N((0.5,0.5)', 0.02521) distribution (where I as usual denotes 
the identity matrix) such that Pr(O.1 < x , y  5 0.9) = 1. Fi- 
nally, each sensor records the deflection of the structure a t  
the location point. The sampling time of data is 0.05 seconds 
for all the sensors. 

The tuning of SPSA constants has been previously 
studied in the literature. Following the guidelines of [20] 
which are obtained empirically, we select ak = 0.1/k0.602, 
c k  = O.l/ko~'o' for the SI'SA algorithm. The reference [20] 
also recommends addition of a so called stability constant to 
k in U k ,  where the constant is typically around 10 percent 
of the total number of iterations (although the stability con- 
stant has not been considered here, it can usually improve 
the performance of SPSA significantly). Random perturba- 
tions are sampled from a Bernoulli (*I) distribution which 
is asymptotically optimal (see [21]). The initial placement, 
80, for implementing the algorithm is obtained by randomly 
distributing the sensors over the square 0.1 5 x, y 5 0.9. 

For each placement of the sensors, a function evaluation 
includes the following. We randomly draw an input location 
according to the probability distribution for the possible input 
locations, solve the partial differential equation (4.1) numeri- 
cally to find the sensor response for each sensor, and form the 
response (deflection) sequmce {Xe( t )} ,  t = 0.05, ..., 50 x 0.05, 
where the element i of X e  ( t )  is equal to the response of sensor 
i at time t .  A noisy realization of J ( 6 )  is then obtained by 
computing (det{ 

We apply the SPSA. algorithm with a moderate num- 
ber of function computations, say 500, corresponding to 
500/2=250 iterations and denote the resulting sensor place- 
ment by 0250. The initial and final placement of the sensors 
are plotted in Figure 1 for comparison. Note the shift of the 
sensors towards the mean value for (20, yo) (signal generation 
center). A similar convergence pattern as the one illustrated 
in Figure 1 is observed for varying initial conditions of the 
SPSA algorithm. 

To evaluate the rela.tive objective function values at the 
i+tial an? final solutions, we fix the sensors a t  the locations 
0250 and 00 respectively, do 100 objective function evaluations 
for each one of the sensor placements, and average over the 
100 computed values (recall that the direct analytical value of 

Xe ( t ) ,Ye( t)'}) '". 
t 

0 Initial seneor Location 

x : Final Sensor lacation 

0 : Signal Generation Center 

Figure 1: Initial and final placement of the sensors on the 
plate. 

J ( 0 )  is unavailable). The obtained average values for J ( 0 )  are 
equal to 0.0517 and 0.0309 respectively. Notice that a consid- 
erable increase in the value of the criterion is obtained using 
the SPSA algorithm with relatively small number of function 
evaluations. We repeat the same procedure for two randomly 
selected sensor placements, 01 and 02, in order to investigate 
sensor placements where the sensors are close to the signal 
generation center but provide redundant information due to 
being densely located. The placement 81 is obtained by ran- 
domization over 0.4 < x , y  < 0.6, and & is obtained by ran- 
domization over 0.2 < x, y < 0.8. The redundant information 
is especially apparent in the case for 01. The average function 
value obtained for 81 is in the scale of and the average 
function value for 02 is 0.0138, both much worse than the 
SPSA solution. For a more detailed comparison of the above 
sensor configurations for signal detection in the presence of 
Gaussian measurement noise, see [12]. The same reference 
also compares the SPSA solution with solutions obtained by 
other random search rocedures. 
4.2. Small Scafe I-beam Experiments 

Here, we present results obtained by real experimenta- 
tions on a steel I-beam (a beam with I-shaped cross section). 
Because of practical laboratory constraints, our experimenta- 
tion is limited to locating 3 acoustic sensors on the center line 
of the I-beam, i.e. the number of optimization parameters is 
equal to 3. The I-beam has a length of approximately 120cm 
and a height of approximately 15cm. The acoustic sensors 
transform a mechanical deflection to an electrical voltage. 

To simulate AE cracking events, we use a high energy 
laser with an energy varying within approximately 10% of the 
tuned energy level. A more detailed description of the experi- 
mental apparatus and use of AE in nondestructive evaluation 
is given in [22]. We consider a situation where AE events oc- 
cur with equal likelihood within an approximately 5cm long 
line piece along the center line and around a point 50cm from 
one end of the I-beam (i.e., a uniform distribution for the 10- 
cation of AE events is used). Our data collection/processing 
equipments consist of an oscilloscope where the outputs of 
the transducers are recorded (in mv), and a computer where 
the oscilloscope data are down-loaded and SPSA iterations 
are performed using MATLAB@ software. 

We apply the experimental procedure- using 20 itera- 
tions of SPSA and obtain the placement 020. The SPSA 
constants are selected as q = 1, U k  = 0.1/Ic0.602(cm/mu)2, 
Ck = O.O1/kO.'O'(cm). Figure 2 shows the initial and final 
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placements of the sensors. It is interesting to note that the 
h a l  placement is further away from the mean AE source but 
the sensors are also further apart, reducing redundant infor- 
mation. This can be justified considering the fact that steel is 
known to have small signal attenuation coefficient relative to 
aluminum as considered in Subsection 4.1 (see [23]). There- 
fore, it is more important to reduce the redundant information 
rather than to locate the sensors close to the mean AE source. 

Figure 

I 
2: Initial and h a l  placement of the sensors on the 

steel I-beam. 

5 .  Conclusion 
The paper studies the problem of optimal configuration 

of a number of sensors for a system. The presented approach 
is direct and uses experimental data without an intermediate 
step of modeling the sensor response. The approach is easily 
implementable and does not suffer from modeling inaccura- 
cies. The SPSA algorithm provides a uniquely powerful tool 
and plays a central role within the experimental methodol- 
ogy of sensor configuration design. We have demonstrated 
the approach on the problem of sensor placement for signal 
detection in complex structures, using both computer simu- 
lations and real experiments. The approach here represents 
a special case of a more general SPSA-based experimental 
design approach. 
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