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Abstract 
The MLC circuit is the simplest non-autonomous chaotic 
circuit [Ol, 02, 031. Insight in the behaviour of the 
circuit is obtained by means of a study of the eigen- 
values of the linearized Jacobian of the non-linear diffe- 
rential equations [04]. The trajectories of the eigen- 
values as functions of the parallel loss conductance are 
found. An explanation of the chaotic behaviour based on 
the behaviour of the autonomous system is given. 

1. Introduction 
The Murali-I&shmanan-chua circuit is composed of 
(a coil L with a series loss resistor R,) in parallel with 
(a capacitor C with a nonlinear parallel loss conductor 
G,) (Fig.1). 

Fig. 1, The Murali-Lakshmanan-Chua circuit 

The nonlinear loss conductor G, may be realized by 
means of Chua's diode [OS] (Fig. 2). By inserting an in- 
dependent sinusoidal voltage source V in series with L 
and chaos may be observed. 
Because of only one nonlinear component G, the trajec- 
tones of the eigenvalues of the linearized Jacobian of 
the nonlinear differential equations may be found by 
means of simple linear frequency analysis varying the 
dynamic value of G,, gnl, in a specific case where L = 
18mH, R, = 1340h2, C = 1OnF. The dynamic value, 
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gnl, of the nonlinear parallel conductor G, is varied 
from -le+ 19 to + l e +  18. 

Fig. 2, The Chua diode characteristic, i = f(v) 

2. Qualitative analysis 
When the dynamic parallel loss conductance gnl is very 
large and positive the coupling between the coil L and 
the capacitor C is very small. The voltages and currents 
will become exponentially damped signals. The energy 
in connection with the coil L (the magnetic flux) will be 
transformed into heat in the resistor k with the time 
constant rL = L/% and the energy in connection with 
the capacitor C (the electric charge) will be transformed 
into heat in the conductor G, with the time constant rc 
= C/G,. This behaviour corresponds to two real poles 
s = p, = -RJL from the impedance 2, = R, + s * L 
and s = p2 = -G,/C from the admittance Yc = G, f 
s*c. 
When gnl is very large and negative the signals will be 
exponentially increasing signals with the time constants 
mentioned above. 
When the dynamic parallel loss conductance gnl is zero 
the circuit is a simple LC oscillator with series losses 
and the voltages and currents will be damped sinusoids. 
The circuit is a second order circuit. The eigenvalues of 
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the linearized Jacobian are either two real poles or a 
pair of complex poles in the complex frequency plane. 
It is to be expected that the complex pair of poles will 
follow a trajectory which goes from one point to another 
on the real axis. The two points corresponds to two real 
double poles. The poles are the roots of the charac- 
teristic polynomial of the second order differential 
equation modelling the system: 

sz + ( 2 a )  s + 0: 

rellre re2lim 1. +le+27 -74.444444e +3 

G Rs 1 + R, Gp 
where 2 a  = [-$ + t) and 02 = 

L C  

I 

- The roots are: 

PI, pi = -a * ,/- 
For 002 > a2 the roots become a pair of complex poles: 

pl, p2 = -a * j ,/-. 
For w: = a2 the roots become a pair of real double 
roots. The corresponding values of G, becomes: 

I 

+2.23515643e-3 -148.980044e+3 -1 48.980043e +3 

+2.235 15650e-3 -149.900298e +3 -1  48.9571 1Se +3 

K* 2 1  

-99.999944e +6 

-le+26 

3. Quantitative Analysis. 
By means of the formulas above Table 1 below is 
calculated for a specific set of parameters L = 18niH, 
R, = 13400 and C = 10nF. 

-74.500041 e+3 

-74.444444e+3 

+70.11 

+91.15 

I I I1 +2.235 15640e-3 -1 48.980042e+3 +_j 14.8 1 

I1 I 1  

Table 1 Eigenvalues as functions of G, 

It is seen that for G, = -0.74626754e-3 the real double 
pole s = +91.15 k i n  the right half plane. For G, 

going to "minus infinite" the real pole re1 corresponding 
to the capacitor goes to "plus infinite" and the real pole 
re2 corresponding to the coil goes to -74.444e+ 3. Due 
to the maximum slope of -0.76mS for G, in origo the 
maximum value for re1 becomes +10.92e+3. Due to 
this large real pole it is obvious that the autonomous 
system has an unstable point of balance in origo. 
Even very small initial conditions close to origo will 
give rise to exponentially increasing signals in positive 
or negative direction. If the autonomous system is 
started up with an initial condition of e.g. le-12 volt 
across the capacitor C the signals will increase exponen- 
tially until the bending point of the piecewise linear 
conductance G,, i.e. it is to be expected that the voltage 
of C will rise to 1 volt when the complex pole pair for 
G, = -0.41mS, s = -16.72et-3 +j *47.16e+3, will 
take over and give rise to a damped oscillation. This 
behaviour is shown in Fig. 3 where the currents in the 
nonlinear conductance and the capacitor are shown as 
functions of time and of the voltage across. 
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Fig3a, Autonomous system performance. 
i(gn1) and i(C10) as functions of time 

The trajectories of the eigenvalues are shown in the 
figures 4, 5 and 6. The dynamic value of the parallel 
conductance G,, gnl, is varied from -le+ 19 Siemens to 
+ l e +  18 Siemens. In Fig. 4 it is seen how the complex 
pole pair leaves the real axis for gnl = -0.746mS and 
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Fig. 4, Complex pole pair trajectory. 
Positive imaginary part as function of real part. 
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Fig. 5,  Real poles "trajectory" for 
negative values of gnl. 
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Fig. 6, Real poles "trajectory" for 
positive values of gnl. 

returns back to the real axis for gnl = +2.235mS. The 
trajectory of the complex pole pair crosses the imagina- 
ry axis for gnl = -0.7444445E-03 where the real part of 
the complex pole becomes zero and the imaginary part 
becomes + 3685.082000rps corresponding to the fre- 
quency 586.4990160Hz. In Fig. 5 the two real poles are 
pictured against each other for negative values of gnl. It 
is seen how the pole in connection with the coil goes to 
-74.4e+3 while the pole related to the capacitor goes to 

Fig. 7a, i(gn1) and i(C10) as functions of time. 

Amplitude = 25mV, Frequency = 586.499016Hz 
Voltage source V: 

"plus infinite". In Fig, 6 the two real poles are pictured 
against each other for positive values of gnl. It is seen 
how the pole in connection with the capacitor goes to 
"minus infinite" while the pole related to the coil goes 
to -74.4e+3. 

4. Limit Cycle and Chaotic Behaviour. 
With knowledge about the eigenvalues of the system we 
may choose the frequency of the excitation deliberately 
in order to obtain limit cycle or chaotic behaviour when 
varying the amplitude of the independent voltage source. 
In the following PSpice with RELTOL= le-6 is used for 
the simulations. In Fig. 7 and Fig. 8 the frequency 
586.4990160Hz corresponding to the point where the 
trajectory crosses the imaginary axis is chosen. For an 
amplitude of 25mV (Fig. 7) it is seen how the currents 
i(gn1) and i(C10) are the same as in the autonomous 
case (Fig. 3). Due to the varying input voltage a train 
of pulses is obtained. Every time the current in the 
capacitor i(C10) becomes zero due to the pair of com- 
plex poles in the left halfplane the independent voltage 
source V will bring the circuit in a situation where the 
real pole in the right half plane occurs and a new pulse 
going to the other breaking point starts up. 
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Fig. Sa, i(gnl) and i(C10) as funtions of time. 

Amplitude = 5V, Frequency = 586.4990160Hz 
Voltage source V: 

In Fig. 8 the amplitude of the independent voltage sour- 
ce is increased to 5V. It is seen how the damping of the 
current pulses in the capacitor becomes faster due to 
entering the areas with gnl= + 1mS. 
In the following the frequency is chosen to 7505.13Hz 
corresponding to gnl = -0.41mS. If the amplitude of the 
independent voltage source is 25mV a first order limit- 
cycle at one of the bending points is obtained. With 
increasing amplitude of V limit cycle and chaotic 
behaviour may be observed. For an amplitude of 
54.9mV chaos around one of the bending points is 
found. For 55.00mV both bending points are involved 
in chaotic behaviour. For a time range of about 20ms 
chaos is around one bending point and then it changes 
to the other bending point for some time. At 55.50mV 
the intervals with chaos around one bending point 
becomes smaller. At 56.5mV we see a 3'rd order limit 
cycle around one of the bending points. In Fig. 9 the 
amplitude of V is 60mV and chaos including both 
bending points occur. At lOOmV and 1V l'st order limit 
cycles occur. For amplitude 1V it becomes necessary to 
change RELTOL to le-5 in PSpice in order to avoid 
problems with too small integration steps. 

5. Conclusion. 
The behaviour of the Murali-Lakshmanan-Chua circuit 
(MLC circuit) is investigated by means of a study of the 
eigenvalues of the linearized Jacobian of the non-liner 
differential equations. It is found that the autonomous 
circuit has an unstable point of balance in origo which 
give rise to chaotic behaviour in case of the non-autono- 
mow circuit. 
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