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Abstract 

In many practical systems there i s  a delay in some of 
the sensor devices, for instance vision measurements 
that m a y  have a long processing time. How to fuse 
these measurements in a Kalman filter is not a trivial 
problem if the computational delay is critical. Depend- 
ing on how much time there is at hand, the designer 
has to make trade offs between optimality and compu- 
tational burden of the filter. In this paper various meth- 
ods in the literature along with a new method proposed 
by the authors will be presented and compared. The nem 
method is based on “extrapolaiing” the measurem.ent to 
present time using past and present estimates of the 
Kalman filter and calculating an optimal gain for this 
extrapolated m.easurement. 

1 Introduction 

This paper considers the problem of designing discrete- 
time Kalman filters to systems where some results of 
the measurements are delayed. Most of the work that 
has been done prior in this field considers only filters 
where no measurements has been fused in the delay 
period (i.e. the time period from the measurement is 
taken till it is available), see for instance [l]. In many 
applications, especially in the field of autonomous vehi- 
cles, however, the Kalman filter will fuse measurements 
from faster sensors in this delay period. Typically the 
delayed measurements will origin from a vision system 
and the fast measurements from a sonar or dead reck- 
oning system. 

an optimal manner by modifying the output equation 
of the filter as shown in [4]. 

Delays consisting of a small number of samples can be 
handled optimally in the discrete-time Kalman filter 
by augmenting the state vector accordingly - see for 
instaiice [5] or [6]. As the system order increases with 
the delay size, however, this method is mostly used 
when the time delay is a small number of samples, as 
the computational burden otherwise may become un- 
desirably high. 

If only a few measurements are fused in the delay period 
or if the computational burden of the filter is uncrit- 
ical, an optimal filter estimate incorporating the de- 
layed measurement can be obtained simply by recalcu- 
lating the filter through the delay period. As this often 
becomes too time consuming in practical systems, a 
method is derived in [7] where it suffices to calculate 
a correction term and add this to the filter estimate 
when the delayed measurement arrives. This method 
is optimal in certain time intervals under certain con- 
ditions and will be described in this paper along with 
a modification introduced by the authors that extends 
these periods of optiinality. 

Furthermore, a new method that does not guarantee 
optimality under all conditions but is useful in many 
practical systems will be described. The new method, 
based on extrapolatzng the delayed measurements, is es- 
pecially suited for the type of filtering problems men- 
tioned above, where a number of (imprecise) measure- 
ments has been fused in the delay period. Regardless 
of the number and nature of the measurements this 
method is a simple and computationally cheap way of 
accounting for delays. 

Other authors have focused on systems, where system 
and output equations have a common delay, as in [a]  
and in [3]. Kalman filters where the output is delayed 
only a fraction of t,he sample time can  be handled in 
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2 System and Filter Equations 

A linear discrete system observed by non-delayed mea- 
surements where both process and measurements are 
influenced by additive Gaussian noise can be put in 
state space form as follows: 

x k + 1  = A k X k  + B k U k  + W k ,  (1) 
z k  = c k x k  + v k ,  (2) 

where: W k  N N ( 0 ,  Q k )  and V k  N N ( 0 ,  & ) .  

Without loss of generality we can assume that the two 
noise sources i lk  and w k  are independent ( E  [wi $1 = 
0). The optimal state estimator minimizing the vari- 
ances of the estimation error will then be a Kalman 
filter. A proof for this, along with a derivation of the 
Kalman filter equations can be found in 181. The equa- 
tions are summarized below in (3) to (7): 

If the system (1) furthermore has an output that is 
delayed N samples, for instance due to a slow sensor 
or a long processing time of the sensor data, there will 
be a second output equation: 

where s = IC - N 

2, 1 : A .  

.'I: 

System 
state 

Filter 
state 

Figure 1: System with an N sample delayed output. 

The delayed measurement cannot be fused using the 
normal Kalman filter equations but requires some mod- 
ifications in the structure of the filter. 

3 Incorporating Delayed Measurements 

As mentioned in section 1 a number of different meth- 
ods has been proposed for incorporating delayed mea- 
surements in the Kalman filter. The system defined in 

section 2 ,  however, has to the authors' knowledge only 
been treated in [7]. The method proposed by Alexan- 
der will in some cases be highly suited to  the type of 
systems considered in this paper and will therefore be 
summarized in this section along with a modification 
suggested by the authors. Subsequently, a new method 
which can be used when Alexander's method comes to  
short, will be presented. 

3.1 Updating Covariance and State at Different 
Times 
Using the standard Kalman filter equations, the mea- 
surement z i  should be fused at  time s, causing a cor- 
rection in the state estimate and a decrease in the state 
covariance. As the state covariance matrix decides the 
Kalman gain, the measurements occurring after this 
will all be fused differently than if the measurement 
update for z l  is omitted. If therefore the measurement 
z l  is delayed N samples and fused at time I C ,  the data  
update should reflect the fact that the N data  updates 
from time s to I C ,  and therefore the state and covari- 
ance estimates, have all been affected by the delay in a 
complex manner. 

Equations that account for this when fusing z i  at  time 
IC has been derived in [7] but are of such complexity 
that they in many cases are not feasible'. It is therefore 
suggested that if the measurement sensitivity matrix. 
C: , and the noise distribution matrix, R;t. , is known at 
time s,  the filter covariance matrix should he updated 
as if the measurement is available. This leads the mea- 
surements in the delay period to  be fused as if .$ had 
been fused at time s. 4t  time IC, when z; is available, 
incorporating z; is then greatly simplified, by adding 
the following quantity after z k  has been fused: 

6 f k  = h r l * K , ( Z ;  - c;gs) (9) 

If the delay is zero, M* is the identity matrix. For 
N > 0,  M* is given by: 

N-1 

hf, = n (1 - I<i.,Ck--2)Ak-z-1 (10) 

The prime on I<' signifies that these Kalman gain ma- 
trices have been calculated using a covariance matrix 
updated at time s with the covariance of the delayed 
measurement. As one factor in the product above can 
be calculated at each sample time the method only re- 
quires two matrix multiplications at each sample time. 

z=o 

The method implies that the covariance of the filter will 
be wrong in a period of N samples leading measure- 
ments in this period to  be fused suboptimally. How- 
ever, after the correction term in (9) is added, the filter 
state and covariance will once again be optimal. 
~~~ 

In fact the computational complexity of these equations is 
comparable to recalculating the Kalman filter through the delay 
of N samples. 
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3.1.1 A Modification to Ensure Optimality: 
As mentioned in section 3.1 the filter estimates will be 
suboptimal from the time the measurement 2; is taken 
till it is fused. This can cause problems, especially 
if data validation is performed using the incorrect P-  
matrix leading the filter to discard valid measurements. 

At the expense of some additional computations this 
problem can be avoided by making the filter estimate 
optimal at all times. This is done by starting up an 
extra filter at  time s that uses the covariance R; as 
suggested by [7] and running this in parallel to the op- 
timal filter. Up until time k ,  the estimates from the 
optimal filt,er will be used but at time k when the de- 
layed measurement arrives, this will be fused in the 
parallel filter and this filter will now have the optimal 
state estimate. 

This simple modification of the inethod guarantees op- 
timality at  all times but imposes tjwice the computa- 
tional burden in the delay time period (from s to k ) .  

3.2 Extrapolating the Measurement 
The method described in section 3.1 required the mea- 
surement sensitivity matrix: C,*, and the noise distri- 
bution matrix, R;, to be known at time s. In many 
cases they are not. If for instance the measurement is 
a vision measurement, the uncertainty of the measure- 
ment will often be unknown until the data is processed 
as it depends on the relative positioning of the camera 
and object. Similarly C: may depend on positioning 
and occlusions and therefore also not be known until 
the data is processed. A method that does not require 
knowledge about 2; until time k is therefore needed. 

For non-delayed measurements, the residual used to 
calculate the new estimate, is defined by: 

6k  = Z k  - C k ? k  (11) 

When the N-samples delayed measurement given in (8) 
arrives at  time k ,  the filter and measurement state will 
relate to different times and a residual relating to time 
k cannot be attained. But if the filter state from time 
s has been stored, the residual that would have been 
used at  time s if the measurement had not been delayed 
can be used in the update at time k :  

t k  := t, = 2: - C,*Xs 

This is equivalent of extrapolating the measurement, 
Z: , to a present measurement, z p t :  

(12) 

xint = 2; + Ci?k - C,*Xs, (13) 

and fusing this at time k using the ordinary residual 
defined in (11).  

The extrapolated measurement is given by: 

1 

= c l x k  + + cizk - c,*zs (14) 
c : X s  + v; + c i ? k  - c:?~ 

= CiXk$'Upt (15) 
where the estimation error 2 = X - 2. 

This new extrapolated measurement is seen to have 
the standard form as in (a) ,  except that here there is a 
correlation between the noise process v p t  and the state 
x k .  The optimal gain for fusing z p t  and the resulting 
filter covariance decrease will now be derived. 

If the measurement is fused using the data update in 
(6) with an arbitrary gain I < k ,  the estimation error, 
2 k  (+) , becomes: 

2 k ( + )  = ( I -  I ( l e C i ) z k  + I < k V p t  (16) 
The variance of the estimation error is: 

pk (+) = B{sk (+)2 :  (+)} 
= ( I  - I<kC,*)l'k(I - I<kc i )T  

+(I  - I < k C l ) E { ~ k Z l r t T } ~ < ~  
+ I<k E{ u p t  2; } (1 - I(k cl )T 

+I<k , ! ? { U P t  'Up"}I<Z (17) 
Let: M = E { 2 s 2 T } .  The covariances in (17) can then 
be found from (14) : 

E { z k V p t T }  = PkCiT - MTC3T 

Inserting (18) and (19) in (17) and rearranging 
terms leads to: 

Pk(+) = Pk - hfTC,*TI%r',T - I<kC,*M 

19) 

the 

+I<kCfP8C,*TI<',T + I<kR;I<z (20) 

The gain, I < k ,  should be chosen so that the variances 
of the estimation errors are as low as possible. This is 
obt,ained when: 

atrace( pk (+)) = o  d K k  

Differentiating (22) and isolating I<k yields: 

I<k = hfTC,** [c,*P,C:T + RL1-l (21) 

This is therefore the optimal gain for fusing the mea- 
surement z p t .  Inserting (21) in (20) leads to a simpler 
form for (+) : 

P k ( + )  = Pk-I<kCSkf (22) 

The covariance matrix, M ,  can be found by observing 
the propagation of the estimation error 2 .  Through the 
time update (3),  2 becomes: 

Z k + l  = A k S k ( + )  - wk 
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After the data  update (6), 5 is: system is used as the system model. This is a popular 
Kalman filter type on mobile robots, see for instance 

? k ( + )  = ( I  - J < k C k ) g k  + I<kVk [9] or [lo]. Here: 

Through N succeeding time and data  updates from 
time s to  k ,  the estimation error therefore becomes: 

N -  1 

g k ( + )  = [ ( I  - K k - i C k - i ) A k - i - i ]  g~( -k )  
i = O  

+fl(ws . ' . ~ u k - l )  + f Z ( V s + l  ' . ' n k )  

Where fl and fi are functions of the noise sequences 
v and 20. As Zs is uncorrelated with these noise se- 
quences, the covariance, M ,  becomes: 

M = E{%,$} 
N-1 

= p, A:+$ - ~ L + i + l G + i + l ) T  

= P,MY, (23) 

i = O  

where: 

N - 1  

hf, = (1  - I < k - i C k - i ) A k - i - i  (24) 
i=O 

Observe that the correction term, M*, is similar to (10) 
in section 3.1 except that in (10) the Kalman gains 
reflect the 2; data  update at time s. 

Substituting (23) in (21) and (22) yields: 

P k ( + )  = P k  - I < k C : P s M T  (25) 

i=O 

The matrix A is a linearized system matrix as described 
in [lo]. If the movement of the robot is assumed lin- 
ear the output from the dead reckoning system can be 
transformed to a linear and angular displacement Adk 
and A B , .  The robot coordinates in a global coordinate 
frame can then be updated by (see [ l l ] ) :  

A B k  

2 
x k + l  = S k  + A d k  c o s ( 8 k  + -) 

The A matrix is seen to be: 

A = [ 8 ziz] 
ax AB = -Adsin(B + -) 
dAB 2 

AB = Ad cos($ + -) dY 
dA6 2 

0.13 = - 

U23 I= - 

Considering the structure of A, the matrix M' can be 
found by: 

and: When this particular filter type is used, the extrapo- 
lation method therefore provides a very simple and 

I<k = M*P,C,*T [c,*P,c,*T + ~i1-l (26) optimal' way of accounting for delays. 

Notice t,hat when the delay N is zero, M, = I a.nd 
the Kalman gain equation (26) reduces to the standard 
form (5) and the covariance update (25) reduces to (7). 

4 Example 

Consider now, as a continuous plant a typical DC motor 
with the shaft position, 6(t), as output and the anchor 
voltage, u ( t )  as input. A potentiometer and a camera 
both observe the shaft position. The potentiometer 
measurement is continuous and noisy and the vision 
measurement is discrete, delayed but accurate. Both 

3*2.1 Optimality Of Ob- the process and the measurements are influenced by 
independent Gaussian white noise processes. A state 
space formulation of the plant is given below: 

So by calculating an extrapolated measurement, z p t ,  
using (13) the delayed measurement can be fused in a 
simple and computationally cheap manlier using eyua- 
tion (24) - (26) . 

serve that, though t.he gain suggested in (26) is statisti- 
cally optimal for fusing the extrapolated measurement, 
the extrapolation method ztself is still not optimal. In 
order for the method to  be optimal the Kalman gains 

equation (10) should equal (24). 

.(t) = A,z(t) + B,u(t) + w(t) 
in (24) should reflect a data  update at time s, that is 

= [ O 0 -w, ] 4 t )  + [ frn ] 4 t )  + 4) 
z ( t )  = [I O]z(t) + v ( t )  If no measurements has been fused in the delay period 

equation (24) and (10) are identical and the extrapo- z*(IcT) = [l O ] X ( ~ T -  t d )  + ~ ' ( t k T ) ,  k E N 
, I  ~I 

lation will be optimal. This important case is qiiite 
common in praxis, for instance when a dead reckoning 

'Strictly speaking t,he filter is not optimal as the system is 
nonlinear. 
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The distribution of the process noise is: 

S 

s -+ k 

and the distribution of the measurement noises are: 

1.0 1.4 1.4 1.0 
1.0 1.3 2.3 1.1 

v ( t )  - N ( 0 ,  R), v * ( k T )  - N ( 0 ,  R*) 

The plant is discretized and a discrete Kalman filter is 
designed as described in section 2. 

This plant is now simulated using different methods to 
account €or the delayed measurement, namely by: 

A 

B 

C 

D 

Recalculating the filter when zz arrives 

Using Alexander’s method 

Using the modified version of Alexander’s method 

Extrapolating the measurement 

The variances of the potentiometer noise is R = lop3 
while the proces noise, Q ,  and the vision noise, E ,  are 
varied in the simulation. 

Table 1 shows the averaged variances of the estimation 
error, e = y-y, from Monte Carlo simulations using the 
four methods above and using different values for the 
noise variances and the initial estimation error. The 
variances are normalized with the results from a simu- 
lation with no delay on the vision measurements. The 

1 - 1  I 

Table 1: Normalized eshnation error variance 

normalized variances in table 1 are all higher than one, 
meaning that no method fully compensates for the de- 
lay (so rather unsurprisingly we would prefer that the 
measurement was not delayed). Also it is observed that 
the modified Alexander as expected yields the same re- 
sults as recalculation as both these methods are opti- 
mal. 

I t  is also seen that although Alexander’s method is op- 
timal in the time intervals outside the delay period and 
the extrapolation method here is suboptimal always, 
it is not obvious which of the two methods performs 
best. In the two simulations with low vision measure- 
ment noise the extrapolation yields the lowest variance 
and in the other two simulations Alexander’s method 
performs best. I t  is clear that comparisons between 

these two methods should be done with some caution 
as the relative performance of the methods changes in 
different conditions. 

In comparing the filters the computational burden im- 
posed by the filters should also be considered. Table 2 
shows the amount of floating point operations in the 
different filters, scaled with respect to a filter that fuses 
an undelayed vision measurement at  time k .  Though 
these numbers are illustrative, of course the absolute as 
well as the relative size strongly depends on the specific 
system, especially the system order. 

I k 11 N 1 1.0 1 1.7 1 1.1 1 

Table 2: Normalized computational burden 

It is obvious that recalculation can only be used if the 
delay N is small or if the computation time is uncriti- 
cal. If the measurement variance and sensitivity matrix 
are known when the measurement is ta.ken the mod- 
ified Alexander yields exactly the same results with 
less computation. Both the extrapolation method and 
Alexander’s method are even cheaper computationally 
but does not guarantee optimality at  all times. 

5 Conclusion 

In this paper a new method for incorporating measure- 
ments with delays of arbitrary size in a Kalman filter 
has been introduced. The method is fast and can be 
applied to a wide variety of syst#enis, but does not guar- 
antee optimality under all conditions. If the covariance 
and the measurement sensitivity matrix of the delayed 
measurement is at hand at  the time where the measure- 
ment is taken, a different method introduced in [7] and 
modified in this paper will give an optimal and fairly 
fast estimate. 

It was shown that if no measurements are fused in the 
de1a.y period, the extra.polation method will be opti- 
mal. If an odometric filter type is used where for in- 
stance encoder readings are used as a system model, 
the extrapolation method will also be optimal and the 
algorithm very simple. 
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