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Abstract 

An algebraic approach is given for a design of 
a static residual weighting factor in connection 
with fault detection. A complete parameteriza- 
tion is given of the weighting factor which will 
minimize a given performance index. 

1 Introduction 

The increasing use of supervisors in connection 
with control make it necessary to  include fault 
detectors in the control architecture. The fault 
detectors are used for detection fault in dynamic 
systems which cannot be allow in the feedback 
control. When a fault is detected, it is then the 
supervisor unit that  need to  take care of this 
fault situation by e.g. close down the system 
or by change controller etc. A lot of different 
types of fault can appear in a dynamic system, as 
e.g. actuator and sensor faults, slowly changes of 
system parameters etc. The condition to  obtain 
a complete reliable control architecture is that  all 
elements will work reliable. So we need to  have 
reliable detection of the faults in the system. 

The design of fault detectors includes both a 
design of a filter for the detection and also a se- 
lection of a threshold value for the filter, see e.g. 
[9]. The selection of the threshold is very im- 
portant. If the threshold is selected too high, 
a number of faults will not be detected. On 
the other hand, if the threshold is selected too 
small, we will get a number of false alarms due 
to  disturbance. None of the cases are in general 
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useful when we want a reliable fault detection. 
To optimize the fault detection, the filter and 
the threshold value need t o  be considered at the 
same time and not as two separate designs. How- 
ever, the design of a detection filter and the selec- 
tion of the threshold is normally considered sep- 
arately. In e.g. [12], the two part  are connected 
for optimization of the smallest fault signal tha t  
can be detected. An implicit design method has 
been given in [12]. 

There exist a number of different way to  design 
fault detectors, see e.g. [9] and [lo]. One way to 
design a fault detector is based on residual vec- 
tors. This mean that  we will not get a direct esti- 
mation of the fault signal, but an residual vector 
which must be small when no fault appear in 
the system and large, in some sense, when faults 
appear in the system. A residual vector consist 
of a filter/observer and a residual weighting ma- 
trix. The residual weighting matrix can both be 
a constant matrix or dynamic. Further, the de- 
sign of the filter and the weight matrix can be 
done in one step, see [SI, or it can be done in two 
steps, see e.g. [Ill. 

The motivation for using residual vectors in- 
stead of using estimates of the fault signals di- 
rectly is tha t  we do not in general need t o  know 
the faults exactly. In general we are satisfied by 
knowing that ,  at first, tha t  there are faults in the 
system (fault detection) and, at second, which 
faults tha t  has appear in the system (fault iso- 
iation). In the cases where we can accept some 
minor faults, we just need t o  select the thresh- 
old value such tha t  these fault signals are not 
detected. 

In this paper we will only consider the design 
of static residual weighting matrices. In [ll], the 
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eigenstructure assignment method has been ap- 
plied for the design of an observer and a static 
residual weighting matrix. The main idea in 
this approach is to  design the observer gain and 
the weight matrix such tha t  the residual vector 
is complete decoupled from disturbance input. 
Conditions are given for obtaining this. This 
mean tha t  not all fault vectors can be detected. 
The result derived in this paper give a complete 
parameterization of the residual weighting ma- 
trix of both all residual vectors tha t  are complete 
decoupled from the disturbance input as well as a 
parameterization of all residual vectors that  can 
not be decoupled from the disturbance input in 
steady state. Further, a complete description of 
which fa,ult vectors tha t  can be detected distur- 
bance free and which cannot be detected distur- 
bance free in the steady s ta te  case is given. 

I t  need t o  be pointed out  in this connection 
tha t  the main reason for making exact decou- 
pling is tha t  we can use zero as the threshold 
value. This will take care of the problem with 
non detected faults and false alarms. However, 
it  is not all fault signals tha t  can be detected 
disturbance free. 

2 Problem Formulation 

The FDI design setup will be given in the fol- 
lowing. Consider the following system G given 
by: 

Y = GYW (4 W + Gyf (4 f (1) 

where I D  E R" is a disturbance signal vector, 
f E RI' is a fault signal vector and y E 7 2 4  is 
the measurement output vector. Further, it  is 
assumed that q 2 p > m and that none distur- 
bance inputs are identical with any fault inputs 
at the system. 

A fi1l;er is now applied t o  estimate the fault 
signal vector f out  from the measurement signal 
vector y. Let the filter be given by F ( s ) ,  i.e. the 
estimat,e of the fault signal vector is given by: 

The design of F ( s )  will not be considered in 
this paper, see instead e.g. [ll], [lo], [7], [4] and 

[8] for mention a few. It  will only be assumed 
tha t  the rank of FG,f in steady s ta te  is maximal. 

Further, let's consider the residual vector for 
the fault detection in (2) given by: 

where R is the residual weighting matrix. This 
matrix can be dynamic but will in most cases be 
a constant matrix. R will be a constant matrix 
in the following. 

Before the problem for the design of the resid- 
ual weighting matrix is given, we need t o  con- 
sider a performance index for the fault detection 
problem. Different performance indices for fault 
detection has been considered in a number of pa- 
per, see e.g. [5] ,  [13], [a] ,  [3] and [12]. From [3] 
we have the following performance index for the 
residual vector in (3): 

(4) 

where IlMll = ~ ~ P ~ ~ z ~ ~ l l w l  and 1 1 ~ 1 1 -  = 
i n f ~ ~ z ~ ~ \ \ M z \ \ e )  where 1 1  . IJe is an evaluation func- 
tion, which may not be a norm. 

This index is not so useful in connection with 
design of the fault detector F ( s ) .  This has been 
discussed in [12], where a new performance index 
has been derived only based on norms, which is 
not the case with the index given by (4). How- 
ever, for the optimization of the static residual 
weighting matrix R,  the performance index in 
(4) can almost be used directly. The only mod- 
ification we will do is t o  make a separation of 
the index and use different threshold values for 
every single residual signal. An interpretation of 
the index given in (4) is tha t  it gives the norm 
of the smallest fault signal tha t  is guarantee t o  
be detected. The index is given as the largest 
gain from disturbance t o  residual vector divided 
by the smallest gain from fault signal t o  residual 
vector. This might be conservative due t o  the 
fact tha t  the maximal gain from disturbance t o  
residual vector will in general not be in the same 
direction as the minimal gain from fault signal 
t o  residual vector. In the general case when only 
a single residual signal is considered, we can give 
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the  following performance index: 

RFGyw = 

- - 
gw,1 

gw,i 

- QW,P - 

Problem 1 Let the residual vector be given by  
(3). Design the static residual weighting matrix 
R such that the number of performance indices 
J;,i= 1, . . . , p  

in steady state 

The steady 
many cases as 

satisfying 

J;(O) = 0 

is optimized. 

state detection is important in 
pointed out in e.g. [l]. Further, 

if we have obtained a static decoupling, we will 
in many cases also have a good dynamic decou- 
pling. Another thing is t ha t  the fault detector 
will no increase in order when we only use static 
residual weighting matrices, which is also impor- 
t an t  in some cases. 

3 Static Decoupling 

The static design problem given in Problem 1 
will be considered in this section. Let the resid- 
ual vector r be described by the following equa- 
tion in the steady state case: 

r = R ( H w w  + H f f )  (6) 

where H,  = FGy,(0) and Hf = FG,j(O). Fur- 
ther, let the rank of H,  is given by rank(H,) = 
s 5 m. 

A singular value decomposition of H ,  is given 
by 

(7) H ,  = UCVT 

where U and V satisfies UUT = UTU = I ,  
VVT = VTV = I and C has a canonical struc- 
ture 

Based on this singular value decomposition of 
H,, all residual weighting matrices can then be 
given by: 

R = Z ( I - H , H $ ) + X H , H $  

where X and 2 are two arbitrary p x q matrices 
and H$ is the Moore-Penrose inverse of H,. 

Now let Z and X be given by 

X = X U T ,  Z = Z U T  

(8) can be rewritten into 

R = Z [ O  0 19-s ] U T + X [ :  : ] U T  

Further let X and 2 be partitioned as 

x = [ X ,  X , ] ,  2 = [Z, 24 
where X I ,  21 E R p x s ,  X2,22 E R P X ( q - ' ) .  Then 
all R can be described by 

R = [ X i  2 2 1  UT (9) 
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With this parameterization of R given by (9), where 2 2 1 ~  E R ( S - t + p ) X ( Q - S )  and 2 2 1 , 2  E 
R ( t - p )  ( q - s ) .  Now, let 2 2 1 , 2  be selected such tha t  

rank [ 2:: ] = t - s 

it  is simple t o  see tha t  

(10) R H ,  = 0 ,  f o r  X 1  = 0 

which give an explicit parameterization of all 
residua,l weighting matrices that  satisfies R H ,  = 

Before this residual weighting matrix is used 

Now let XI be Partitioned as follows: 

0. X 1 1 , l  

X1l = [ x 1 1 , 2  1 
in (6), let [Xl 2 2 1  be partitioned as 

where X1l,l E R ( S - t + p ) X ( q - s )  and X 1 1 , 2  

R ( t - p )  ( q - s ) .  We can now select X 1 1 , 2  = 0 and 
then make t - p residual vectors exact decoupled 
from the disturbance inputs. The residual vector 

[Xl 2 2 1  = [ ;;; 2; ] 
’ ”’ E is then given by: 

where X I 1  E Rsxs ,  X I 2  E R(”-s)xs 
R s x ( q - . s )  and z22 E R(p-s)x(q-s) .  

[xlT‘o :]vTw 
Using the above R matrix in ( 8 )  in the equa- 

tion for the residual vector, we get: r =  

r = R ( H , w + H f f )  1 O 0 1  

+ [ xr U T H j f  

Let U and V be partitioned as follows 

U = [U1 U21 

v = [Vl v21  

It  c;m be seen directly from the above equa- W = v,Tw 
x 1 2  2 2 2  

and let 
I 

tion tha t  we need to  select X12 = 0 to decouple 
the last p - s residual signals complete from the 
disturbance input W. ~h~ residual vector is then 

X 1 1 , l  = X l 1 , l C O  

It  is now possible t o  modify the residual vector 
given by into 

r [ X I ~ C O  ] V T ~ +  [ ~ 1 1  2 2 1  ] U T H f j  r = [ x!ll] iij 

residual vectors from the disturbance. This is 
possible when 

0 2 2 2  

Moreover, i t  might be possible t o  decouple more xll,lC;lu~ + 2 2 1 , l U T  

2 2 1 , * U T  ] H f f  
+ [ z 2 2 u z ’  

1 2 2 1 , l  R =  [ 2 2  1,2 

(11) 
rank[H,  H I ]  = t > p 

I t  is then possible t o  make further t - p residual 
signals disturbance free. T O  detect and isolate all 
P fault signals, i t  is required tha t  the rank of R 
is p .  ’ ihen it is assumed tha t  2 2 2  has full rank, 

Based on the above derivation, we have then 
the following result. 

Theorem 1 Let the residual vector be defined 
by (5’). Further, let the static residual weighting 

R be given by 
p - s. Let Zz1 be partitioned as follows 

-1 T rfll,lCO U,  + 2 2 1 , l G  

z21 = [ z 2 1 , 2 ]  z22u2T 
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rank [ 2:; ] = t - s 

Then the p performance indices given by  (5) are 
then given by: 

J;  = 0 

f o r i  = l , . . . , t - s  and 

2 

for i = t - s + 1, . . . , p in  steady state. 

Based on Theorem 1, get get directly the fol- 
lowing lemma. 

Lemma2 If 

rank[H,  H j ]  = rank[H,] + rank[Hj]  

then the p performance indices are given b y  

This result is equivalent with the results given in 
[6] for the dynamic case. 

The  results in Theorem 1 and Lemma 2 are 
discussed in next section. 

4 Interpretation of the Decou- 
pling Result 

The main emphasis of Theorem 1 is t ha t  it is pos- 
sible t o  decouple disturbance exactly from some 
residual vectors. This mean tha t  we can use 
0 as the threshold value for some residual sig- 
nals without obtaining any false alarms in steady 
state. More precise, the dimension of the space 
So given by the span of fault vectors tha t  are 

decoupled from the disturbance is t - s. Further 
the space So is given by: 

where vj,; are the vectors defined by: 

where Vj is a unitary matrix satisfying the sin- 
gular value decomposition of U T H j :  

U F H j  = UjEjV,T 

Moreover the space S 1  including the fault vec- 
tors which can not be detected disturbance free 
is given by: 

s 1  = s: = SPan(vj,l,...,Vf,p+s--t) (13) 

By selecting the arbitrary matrices X 1 1 , 1 ,  2 2 1 ~  

and 2 2 2  in Theorem 1 so they have full rank, then 
the span of all possible residual vectors will be of 
dimension p. This mean tha t  i t  is also possible to 
make fault isolation by using the residual vector 
r.  

The most common case in fault detection is 
when only one fault appear, i.e. f = e;, i = 
1 , . . - , p  where e; is the i'th unit vector. The  
condition for detection a single fault without any 
disturbance is given in the following lemma. 

Lemma 3 Let the residual vector be given by 
(11). The single fault f = ei, i = 1, . . -, p is 
detected disturbance free if and only if 

It is easy t o  see tha t  the i'th fault f = e; is 

detected if the i'th column of [ 2;; ] U r H j  is 

non zero. 
The free matrix X 1 1 , ~  in Theorem 1 must be 

selected such tha t  the last p - t + s indices Ji 
are minimized. This matrix can be optimized by 
e.g. using an optimization toolbox. 

The result given in Lemma 2 give the case 
where the number of measurements is equal t o  
the number of fault signals and the  number of 
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disturbance signals tha t  are not dynamic decou- 
pled from the fault estimation signals. Further 
i t  is assumed tha t  no disturbance and fault sig- 
nal has the same input matrix. In this case, it 
is possible t o  make exact disturbance decoupling 
in steady state. 

In th'e beginning of Section 2, it was assumed 
tha t  no disturbance inputs and fault inputs en- 
ter the system at the same input. This might not 
always be the case. If this condition is not satis- 
fied, we can still use the above static disturbance 
decoupling method. In this case, it will not be 
possible t o  detect the fault signals, which enter 
the system at the same inputs as disturbance, in 
the disturbance free residual vector 7-2. 
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