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a b s t r a c t

To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC),
preferably under ambient pressure, acid–base polymer membranes represent an effective
approach. The phosphoric acid-doped polybenzimidazole membrane seems so far the most
successful system in the field. It has in recent years motivated extensive research activities
with great progress. This treatise is devoted to updating the development, covering polymer
synthesis, membrane casting, physicochemical characterizations and fuel cell technologies.
To optimize the membrane properties, high molecular weight polymers with synthetically
modified or N-substituted structures have been synthesized. Techniques for membrane
casting from organic solutions and directly from acid solutions have been developed. Ionic
and covalent cross-linking as well as inorganic–organic composites has been explored.
Membrane characterizations have been made including spectroscopy, water uptake and acid
doping, thermal and oxidative stability, conductivity, electro-osmotic water drag, methanol
crossover, solubility and permeability of gases, and oxygen reduction kinetics. Related fuel
cell technologies such as electrode and MEA fabrication have been developed and high tem-
perature PEMFC has been successfully demonstrated at temperatures of up to 200 ◦C under
ambient pressure. No gas humidification is mandatory, which enables the elimination of the
complicated humidification system, compared with Nafion cells. Other operating features
of the PBI cell include easy control of air flow rate, cell temperature and cooling. The PBI cell
operating at above 150 ◦C can tolerate up to 1% CO and 10 ppm SO2 in the fuel stream, allow-
ing for simplification of the fuel processing system and possible integration of the fuel cell
stack with fuel processing units. Long-term durability with a degradation rate of 5 �V h−1

has been achieved under continuous operation with hydrogen and air at 150–160 ◦C. With
load or thermal cycling, a performance loss of 300 �V per cycle or 40 �V h−1 per operating
hour was observed. Further improvement should be done by, e.g. optimizing the thermal
and chemical stability of the polymer, acid–base interaction and acid management, activity
and stability of catalyst and more importantly the catalyst support, as well as the integral
interface between electrode and membrane.

© 2009 Elsevier Ltd. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
1.1. High temperature PEMFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
1.2. Acid-doped polybenzimidazole membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

∗ Corresponding author. Tel.: +45 45252318; fax: +45 45883136.
E-mail address: lqf@kemi.dtu.dk (Q. Li).

0079-6700/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.progpolymsci.2008.12.003



Author's personal copy

450 Q. Li et al. / Progress in Polymer Science 34 (2009) 449–477

2. Polymer synthesis and membrane fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
2.1. Monomers and polymer synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

2.1.1. Heterogeneous molten/solid state synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
2.1.2. Homogeneous solution synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
2.1.3. PBI with synthetically modified structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
2.1.4. PBI modified by post-polymerization substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

2.2. Membrane fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
2.2.1. TFA-cast membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
2.2.2. PPA-cast membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
2.2.3. DMAc-cast membranes and acid doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

2.3. Membrane modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
2.3.1. Ionic cross-linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
2.3.2. Covalent cross-linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
2.3.3. Composite membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

3. Structure and characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
3.1. Spectroscopic studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
3.2. Water uptake and acid doping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
3.3. Thermal and oxidative stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
3.4. Mechanical strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

4. Electrochemical and transport properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
4.1. Proton conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
4.2. Electro-osmotic water drag and methanol crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
4.3. Solubility, diffusion and permeability of gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
4.4. Kinetics of oxygen reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

5. Fuel cell technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
5.1. Catalysts, gas diffusion electrodes and membrane–electrode assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
5.2. Fuel cell performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
5.3. Poisoning effect of CO and sulphur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
5.4. Direct use of methanol reformate and integration with fuel processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
5.5. Durability issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

5.5.1. Steady-state operation and acid loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
5.5.2. Dynamic test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
5.5.3. Catalyst degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

6. Conclusive remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

1. Introduction

1.1. High temperature PEMFC

Fuel cells are electrochemical devices with high energy
conversion efficiency, minimized pollutant emission and
other advanced features. Proton exchange membrane fuel
cell (PEMFC), among the five types of fuel cells, is attractive
both for automobile and stationary applications.

Compared to liquid electrolyte systems, the essentially
solid proton exchange membranes have numerous advan-
tages. They are simple to handle, compact, amenable to
mass production, can be fabricated into very thin films
with excellent resistance to permeation of gaseous reac-
tants. In addition, a solid polymer membrane being strong
and yet elastic is a major structural component in the
cell. It makes the handling, sealing and assembling much
easier than for fuel cells with liquid electrolytes. More-
over, it improves the pressure imbalance tolerance between
half-cells.

For most PEMFCs the proton exchange membranes
are currently based on perfluorosulphonic acid (PFSA)
polymers, e.g. Nafion® [1]. This membrane material has
high conductivity, excellent chemical stability, mechanical
strength and flexibility, and potentially long-term durabil-

ity. However, it functions only in a highly hydrated state and
therefore it is limited to operation at temperatures up to
around 80 ◦C under ambient pressure in order to maintain
a high water content in the membrane.

Several challenges for the PEMFC power technology are
associated with low operating temperature [2]. Fuel pro-
cessors, i.e. hydrogen storage tanks and hydrocarbon or
alcohol reformers with subsequent CO removers are volu-
minous, heavy, costly and in most cases complex. Water
management involves appropriate humidification of fuel
and oxidant, airflow rate and power load regulation. Tem-
perature control or cooling is more critical for larger stacks,
and the heat is of low value.

PEMFC operating at high temperatures has in recent
years been recognized as a promising solution to meet
these technical challenges [2]. The term high temperature
used here refers to a temperature range from 100 to 200 ◦C,
relative to the well-developed PEMFC technology typically
operating at 80 ◦C (it should be noted that fuel cells work-
ing at temperatures up to 200 ◦C still belong to the overall
class “low temperature fuel cells” in contrast to molten car-
bonate fuel cells and solid oxide fuel cells). Though this
temperature range does not seem high in any engineering
sense, it is indeed a big stride for the development of proton
exchange polymer membranes, both from materials sci-
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Nomenclature

AB-PBI poly(2,5-benzimidazole)
APU auxiliary power unit
COS compound of organo-sulphur
CHP combined heat and power
DABA 3,4-diaminobenzoic acid
DBpX dibromo-p-xylene
DSC differential scanning calorimetry
DIB 1,4-diiodobutane
DMAc dimethylacetamide
DMSO dimethyl sulphoxide
DMF N,N-dimethylforamide
DMFC direct methanol fuel cell
DOA dodecylamine
DPIP diphenyl isophthalate
DTA differential thermal analysis
EGDE ethylene glycol diglycidyl ether
F6-PBI hexafluoro PBI
FT-IR Fourier transform infrared spectrometry
GDL gas diffusion layer
GDE gas diffusion electrode
HOR hydrogen oxidation reaction
HPA heteropolyacids
IEC ion exchange capacity
IPA or mIPA meta-isophthalic acid
IR infrared
IV inherent viscosity
MAS magic-angle spinning
MEA membrane–electrode assembly
MMT modified montmorillonite
MS mass spectrometry
MSA methanesulphonic acid
MW weight averaged molecular weight
NMP N-methylpyrrilidone
NMR nuclear magnetic resonance
OCV open circuit voltage
OO-PBI PBI containing 2 ethers
ORR oxygen reduction reaction
OSO2-PBI ether and sulphone containing PBI
PA phosphoric acid
PAFC phosphoric acid fuel cell
PAAM polyacrylamide
PBI or mPBI poly[2,2′-(m-phenylene)-5,5′-

bibenzimidazole]
PEEK polyetheretherketone
PEI polyethyleneimine
PEM proton exchange membrane (polymer elec-

trolyte membrane)
PEMFC proton exchange membrane fuel cell (poly-

mer electrolyte membrane fuel cell)
PEO polyethylene oxides
PFSA perfluorosulphonic acid
POD polyoxadiazole
PPA polyphosphoric acid
pPBI poly[2,2′-(p-phenylene)-5,5′-

bibenzimidazole]
PPO polyphenylene oxide, especially poly(2,6-

dimethyl-1,4-phenylene oxide

PSF polysulphone
PTA or PWA phosphotungstic acid
PTFE polytetrafluoroethylene
PVDF polyvinylidene difluoride
PVP poly(vinylpyrrolidone)
P4VP poly(4-vinylpyridine)
PVPA polyvinylphosphonic acid
PWA or PTA phosphotungstic acid
Py-PBI pyridine containing PBI
Py-O-PBI pyridine-based PBI containing ether
RH relative humidity
SiWA (STA) silicotungstic acid
SO2-PBI sulphone containing PBI
SPBI sulphonated poly [2,2′-(m-phenylene)-5,5′-

bibenzimidazole]
SPEEK sulphonated polyetheretherketone
SPOP sulphonated poly[bis(phenoxy)phosphazene]
SPPO sulphonated polyphenylene oxide, espe-

cially poly(2,6-dimethyl-1,4-phenylene
oxide)

SPSF sulphonated polysulphone
TAB tetraaminobiphenyl (or DAB—diaminoben-

zidine)
TCDA tetracarboxylic dianhydride
TADE 3,3′,4,4′-tetraaminodiphenyl-ether
Tg glass transition temperature
TFA trifluoroacetic acid
TGA thermogravimetric analysis
THF tetrahydrofuran
TPA or pTPA para-terephthalic acid
TPAH terephthaldehyde
VPA vinylphosphonic acid
ZrP zirconium hydrogen phosphate
Zr(PBTC) zirconium tricarboxybutylphosphonate

(Zr(O3PC(CH2)3(COOH)3)2

ence and technological points of view. First of all, elevated
temperatures tend to stress the critical issues of thermal,
chemical and mechanical stabilities of polymer materi-
als. Secondly the proton conductivity usually involves a
“vehicle” or a “hopping” mechanism with help of water
molecules, which are also an inevitable product of any fuel
cell system. Above 100 ◦C water evaporates under ambi-
ent pressure. An increase in operating temperature from
80 to 200 ◦C will lead to a saturated water vapour pres-
sure of as high as 15 atm, resulting in great complexity of
the system construction if high relative humidity is to be
achieved during operation. Thirdly, the cooling design and
efficiency of a fuel cell stack depends on the temperature
difference between the stack and the atmosphere. A tem-
perature increase from 80 to 200 ◦C may mean 3–4 times
reduction in the front area of radiators, which is another
key issue of the power system especially for automobile
applications. Finally and probably most importantly, this
temperature increase can dramatically enhance the elec-
trode tolerance to fuel impurities (e.g. CO and sulphide).
The enhanced tolerance to the fuel impurities and the avail-
ability of high temperature heat will decisively simplify
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Fig. 1. Accumulative published items and citations of the topic “polybenzimidazole” and “fuel cells” indexed within Web of Science (November 4, 2008).

the fuel processing units and improve the overall system
efficiency.

Great efforts have been and are being made to develop
proton conducting membranes and other materials for
operation at temperatures above 100 ◦C [2–5]. Membranes
under active development can be classified into the follow-
ing groups and have been well reviewed in recent years:
(1) modified perfluorosulphonic acid (PFSA) membranes
[2,3]; (2) alternative membranes based on partially flu-
orinated and aromatic hydrocarbon polymers [6–9]; (3)
inorganic–organic composites [10–12]; (4) acid–base poly-
mer membranes [13–16], typically a basic polymer doped
with a non-volatile inorganic acid or blended with a poly-
meric acid. As the focus of this treatise, discussion below is
restricted to the acid–base membranes.

1.2. Acid-doped polybenzimidazole membranes

Acid–base complexation represents an effective
approach to development of proton conducting mem-
branes. Polymers bearing basic sites like ether, alcohol,
imine, amide, or imide groups react with strong or medium
strong acids. The basic polymer acts as a proton acceptor
like in a normal acid–base reaction, and an ion pair
is formed. The polymers used in earlier investigations
include polyethyleneoxide (PEO), polyacrylamide (PAAM),
poly(vinylpyrrolidone) (PVP), polyethyleneimine (PEI), and
others, as summarized by Lasségues [17]. It seems that
high conductivity can only be obtained with amphoteric
acids, especially phosphoric or phosphonic acids.

From proton conducting mechanism points of view,
phosphoric and phosphonic acids are interesting because
they are more amphoteric, having both proton donor
(acidic) and proton acceptor (basic) groups to form dynamic
hydrogen bond networks, in which protons can readily
transfer by hydrogen bond breaking and forming processes,
as recently rationalized by Kreuer and co-workers [18–20].
Other important features of phosphoric or phosphonic
acids are their excellent thermal stability and low vapour
pressure at elevated temperatures.

Most of these acid–polymer combinations from
the early work exhibit proton conductivity less than

10−3 S cm−1 at room temperature. If the acid content is
higher, the plastifying effect of the excessive acid leads
to the formation of a soft paste, unable to be processed
into membranes. A breakthrough was achieved when
polybenzimidazole (PBI) was first proposed for preparing
acid-doped membranes [21]. Since then phosphoric acid-
doped PBI membranes have been successfully developed
and systematically characterized. The first patent was filed
by Savinell and Litt [22], after which numerous patents
on PBI membranes and fuel cells have been issued to
Savinell’s group [23], Hoechst Celanese and Aventis [24],
Honda [25], Motorola [26], Danish Power Systems [27],
Plug Power [28], among others. High conductivity [29–33],
good mechanical properties [34] and excellent thermal
stability [35] have been reported at temperatures up to
200 ◦C under ambient pressure. Fuel cells and related
technologies have been developed with operating features
such as little humidification [36], high CO tolerance [37],
better heat utilization [38,39] and possible integration
with fuel processing units [40,41]. Modelling has been
carried out for PBI cells with respect to mass transport
and polarization phenomena [42–46] as well as system
dynamics and design [47–50].

In recent years extensive research activities have been
motivated and great progress has been made, as seen from
Fig. 1. From a technological application point of view, PBI-
based fuel cells seem most suited for stationary power
applications, for example, based on natural gas reforming
and combined heat and power (CHP) generation [51]. For
automobile applications more challenges exist by consid-
ering startup time and thermal/load cycling, however, an
auxiliary power unit (APU)-like system is of special interest.
Volkswagen has at the 2007 Los Angeles Motor Show pre-
sented a hybrid concept car with a PBI stack as a charger for
batteries to extend the driving range. As small power units,
the PBI-based cells have the potential to integrate with
a simplified methanol reformer or metal hydride tank. In
addition, this proton conducting polymer electrolyte opens
the door for many other electrochemical applications that
could benefit from or require higher temperatures such as
hydrogen gas pumping and purification [52], electrochem-
ical sensors [53–55] and water electrolysis. The present



Author's personal copy

Q. Li et al. / Progress in Polymer Science 34 (2009) 449–477 453

Scheme 1. Poly 2,2′-m-(phenylene)-5,5′-bibenzimidazole.

treatise attempts to update the development covering
polymer synthesis, acid doping, physicochemical charac-
terizations, and to a brief extent fuel cell technologies.

2. Polymer synthesis and membrane fabrication

The term PBI is today used in two ways. In a wide
definition PBI refers to a large family of aromatic hetero-
cylic polymers containing benzimidazole units. PBI with
different structures can be synthesized from hundreds of
combinations of tetraamines and diacids. In a specific way
PBI refers to the commercial product under the trademark
Celazole®, poly 2,2′-m-(phenylene)-5,5′-bibenzimidazole
(Scheme 1). In the context of PBI with different structures
this specific PBI is also named as mPBI because the pheny-
lene ring is meta-coordinated.

As an amorphous thermoplastic polymer, the aromatic
nuclei of PBI provide the polymer high thermal stability
(glass transition temperature, Tg = 425–436 ◦C), excellent
chemical resistance, retention of stiffness and toughness,
however, with poor processability, as reviewed previously
[56–58]. Primarily used in textile fibres, the selection of
poly 2,2′-m-(phenylene)-5,5′-bibenzimidazole as the com-
mercial product was made on the basis of its good fibre
properties, availability of monomers and identification of
suitable solvents for fibre extrusion. As a specialty poly-
mer PBI has also been used as compression moulding resin,
electrically conductive materials by impregnation of, e.g.
metal sulphide [59,60], casting films and coatings for liquid
[61–67], gas [68–70] and other [71–75] separation pur-
poses.

For fuel cell uses, more efforts have recently been made
to modify the polymer structures. One motivation of these
efforts is to improve the properties such as high molecular
weight and good solubility and processibility, which are of
significance for mechanical stability and functionalization
processing of PBI membranes. Another motivation is to tai-
lor the basicity of the polymers for improving the acid–base
membranes. These modifications are accomplished in two
ways, either by synthetically modifying the monomers

prior to polymerization or by the post-polymerization sub-
stitution of the polymer at the reactive benzimidazole N–H
sites. In this section, a brief introduction to the polymer syn-
thesis is first made, followed by a discussion on the recent
efforts for PBI modifications.

2.1. Monomers and polymer synthesis

2.1.1. Heterogeneous molten/solid state synthesis
In 1961, Vogel and Marvel [76] reported the first

synthesis of PBI by heating an equimolar mixture of
bis(o-diamine)s and the phenyl esters of different dicar-
boxylic acids. Based on it, a two stage process was
developed to produce PBI with tetraaminobiphenyl (TAB)
and diphenyl isophthalate (DPIP) as monomers [56], as
shown in Scheme 2.

The first step is carried out at about 270 ◦C to produce
the low molecular weight prepolymer in form of volumi-
nous foams. The prepolymer is then pulverized and further
heat-treated at temperatures of up to 360 ◦C to increase the
molecular weight of the polymer by further polymeriza-
tion. In general this is an inconvenient process because the
prepolymer has to be discharged and pulverized before the
second step. By replacing DPIP with isophthalic acid (IPA) in
the presence of organo phosphorus and silicon compounds
as catalysts, Choe [77,78] developed a single stage method
to synthesize high molecular PBI (see Scheme 3):

The synthesized polymer is often characterized in terms
of molecular weight by measurement of the inherent vis-
cosity (IV, in dL g−1) of a polymer solution in concentrated
sulphuric acid. The inherent viscosity is related to the
weight averaged molecular weight (MW, in g mol−1) of the
polymer by the Mark–Houwink–Sakurada equation:

IV = K − M˛
W (1)

For PBI dissolved in 96 wt% H2SO4 at a concentration of
0.5 g of the polymer in 100 mL acid at room temperature,
the empirical constants K and ˛ are 1.94 × 10−4 and 0.79,
respectively.

As a result of the heterogeneous polycondensation at
elevated temperatures, the commercially available poly-
mer has limited molecular weight or IV in order to avoid
the polymer being insoluble or infusible. For example, com-
mercial PBI (Celazole®) with a low to medium molecular
weight of MW from 23,000 to 37,000 g mol−1, correspond-
ing to an IV of ca. 0.55–0.8 dL g−1, was introduced mainly
for moulding resin applications [79].

Scheme 2. The two-stage process for PBI synthesis.
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Scheme 3. The single-stage process for PBI synthesis.

For membrane casting purposes, high molecular weight
polymers are desirable in order to achieve mechanically
stable membranes at higher acid-doping levels and there-
fore high proton conductivities. As to be discussed in
Section 2.2, PBI membranes can be directly cast from acid
solutions. High molecular weight of polymers is essential
for those directly cast membranes. Based on the commer-
cial polymer products, fractionation and extraction of high
IV PBI seem necessary. By dissolving the low molecular
weight component in DMAc at temperatures from 94 to
160 ◦C, Wainright et al. [13] obtained the undissolved high
molecular polymer.

2.1.2. Homogeneous solution synthesis
PBI can also be synthesized in homogeneous solutions

with solvents such as polyphosphoric acid (PPA) [80] (see
Scheme 4). Taking advantages of a moderate temperature
(170–200 ◦C) and using more stable monomers (TAB stabi-
lized by tetra hydrochloride), this method is an excellent
route for preparing laboratory or small scale batches of lin-
ear, high molecular weight polymers, though a relatively
large amount of acid solvent and multiple-step isolation
procedures are involved. In the discussion of the following
section (Section 2.1.3) almost all syntheses of modified PBIs
were made in PPA.

Attempts have been made to introduce phosphorus-
based catalysts, e.g. triphenyl phosphate in the PPA syn-
thesis [81], however, it seems that temperature, monomer
purity and removal of oxygen traces in the reactor are more
important for obtaining high molecular weight polymers.

Other solvents than PPA have also been used for
the homogeneous synthesis of PBI. Molten sulpholane or
diphenyl sulphone was suggested in the early years [82].
Eaton et al. [83] proposed a mixture of phosphorus pentox-
ide (P2O5) and methanesulphonic acid (MSA) as the solvent,

which is a low-viscous liquid, suitable for the homogeneous
synthesis and the following acid-washing. This P2O5–MSA
mixture has recently been employed by Kim et al. [84] and
Jouanneau et al. [85].

2.1.3. PBI with synthetically modified structures
The extensive work on synthetically modified PBI from

early years was well reviewed [56,57] with comprehensive
listing of monomers of varied structures, which pri-
marily consist of bis(3,4-tetraaminodiphenyl) containing
ether, sulphone, ketone and aliphatic groups and various
bis(phenoxycarbonyl) acid derivatives. Below is a brief dis-
cussion on those polymers prepared in recent years for fuel
cell applications.

2.1.3.1. para PBI. Poly[2,2′-p-(phenylene)-5,5′-bibenzimi-
dazole] (pPBI, Scheme 5a) was first synthesized in the early
1960s [76,80] and seems of more interest in recent years
[86–89]. Compared with the meta-PBI, the para structure
of the polymer showed superior tensile strength and stiff-
ness [90], however, the glass transition temperature was
lowered by 59 ◦C [57], indicating the enhanced flexibility of
the polymer chain due to introduction of the p-phenylene
linkage in the backbone. The synthesis is done by using
para-terephthalic acid (TPA) instead of meta-isophthalic
acid (IPA). Using TPA was found to be able to increase the
molecular weight of the polymer, though its solubility in
PPA is low (<4%). Xiao et al. [89] reported that under iden-
tical conditions, the synthesized mPBI has the IV values
ranging from 1.3 to 2.0 dL g−1 while the pPBI has an IV value
from 1.5 to 3.0 dL g−1.

2.1.3.2. Pyridine-based PBI. Polar pyridine groups as a main
chain linkage of aromatic copolymers have been pro-
posed by Kallitsis and Gourdoupi [91,92] for preparing

Scheme 4. The PPA process for PBI synthesis.
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Scheme 5. Various structures of synthetically modified PBI: (a) para PBI; (b) Py-PBI; (c) Py-O-PBI; (d) naphthalin-PBI; (e) OO-PBI; (f) OSO2-PBI; (g) SO2-PBI;
(h) 2OH-PBI; (i) F6-PBI; (j) tert-butyl PBI; (k) sulphonated naphthalin-PBI; (l) sulphonated PBI.

blend membranes. The blend membranes have improved
chemical stability against oxidative degradation. Xiao et
al. [88,89] found that, when the phenyl ring was substi-
tuted by the pyridine ring, the incorporation of an extra
nitrogen atom in the polymer significantly improves the
solubility. In addition, PBI structures with different num-
bers of N atoms or NH groups are of special interest for
enhancing the acid doping and proton conductivity. Pyri-
dine groups have been incorporated into the PBI main chain
as an additional nitrogen containing aromatic heterocycle,
in order to increase the base content of the polymer while
retaining the inherently high thermo-oxidative stability of
the polymer. Pyridine-based PBI (Py-PBI, Scheme 5b) has
been synthesized from the pyridine dicarboxylic acids by
several groups [89,93,94]. Xiao et al. [89] used 2,4-, 2,5-,
2,6-, and 3,5-pyridine dicarboxylic acids to synthesize the
corresponding pyridine-based PBIs. Schuster et al. [94] syn-
thesized PBI containing both pyridine and ether (Py-O-PBI,
Scheme 5c) from equimolar amounts of 2,6-pyridine-
dicarboxylic acid and 3,3′,4,4′-tetraaminodiphenyl-ether
(TADE) in PPA.

2.1.3.3. AB-PBI. Poly(2,5-polybenzimidazole) (AB-PBI) has
a simpler structure than PBI without the connecting phenyl
rings and therefore a high concentration of the basic sites
in the structure. It can be polymerized from a single
monomer (3,4-diaminobenzoic acid) (DABA, Scheme 6),
which is less expensive, commercially available (e.g. used in
the pharmaceutical industry) and non-carcinogenic. Recent
efforts to synthesize AB-PBI are made in polyphospho-
ric acid [13,15,94,95] or in a P2O5–MSA mixture [84]. As
the unbalancing of stoichiometry is avoided, the synthesis
would be less demanding for the purity of the monomer.
It is, however, reported that the high purity monomer
gives polymers of high molecular weights [13,95]. By using

Scheme 6. The synthesis of AB-PBI.
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recrystallized DABA, Wainright et al. [13] synthesized AB-
PBI with an inherent viscosity as high as 7.33, which
is essential to prepare PBI membranes by direct casting
(see Section 2.2.1) from a PBI solution in trifluoroacetic
acid (TFA)-PA mixture. Asensio and Gomez-Romero [15]
suggested that an inherent viscosity of an AB-PBI solu-
tion in concentrated sulphuric acid should be higher than
2.3 dL g−1 in order to cast good enough membranes by
direct casting from an MSA solution [15] or an MSA-PA mix-
ture [96]. In addition, AB-PBI has a higher affinity towards
acids than PBI, allowing for doping with phosphoric acid
and sulphonation by sulphuric acid.

2.1.3.4. Other modifications of main chains. Carollo et al.
[93] synthesized a series of PBIs with different numbers
of N-atoms, i.e. different basicities, including, among
others, poly(2,2′-(2,6-naphthalin)-5,5′-bibenzimidazole)
(naphthalin-PBI, Scheme 5d) and poly(2,2′-(2,6-pyridin)-
5,5′-bibenzimidazole) (Py-PBI, Schemes 5b). They found
that both the acid-doping level and the proton conductiv-
ity remarkably increased with the membrane molecular
weight and basicity, which depend on the amount of
NH-groups as well as on their position in the polymer
backbone.

Schuster et al. [94] has, in addition to Py-O-PBI
(Scheme 5c), synthesized OO-PBI (Scheme 5e) and
OSO2-PBI (Scheme 5f). The OO-PBI was synthesized
by a standard polycondensation reaction of 3,3′,4,4′-
tetraaminodiphenyl-ether (TADE) and 4,4′-oxy-dibenzoic
acid. And the OSO2-PBI was synthesized from 3,3′,4,4′-
tetraaminodiphenyl-sulphone and 4,4′-oxy-dibenzoic acid.
Similarly Qing et al. [97] prepared sulphone containing PBI
(Scheme 5g) by using 4,4′-sulphonyldibenzoic acid. In gen-
eral the polymers containing ether, sulphone, etc., would
have lowered thermo-oxidative stability but increased
solubility and flexibility, which allow further process-
ing, modification (cross-linking, sulphonation to high ion
exchange capacity (IEC)) and production of films with good
mechanical properties.

By using a variety of diacids, more synthesis has
been made of PBI with modified structures. Dihydroxy-
PBI (Scheme 5h) was synthesized [98] and found to
be insoluble in concentrated sulphuric acid. Mem-
branes by direct casting of the polymer solution in
polyphosphoric acid showed much higher conductivity

than the corresponding para-PBI membranes. Using 4,4-
(hexafluoroisopropylidene)bis(benzoic acid) [70,99,100],
hexafluoro PBI (F6-PBI, Scheme 5i) has been prepared,
showing good organosolubility. Similarly PBI containing
tert-butyl groups (tert-butyl PBI, Scheme 5j) has also been
prepared from 5-tert-butyl isophthalic acid [70]. These
diacids can also be sulphonated first, for example, in
form of 4,8-disulphonyl-2,6-naphthalenedicarboxylic acid
[101] or 5-sulphoisophthalic acid [97], as a way to pre-
pare sulphonated PBI membranes (Scheme 5k and l).
Copolycondensation of a sulphonated aromatic diacid
and a non-sulphonated aromatic diacid with an aromatic
tetraamine [97,101–103] has also been investigated as a way
to avoid the side reactions and to control the sulphonation
degree. Recently and interestingly, Xu et al. [104,105] syn-
thesized a series of amine-terminated hyperbranched PBI.
With help of cross-linkers during solution casting, strong
membranes were obtained.

2.1.4. PBI modified by post-polymerization substitution
2.1.4.1. N-substituted PBI. The NH groups in the imidazole
rings are chemically reactive. For some applications the
chemical reactivity can be reduced by, e.g. replacement
of the hydrogen of the imidazole ring with less reac-
tive substituents such as hydroxyethyl [106], sulphoalkyl
[107,108], cyanoethyl [109], phenyl [110] and alkyl, alkenyl
or aryl [111] groups. The methods developed by San-
sone et al. [107–111] use a PBI solution in DMAc or
N-methylpyrrilidone (NMP). The unsubstituted PBI is first
reacted with an alkali hydride to produce a polybenzimida-
zole poly-anion, which is then reacted with a substituted
or unsubstituted alkyl, aryl or alkenyl methyl halide to pro-
duce an N-substituted PBI, as shown in Scheme 7.

From studies of early years, Cassidy [57] concluded that
the substitution of a methyl group onto the amino nitrogen
lowers the softening temperature by 140 ◦C, increases sol-
ubility by a factor of 5, and decreases thermal stability by
10 ◦C. As a comparison, methyl groups on the aromatic ring
of the tetraamine lower the softening temperature by only
10–40 ◦C, indicating the importance of hydrogen bonding
that is lost in the N-substituted PBI.

Using the Sansone’s method, Klaehn et al. [112]
recently prepared a series of N-substituted organosi-
lane (–CH2SiMe2R′ where R′ = methyl, vinyl, allyl, hexyl,
phenyl, and decyl) PBI derivatives with nearly fully sub-

Scheme 7. Post-polymerization N-substitution of PBI.
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stitution and very much improved solubility in common
organic solvents. Pu and Liu [113–115] prepared poly(N-
methylbenzimidazole) and poly(N-ethylbenzimidazole).
Interestingly, when methyl and ethyl groups are introduced
on the imidazole moiety, the obtained N-substituted PBI
showed high acid-doping levels and therefore high pro-
ton conductivity. The authors explained it as a result of the
increased basicity of the polymer. However, a more basic
polymer should react with the same amount of acid. The
actual reason for a higher acid-doping level might be due to
the increased polymer spacing or decreased polymer pack-
ing when a methyl or ethyl group is introduced, as showed
by Kumbharkar et al. [70].

2.1.4.2. Sulphonated PBI. In form of fibres PBI has excellent
thermal stability and non-flammability. However, when
exposed to a flame, PBI fabric shrinks. In order to minimize
the shrinkage at elevated temperatures, the polymer might
be post-treated with aqueous sulphuric acid, followed by
thermal treatment, to form a salt with the imidazole ring.
The obtained so-called stabilized PBI, with a sulphonation
degree as high as 75%, shows improved dimensional sta-
bility. However, this post-sulphonation thermal treatment
does not seem to significantly increase the proton conduc-
tivity of membranes [116,117], probably due to the strong
interaction between protons and nitrogen atoms of the imi-
dazolium ring, which reduces the proton mobility.

An attempt to develop PBI-based polyelectrolyte by
grafting functional groups is probably first made by
Gieselman and Reynolds [118,119], who improved San-
sone’s process [107] for producing N-substituted PBI with
organo-sulphates. More efforts have been made in recent
years using this process [6,7,120–123,125]. PBI is first
activated by deprotonating the nitrogen in the benzim-
idazole rings of the polymer backbone with an alkali
metal hydrides, followed by reaction with, for example,
sodium (4-bromomethyl)benzenesulphonate [6,121-122],
arylsulphonates or alkylsulphonates [123–125] to syn-
thesize N-sulphonated PBI (Scheme 8). The introduction
of benzylsulphonic, arylsulphonic or alkylsulphonic acids
was found to create proton conductivity with better
thermal, chemical and mechanical stabilities compared
to those of sulphonic acid groups. The conductivity of
benzylsulphonate grafted PBI was reported to be higher
than 10−2 S cm−1 at 25 ◦C [121], while that of PBI-
butanesulphonate was higher than 10−2 S cm−1 at 160 ◦C
[123] with a humidification temperature at 100 ◦C, which
means a relative humidity of ca. 16%.

In addition, it is interesting that modified PBI contain-
ing electron donating linkages such as either in PBI-O and
PBI-OO is activated for electrophilic substitution reactions
[126]. This allows for a direct post-sulphonation of the poly-

Scheme 8. Structures of N-sulphonated polybenzimidazoles.

mer in concentrated or fuming sulphuric acid [126,127].
In this way the sulphonic groups can be introduced both
into the hydroquinone segment of the polymer chain and
the benzimidazole segment. Thus obtained sulphonated
PBI-OO membranes display an ionic conductivity of up to
0.08 S cm−1 at 120 ◦C and 100% RH [126].

2.2. Membrane fabrication

PBI has been used in form of membranes for different
separation purposes especially at high temperatures and
in harsh environments. Early efforts were made to develop
PBI semi-permeable membranes for electrodialysis, reverse
osmosis or ultrafiltration [61]. For those purposes, PBI
membranes are a good candidate due to their excellent
chemical stability, mechanical strength, thermal stability,
durability and low cost. Recently PBI membranes have
also been explored for gas separations [68–70]. As a result
of close chain packing due to the structure rigidity and
strong hydrogen bonding, PBI membranes are dense, with
very low gas permeability. For improving its separation
performance, PBI is used as semi-permeable membranes,
prepared by coagulation in water and annealed in a non-
solvent medium, typically ethylene glycol.

In fuel cells, a membrane serves as an ionic conducting
electrolyte, an interfacial environment for electrode reac-
tions, an effective reactant separator as well as a support
for catalysts/electrodes. It is therefore essential that such a
membrane exhibits, among other properties, optimized gas
permeability. For this purpose, dense PBI membranes are
prepared by solution casting. PBI dissolves in strong acids,
bases and a few organic solvents and membranes can be
cast from their solutions accordingly. As the membranes
are used in an acid functionalized form to achieve proton
conductivities, those membranes cast from an acidic solu-
tion already contain the acid and are referred to as directly
cast membranes. There are 2 types of directly cast mem-
branes, prepared from polyphosphoric acid (PPA, called
PPA-cast membranes) or a mixture of phosphoric acid and
trifluoroacetic acid (TFA, called TFA-cast membranes). The
membranes cast from an organic solution need to be fur-
ther doped with phosphoric acid. The typically used organic
solvent is N,N-dimethylacetamide (DMAc), thus obtained
membranes are referred to as DMAc-cast membranes in the
following discussion.

2.2.1. TFA-cast membranes
PBI is soluble in a mixture of trifluoroacetic acid (TFA)

and phosphoric acid [23,34]. PBI powder is first mixed
with trifluoroacetic acid. After refluxing for a few hours,
a certain amount of H3PO4, corresponding to the desired
acid-doping level, is then added for dissolution of the PBI.
In case that a small amount of H3PO4 is needed, water can
be added to solubilize the PBI. The obtained solution is then
filtered and cast into membranes on a glass plate under
nitrogen atmosphere. The membrane is then dried at room
temperature under vacuum. Thus obtained TFA membranes
are in general more rubbery and softer than the DMAc-cast
membranes [13]. The conductivities are higher. However,
high molecular weight (MW) polymers are needed in order
to obtain good mechanical strengths. As high MW polymer
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Fig. 2. Change of 31P NMR spectra of directly cast PBI membranes during
the PPA hydrolysis (data from [88]).

is essential, more efforts are made to use AB-PBI, which is
synthesized from one monomer only with no risk of stoi-
chiometry mismatch.

2.2.2. PPA-cast membranes
As mentioned above, polyphosphoric acid (PPA) is used

as an efficient condensation reagent and solvent for the PBI
synthesis. Xiao et al. [88,89] developed a sol–gel process
to fabricate PBI–H3PO4 membranes directly from the PBI
solution in PPA at around 200 ◦C, without isolation or re-
dissolution of the polymer after synthesis. After casting,
the hydrolysis of PPA to phosphoric acid by moisture from
the surrounding environment induces a sol–gel transition
(see Fig. 2), resulting in phosphoric acid-doped PBI mem-
branes. In this way acid-doping levels as high as 20–40 mol
PA per repeat unit of PBI can be achieved with consequently
high conductivity (over 0.2 S cm−1) yet acceptable tensile
strength (of up to 3.5 MPa) [88].

It is interesting that the sol–gel behaviours of the PPA
membranes depend very much on the polymer structures
and molecular weight. High molecular weight or IV of espe-
cially para-PBI seems to stabilize the gel state and produced
membranes with better mechanical stability. Using the
pyridine-based PBI, Xiao et al. [88,89] found that 2,5-Py-
PBI gives mechanically strong membranes even at an acid
level of 25 mol PA per repeat unit of PBI. Among the 3 types
of meta-Py-PBI investigated, the 3,5 Py-PBI retained all the
PA during the hydrolysis process but no sol–gel transition
and consequent film formation were observed.

Similarly Kim et al. [128] cast the AB-PBI membranes
directly from the synthesis solvent composed of P2O5 and
MSA. Another attempt by Kim et al. [87] is to directly cast
PBI membranes from an MSA solution. They have also tried
to quench the directly cast pPBI membranes immediately
to −20 ◦C in order to prohibit the formation of pPBI crys-
tals. The membrane was, however, washed with water to
remove the acid, and the remaining membrane “structure”
was then doped with aqueous phosphoric acid.

2.2.3. DMAc-cast membranes and acid doping
PBI is soluble in highly polar, aprotic organic sol-

vents such as DMAc, dimethyl sulphoxide (DMSO),
N,N-dimethylforamide (DMF), and N-methylpyrrilidone
(NMP). The typical organic solvent is DMAc.

2.2.3.1. Casting of membranes from DMAc. A suitable means
for dissolving the polymer is to submerge them into a sol-
vent at a temperature above the boiling point of the solvent,
for example, 25–120 ◦C above the boiling point, and at a
pressure of 2–15 atm under an oxygen-free atmosphere.
The resulting solutions are preferably filtered to remove
any undissolved polymer. A minor amount of lithium chlo-
ride (typically 2%) may optionally be added to the solution
in order to prevent the polymer from separating from the
solution during storage for an extended period of time.

PBI membranes can be cast from solutions of different
concentrations. After casting onto a glass plate, the majority
of the solvent is evaporated in a ventilated oven at temper-
atures ranging from 60 to 120 ◦C. The membranes are then
washed with hot water in order to remove the stabilizer
(LiCl) if any. Strong interaction between the polar groups in
PBI and the DMAc molecules makes it difficult to remove
the traces of the solvent during the membrane casting. A
final drying of the DMAc-cast membranes at temperatures
of up to 190 ◦C or under vacuum at lower temperature
seems necessary. Similar procedures can be used for casting
PBI membranes from other organic solvents. An alternative
way is to cast PBI membrane from a mixture of NaOH and
ethanol [34].

2.2.3.2. Acid doping. The DMAc-cast membrane should be
doped with acids to become proton conductive. Chemically,
PBI is a basic polymer (pKa = 5.23 as protonated) and can
readily react with a strong acid. Various inorganic acids
have been investigated such as H2SO4 [29–31,129,130],
H3PO4 [29–34,129–131], HClO4 [129], HNO3 [129], HBr
[29,31], HCl [129]. Among these is phosphoric acid of spe-
cial interest because of its unique proton conductivity, also
under anhydrous conditions, as well as its excellent thermal
stability and very low vapour pressure at elevated temper-
atures.

By immersing a PBI membrane in an aqueous phospho-
ric acid solution, the equilibrium can be reached after about
50 h at room temperature. Typically an acid-doping level
around 5–6 can be achieved by using 65–75 wt% acid solu-
tions. For cross-linked PBI membranes, either covalently or
ionically, the acid doping needs to be done at higher acid
concentrations and higher temperatures.

In addition to phosphoric acid, other acids, especially
organophosphonic acids such as phenylphosphonic acids
and akylphosphonic acids, have been tried as the dopants,
with the aim of improving the acid retaining properties
[25a]. Simple doping in a solution of these acids in sol-
vents such as tetrahydrofuran (THF) and alcohols results
in very low doping contents. High acid-doping levels have
been reportedly achieved by using the TFA method.

Ünsal and Kiefer [132,133] used polyvinylphosphonic
acid (PVPA) as the polyelectrolyte, immobilized in the
PBI matrix by interpenetration, cross-linking and cova-
lent bonding. The electrolyte is unlikely to be washed out
when the membrane is exposed to a liquid. This is espe-
cially desirable for the liquid-fed direct methanol fuel cell
(DMFC). Based on this type of membranes BASF-PEMEAS
has developed an MEA product under the trade mark
Celtec®-V. Being the simplest polymeric diprotic acids with
highest density of immobilized phosphonic acid, PVPA
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has been considered for PEMFC applications [134,135] and
more interest has arisen recently [18]. Synthesis [136]
and characterizations with respect to water content, self-
condensation and proton conductivity as a function of
relative humidity has recently been investigated [137].

2.3. Membrane modifications

The conductivity of PBI generally increases with increas-
ing acid-doping level, i.e. acid content. At the same time
the mechanical strength decreases with acid-doping level.
The optimum doping level is thus a compromise between
these two effects. Different methods are being explored
to improve the proton conductivity without sacrificing
mechanical strength or vice versa. The methods include
ionic and covalent cross-linking of the polymer as well as
preparation of composite membranes.

2.3.1. Ionic cross-linking
Flexible ionomer networks can be prepared from

acid–base polymers by ionically cross-linking of polymeric
acids and polymeric bases [138–142], as recently reviewed
by Kerres [16]. Basic polymers are typically PBI, but other
polymers such as poly(4-vinylpyridine) (P4VP) [143],
aminated PSF [144,145] and PEEK [146] and pyridine con-
taining polymers [91,92] have also been used. The acidic
polymers are typically sulphonated polysulphone (SPSF)
[147,148], sulphonated polyetheretherketone (SPEEK)
[149], sulphonated poly(2,6-dimethyl-1,4-phenylene
oxide) (SPPO [150]), sulphonated poly(arylene thioether)s
[151], and sulphonated poly[bis(phenoxy)phosphazene]
(SPOP [152]). In addition perfluorosulphonic acid poly-
mers, e.g. Nafion® was first coated with PBI by Hobson et
al. [153] in order to reduce the methanol permeability. The
work has inspired more interest in developing Nafion®-PBI
blend membranes [154–156]. Improved durability at open
circuit voltage (OCV) and at constant current density has
been reported by Zhai et al. [156], however, the test was
performed in a relatively short period of time (480–720 h).

When an acidic polymer and a basic polymer, prefer-
ably dissolved in a common solvent for membrane casting,

are mixed, precipitation of a polysalt occurs. To avoid this,
the acidic polymer is usually prepared in a neutralized
form, e.g. either mixed with a volatile base, typically diethyl
amine or triethyl amine, or converted to the corresponding
metal salt, for example, the sodium form of Nafion, which
can be acidified after a homogeneous blend membrane has
been prepared by solution casting.

Generally speaking, ionically cross-linked membranes
suffer from poor thermal stability in aqueous media as
the ionic cross-link breaks at higher temperatures [16],
resulting in unacceptable swelling and therefore mechan-
ical instability. On the other hand, covalently cross-linked
membranes tend to become brittle as they dry out. Kerres
and co-workers [157,158] recently introduced a cova-
lent cross-linker (1,4-diiodobutane, DIB) into an ionically
cross-linked blend. The resultant membrane was covalent-
ionically cross-linked, showing high conductivity (above
0.1 S cm−1 as measured in 0.5N HCl), low swelling and good
thermal stability.

Further doping of PBI-based acid–base blend mem-
branes with phosphoric acid gives a ternary membrane
[159,160]. Compared with acid-doped pure PBI membranes,
this ternary membrane has improved mechanical strength,
allowing for a higher acid-doping level and therefore high
conductivity and better fuel cell performance. In this case
another issue arises, being the chemical stability of the
acidic polymers at elevated temperatures and in the pres-
ence of doping acids. Kerres et al. [161,162] have recently
synthesized sulphonated partially fluorinated arylene main
chain polymers (Scheme 9), showing excellent stability in
hot phosphoric acid at temperatures up to 160 ◦C. Their
blend membranes with PBI exhibit excellent thermal sta-
bility and extended stability. Phosphoric acid-doping levels
as high as 11–12 have been achieved with high proton con-
ductivities (above 0.1 S cm−1), less acid swelling, reasonable
mechanical strength and therefore better fuel cell perfor-
mance [163].

2.3.2. Covalent cross-linking
Covalent cross-linking of polybenzimidazoles is well

known. In a US Patent issued in 1977, Davis and Thomas

Scheme 9. Partially fluorinated sulphonated polymers used for preparation of acid–base blend membranes with PBI [163,164].
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Table 1
PBI-based composite membranes.

Organic phase Inorganic phase Remarks Ref.

PBI ZrP + H3PO4 9 × 10−2 S cm−1 at 200 ◦C, 5% RH [32]
PWA/SiWA + H3PO4 3–4 × 10−2 S cm−1 at 200 ◦C, 5% RH

PBI SiWA + SiO2 2.2 × 10−3 S cm−1 at 160 ◦C, 100% RH [172,173]
PBI PWA + SiO2 + H3PO4 Thermally stable at <400 ◦C; 1.5 × 10−3 S cm−1 at 150 ◦C, 100% RH [171]
PBI Zr(PBTC) 3.8 × 10−3 S cm−1 at 200 ◦C, 100% RH [176,177]
PBI-sPEEK BPO4 6 × 10−2 S cm−1 at RT [174]
F6-PBI Modified MMT +H3PO4 Reduced thermal expansion and improved mechanical properties [100]
PBI-PTFE +H3PO4 ca. 22 �m membranes but low OCV [179]
PBI-PTFE Sn0.95Al0.05P2O7-PxOy 4 wt% PBI–10% PTFE, at 200 ◦C: 0.04 S cm−1; fuel cell OCV 0.96 V, 284 mW cm−2 [178]

[164] described that imidazole groups of the polybenzimi-
dazole membrane can be cross-linked by an organic acid or
its halide with two or more functional groups per molecule.
In this way the polybenzimidazole is covalently cross-
linked through an amide-type linkage. The cross-linked
polybenzimidazole is tougher than non-cross-linked ana-
logues and shows improved compaction resistance during
prolonged usage at higher pressures. Different cross-linkers
have been explored such as ethylene glycol digly-
cidyl ether (EGDE) [24b], terephthaldehyde (TPAH) [104],
tetracarboxylic dianhydride (TCDA) [165], divinyl sulphone
[166], �-dibromo-p-xylene (DBpX) [167,168], 3,4-dichloro-
tetrahydro-thiophene-1,1-dioxide [169], dichloromethyl
phosphonic acid [170], among many others.

For fuel cell applications, dibromo-p-xylene (DBpX) has
been used as the cross-linker for PBI membranes cast from a
DMAc solution [171]. After heat treatment at temperatures
above 250 ◦C cross-linked membranes are obtained with
improved mechanical strength. At an acid-doping level of
8.9 per repeat unit, the cross-linked PBI membrane has a
similar mechanical strength as that of linear PBI at an acid-
doping level of 6 per repeat unit, while the conductivity
is almost doubled because of the high acid content. It is
interesting that, when exposed to the Fenton test, e.g. a 3%
hydrogen peroxide solution containing 4 ppm Fe2+ at 68 ◦C,
the cross-linked polybenzimidazole membranes show lit-
tle visible deterioration [171] (see Section 3.3).

2.3.3. Composite membranes
Inorganic–organic composites are the focus of recent

attempts to develop proton exchange membranes [10–12].
Addition of a hygroscopic moiety (e.g. SiO2) to an ionomer,
for example, will increase the water retention and also
make the materials stiffer. In case that the inorganic filler
is a solid proton conductor such as zirconium phosphates
or heteropolyacids, an improvement of the conductivity
may also be seen. In addition to the mechanical and con-
ducting properties, an inorganic component may assist in
improving the thermal stability, water absorption, reactant
crossover resistance, and other properties of the polymer
membranes.

PBI and PBI blend composites have been prepared con-
taining inorganic proton conductors including zirconium
phosphate (Zr(HPO4)2·nH2O, ZrP) [32], phosphotungstic
acid (H3PW12O40·nH2O, PWA) [172]; silicotungstic acid
(H4SiW12O40·nH2O, SiWA) [32,173,174], and boron phos-
phate (BPO4) [175]. When further doped with phosphoric
acid, high conductivity of 9.0 × 10−2 S cm−1 at 5% RH and
200 ◦C was obtained with PBI composite membranes [32].

Based on the hexafluoro PBI (F6-PBI, see Scheme 5i)
[99,100] and dodecylamine (DOA)-modified montmo-
rillonite (MMT) [176], Chuang et al. [100] prepared
nanocomposite membranes, showing reduced coefficient
of thermal expansion, reduced methanol crossover, and
much decreased plasticizing effect of the phosphoric acid
after acid doping.

Pure solid inorganic proton conductors are brittle
and therefore mechanically poor when used directly as
membranes. A thermally stable polymer like PBI might
be used as a binder to prepare composite membranes
with improved mechanical strength, flexibility, and con-
ductivity. Yamazaki et al. [177,178] prepared zirconium
tricarboxybutylphosphonate (Zr(O3PC(CH2)3(COOH)3)2,
Zr(PBTC)) membranes with PBI as a binder. A com-
posite membrane of 50% Zr(PBTC)-50%PBI showed a
conductivity of 3.8 × 10−3 S cm−1 at 200 ◦C and under an
equilibrium water vapour pressure of 1.38 MPa. Similarly,
Heo et al. [179] fabricated composite membranes of
Sn0.95Al0.05P2O7 with PBI and PTFE, showing improved
conductivity and stability compared to the system without
PBI.

Composite membranes of polytetrafluoroethylene
(PTFE) and PFSA, e.g. Nafion are well known. Using the
Nafion covered PTFE matrix where Nafion serves as a
coupling agent via an acid–base reaction with PBI, Lin
et al. [180] prepared PTFE-PBI composite membranes,
followed by acid doping. Such a composite membrane can
be made in small thickness with good mechanical strength.
However, the low OCV indicated high gas permeability.
These efforts are summarized in Table 1.

3. Structure and characterizations

3.1. Spectroscopic studies

The infrared (IR) [30,31,181–188], Raman spectroscopy
[187–189] and nuclear magnetic resonance (NMR) spectra
[181,182,186] have been made to investigate the poly-
mer and its protonation by acids. For pristine PBI, the IR
spectrum [183–185] from 2000 to 4000 cm−1 is of particu-
lar interest since most of the informative N–H stretching
modes occur in this range, with typically three distin-
guishable bands at 3415, 3145 and 3063 cm−1. According
to Musto et al. [183], the relatively sharp peak centred at
3415 cm−1 is attributed to the stretching vibration of iso-
lated, non-bonded “free” N–H groups, whereas the broad
absorption band located around 3145 cm−1 is assigned to
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Fig. 3. Infrared spectra of PBI-xH3PO4 membranes [29] [reproduced from Bouchet and Siebert with permission of Elsevier Science Ltd.].

stretching vibrations of self-associated, hydrogen-bonded
N· · ·H groups.

When PBI is doped with phosphoric acid, a very broad
absorption band complex appears in the wave number
range from about 2400 to 3000 cm−1, corresponding to
the protonation of the nitrogen of the imide by transfer-
ring one or more protons from H3PO4 to imidazole groups
of PBI [29,30]. As the doping level increases, the intensity
of this new band complex increases at the expense of the
absorption of both the N–H groups at 3415 and the N–H· · ·H
groups at 3145 cm−1. The intensive absorption bands in
the 400–1300 cm−1 spectral region are characteristic of the
anions, predominantly H2PO4

−1. Bouchet and Siebert [29]
found that the area of the peak at 1630 cm−1 is sensitive to
the protonation and approaches the same value for all the
acids after reaching the maximum degree of protonation
(see Fig. 3).

PBI is amorphous, or at least with a very low extent
of crystallinity, as revealed by X-rays diffraction patterns
[34,93]. When doped with phosphoric acid, the resid-
ual crystalline order is completely lost as the acid has a
plasticizing effect. This is indicated by the remarkable Tg

decrease observed by Hughes et al. [182] using differen-
tial scanning calorimetry (DSC). When cast directly from
a TFA solution, the membrane is of higher crystallinity,
as reported by Litt et al. [34]. Heat treatment at above
200 ◦C lowers the crystallinity. The high crystallinity might
be the reason for the observed high conductivity since
the crystalline regions have low acid content, forcing the
excess acid into the amorphous phase and increasing the
overall conductivity [34]. Kim et al. [87] reported that
quenching the directly cast p-PBI membrane immediately
to −20 ◦C could also prohibit the formation of the crystal-
lites.

Using 1H and 31P magic-angle spinning NMR, Hughes
et al. [182] investigated the polymer–acid interaction. The
assignment of the 1H and 31P resonances was made, show-
ing the four different 31P environments, i.e. bound and
unbound phosphoric acid molecules (H3PO4) and acid
anion (H2PO4

−), in good agreement with the IR obser-

vations [29]. This implies that the protonation of the
imidazole rings occurred by the phosphoric acid together
with hydrogen bonding of both H3PO4 and H2PO4

−.
Jayakody et al. [186] studied the mass-transport in both

DMAc and PPA cast membranes by 1H and 31P NMR. At sim-
ilar PA loading levels, the proton diffusivity is ascertained
to be about an order of magnitude higher in the PPA-cast
membranes than in DMAc-cast membranes, showing the
significant effect of membrane processing on membrane
transport properties. Phosphate counter-ion mobility was
inferred to be more than 2 orders of magnitude lower than
that of the protons, which supports a Grotthus-type mech-
anism of proton conduction.

Raman spectra of PBI [187–189] and acid-doped PBI
[187,188] have been studied. The FT-Raman band at
1000 cm−1 was assigned to the meta-benzene ring vibra-
tion, unchanged after the acid doping. The band at
1570 cm−1 was found to correspond to the protonation of
the imidazole ring [187]. By plotting the ratio of the band
intensity of 1000 cm−1 to that of 1570 cm−1 against the
acid-doping level, Voyiatzis [187] confirmed the maximum
protonation of 2 for PBI by phosphoric acid.

3.2. Water uptake and acid doping

It is well known that PBI has a high affinity for mois-
ture. By immersing a dry PBI membrane in distilled water
at room temperature, up to 15–19 wt% of water can be
absorbed, corresponding to about 3 water molecules per
repeat unit of PBI. The water uptake is due to intermolecu-
lar hydrogen bonding between water and N and N–H groups
in the PBI [188,189]. In case of acid-doped membranes at an
acid-doping level of up to 2 mole H3PO4 per PBI unit, the
water uptake is lower than that for the pristine PBI [188]. It
seems that the active sites of the imidazole rings are prefer-
ably occupied by the acid molecules. At higher acid-doping
levels, however, the water uptake is higher than that of
pristine PBI membranes, indicating that this water uptake
is associated with the doping acid. At acid-doping levels
around 3 acid molecules per repeat unit, about 25% of the
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measured membrane volume swelling is found to be due
to the water uptake [188].

As discussed above, the infrared [29] and Raman [187]
spectroscopic analysis suggests that the maximum degree
of protonation of PBI by phosphoric acid is reached at a
doping level of 2 acid molecules per repeat unit. This is con-
firmed by a gravimetric measurement [188]. Ma et al. [33]
have estimated the equilibrium constant for the following
reaction:

H3PO4 + PBI ↔ H2PO4
− + PBI-H+ (2)

By using the dissociation constant of protonated 2-phenyl
benzimidazole (KPBI-H+ = 5.9 × 10−6 mol L−1) and the first
dissociation constant of phosphoric acid (Ka1

H3PO4
= 6.9 ×

10−3 mol L−1), they obtained the equilibrium constant
K = 1.17 × 103.

He et al. [190] studied the doping chemistry of PBI
membranes by the Scatchard method. By considering the
distribution of phosphoric acid between the aqueous phase
and the polymer immersed in the solution, a two lin-
ear segment plot of the ratio of the measured PBI doping
level, [LT]B, to the doping acid concentration, C, a plot of
[LT]B/C against the measured PBI doping level, [LT]B was
obtained. It is confirmed that there are two types of poly-
mer sites for the acid doping, one with higher affinity (site
type L1 with a complexation constant K1 = 12.7 L mol−1),
giving a maximum acid-doping level of 2, and the other
with lower affinity (site type L2 with complexation con-
stant K2 = 0.19 L mol−1). The dissociation constants for the
complexing acid onto these two types of PBI sites are found
to be

L1-H3PO4 ↔ L1+H++H2PO−
4 Ka1

L1-H3PO4
= 5.4 × 10−4 (3)

L2-H3PO4 ↔ L2+H++H2PO−
4 Ka1

L2-H3PO4
= 3.6 × 10−2 (4)

respectively, that is, about 10 times smaller than that of
aqueous phosphoric acid in the first case but 5 times higher
in the second. It is the acid bound onto the second type
of PBI sites, with a larger dissociation constant, that con-
tributes most of the proton conductivity of the acid-doped
membranes.

3.3. Thermal and oxidative stability

The thermal stability of PBI has been extensively studied
by thermogravimetric analysis (TGA) with mass spectrom-
etry (MS) of the purge gas from the TGA [35,191,192]. For
pristine PBI, typically about 10–15% weight loss occurs at
temperatures up to 150 ◦C, due to absorbed water. From
150 to 500 ◦C, there is no further significant weight loss,
indicating the excellent stability of PBI polymer samples. At
temperatures over 500 ◦C, a significant weight loss occurs,
accompanied by the formation of carbon dioxide. For the
acid-doped PBI sample, weight losses due to dehydration of
phosphoric acid and pyrophosphoric acid were observed.
In the presence of platinum catalysts under atmosphere
of either nitrogen, 5% hydrogen or air, Samms et al. [35]
observed only weight losses due to water at temperatures
below 400 ◦C, showing adequate thermal stability of this
membrane for fuel cell applications.

Fig. 4. Membrane degradation in 3% H2O2 containing 4 ppm Fe2+ at 68 ◦C.
Solid lines indicate that the samples remained as a whole membrane,
whereas dashed lines indicate that samples were broken into small pieces.
Data for ionically cross-linked PBI were from [163] and the rest from [171].

Chemical stability of membranes is of much concern to
the lifetime of PEMFC. In situ formed H2O2 and •OH or •OOH
radicals from its decomposition are believed to attack the
hydrogen containing bonds in polymer membranes. This
is assumed to be the principal degradation mechanism of
common PEMFC membranes. Experimentally, the genera-
tion of these radicals can be achieved by Fe2+/Fe3+ catalysed
H2O2 decomposition. Based on this method, the so-called
Fenton test is used for the stability evaluation of PEMFC
membranes [193]. In this connection it seems that mem-
branes based on perfluorinated sulphonic acid, e.g. Nafion®

exhibit better chemical stability than those based on pol-
yaromatic hydrocarbons. And this peroxy radical attack
would be much more aggressive at temperatures exceeding
100 ◦C.

By being exposed to a 3% hydrogen peroxide solu-
tion containing 4 ppm Fe2+ at 68 ◦C, PBI membranes have
been evaluated by the weight loss and visual observation
[163,170,171]. The PBI membrane was broken into small
pieces after 30 min (indicated with the dashed lines in
Fig. 4). After the first 20 h, the PBI membrane showed a
weight loss of about 15%. As a comparison, Nafion 117
membranes have only 1% weight loss during the same
period of time. It is shown by Gaudiana and Conley [194]
that the initial stages of oxidative attack to benzimida-
zoles occur preferentially on the aromatic rings bearing
the nitrogen function and subsequently the amine por-
tion of the molecules. That is to say, the weak link is the
nitrogen containing heterocyclic and adjacent benzenoid
rings.

It is interesting that cross-linking of PBI can be achieved
by an amide-type linkage through imidazole rings of the
polymer. The cross-linking has proved to be an effective
way to improve the stability of the aromatic heterocyclic
polymers. As seen from Fig. 4, both ionically cross-linked
[163] and covalently cross-linked [171] PBI membranes
remained in a good membrane form even after 118 h
(indicated with solid lines). After the first 20 h, about
2% of weight loss was observed for the cross-linked PBI
membranes. Over the whole 120 h period of the test, the
cross-linked PBI membranes behave in a comparable way
to Nafion 117 membranes.
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Fig. 5. Tensile strength of DMAc-cast PBI membranes as a function of acid-
doping level at different temperatures. RH is relative humidity. The tensile
strength is with respect to the initial dimensions of samples. Data for ion-
ically cross-linked PBI were from [163]. Data for MW = 43,000 PBI were
from [34]. Data for MW = 25,000 PBI were from [195].

3.4. Mechanical strength

The strong hydrogen bonding between N and –NH–
groups in PBI is the dominant molecular force, result-
ing in close chain packing and therefore good mechanical
strength of membranes. The dry PBI membrane has a small
elongation at break of around 1–3%, and an intermediate
tensile strength of about 60–70 MPa at room temperature.
When saturated with water, the elongation and tensile
strength increase to about 7–10% and 100–160 MPa, respec-
tively [14].

When phosphoric acid is introduced into the polymer
structure at a low acid-doping level range, say, below 2, the
molecular cohesion between the PBI chains is decreased.
However, the hydrogen bonding between nitrogen atoms
and phosphoric acid increases the cohesion. As a result
of these opposite effects, no significant change of modu-
lus or tensile strength of the PBI membranes is observed
[34]. With acid-doping levels higher than 2, i.e. when the
number of acid molecules surpasses the number of the
basic sites, free acid will be present. The free acid would
increase the separation for PBI backbones and therefore
decrease intermolecular forces. Consequently the mem-
brane strength is decreased dramatically, more at higher
temperatures, as shown in Fig. 5. The strength is also
strongly influenced by the average molecular weight. In a
range from 20,000 to 55,000 g mol−1, the tensile strength
of acid-doped PBI membranes is found to increase from 4
to 12 MPa [195].

The selection of a practical acid-doping level should take
into account both conductivity and mechanical strength,
which are opposite functions of the doping level. For
thin DMAc-cast membranes, a useful doping level around
5–6 mol of H3PO4 per PBI unit has been suggested [14]. This
practical acid-doping level range seems also valid for TFA-
cast membranes to some extent. When cross-linked, the
PBI membranes show much improved mechanical strength,
especially after acid-doping [163,171]. As a consequence,
the acid-doping level can be extended to a higher range
of 10–13, still with sufficient mechanical strength of the

membranes (see Fig. 5). This will in turn give a higher con-
ductivity.

The PPA-cast membranes, however, behave differently
mechanically. It is reported that at an acid-doping level
of 20–40 mol phosphoric acid per repeat unit, the PPA-
cast membranes still exhibit rather high tensile strength,
from 1 to 3.5 MPa [88,89]. It should also be remarked that
the polymer used for preparing the PPA membranes had
very high IV or molecular weights, which is known to
have significant effect on mechanical strength of mem-
branes.

4. Electrochemical and transport properties

4.1. Proton conductivity

The proton conductivity of PBI was first studied more
than 30 years ago [196,197], though under poorly defined
conditions. For phosphoric acid-doped PBI membranes, the
proton conductivity has been measured by several groups.
Fontanella et al. [131] measured the conductivity of acid-
doped PBI at compressions of up to 0.25 GPa. At room
temperature the conductivity decreases with increasing
pressure for both acid-doped PBI and 85% phosphoric acid,
as expected due to the viscosity increase. From the slopes
of the logarithmic conductivity versus pressure curves the
activation volume of acid-doped PBI was estimated and
found to be much larger than that of 85% aqueous PA but
similar to that of PFSA membranes. This is an indication that
the acid-doped PBI is a single-phase polymer electrolyte
where ion transport is similarly mediated by segmental
motions of the polymer, presumably the pedant side chains
in case of PFSA membranes [198].

Bouchet and Siebert [29,199] studied anhydrous con-
ductivity of different acid-doped PBI systems, and proposed
an activated mechanism for the proton migration. They
suggested that the proton migrates from an imide site to
a neighbouring vacant one, and this migration is assisted
by the counter anion with a Grotthus mechanism. The 1H
and 31P NMR showed that phosphate counter-ion mobil-
ity was more than 2 orders of magnitude lower than that of
the protons [186], supporting also the Grotthus mechanism
of proton conduction in the membranes. This seems to be
consistent with the unreported transference number mea-
surements, done by one of the authors’ group, where the
cation transference number (t+) is found to be 0.98 [200].

Spectroscopic studies revealed the existence of bound
and unbound phosphoric acid molecules (H3PO4) and acid
anion (H2PO4

−) in acid-doped PBI membranes [182]. From a
proton conducting point of view, the bound acid molecules
and acidic anions contribute to the proton conductivity
only via the Grotthus mechanism, whereas the presence
of unbound H2PO4

− ions is essential for the vehicle mech-
anism, but participates as well in the Grotthus mechanism.
In addition the hydrogen bonding between free H3PO4 has
been observed, which would be a prerequisite for the Grot-
thus mechanism.

The conductivity of phosphoric acid-doped PBI mem-
branes has been measured at different acid-doping levels.
Different acid-doping levels attribute to different mecha-
nisms of proton transfer, i.e. along different chains of proton
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donors and acceptors. Ma et al. [33] proposed the order
of the rate of proton transfer between various species:
H3PO4 to H2O > H3PO4 to H2PO4

− > N–H+ to H2PO4
( > N–H+

to H2O > N–H+ to N–H.
At an acid-doping level of lower than 2 virtually all acid

molecules are believed to donate a proton to the unpro-
tonated N-site and to be bounded to the polymer matrix.
In this case, proton exchange most likely happens between
protonated and non-protonated imino nitrogen groups on
neighbouring polymer chains. Bouchet and Siebert [29]
reported that the conductivity is about 10−7 S cm−1 for dry
PBI with an acid-doping level of 2 at 30 ◦C. Kawahara et al.
[31] measured the conductivity of PBI with an acid-doping
level of 1.9 from room temperature to 160 ◦C, being in a
range of 10−9 to 10−5 S cm−1 under anhydrous states. Even
under humidified atmosphere and at 200 ◦C, the conductiv-
ity at this low acid-doping level was found to be lower than
10−2 S cm−1 [32]. These findings indicate that high conduc-
tivity is only obtainable with free acid, i.e. at acid-doping
levels higher than 2.

At high acid-doping levels, in a range of 4–6, the pro-
ton migration is proposed to happen mainly along the acid
and anion chain (H2PO4

−–H+–H2PO4
−) or the acid and H2O

(H2PO4
−–H+· · ·H2O) chain depending on the water content

[33]. In this case, the conductivity mechanism would be
similar to that of a concentrated H3PO4 solution. The mea-
sured conductivity is about 4-7 × 10−2 S cm−1 at 200 ◦C,
indicating that the presence of molecular acid contributes
the major part of the conductivity [32,33].

Fig. 6 summarizes the conductivities of different types
of PBI membranes doped at different acid levels. The con-
ductivity of the TFA-cast membranes was measured under a
constant relative humidity (varied water-to-air ratio) [33],
while that of the DMAc-cast membranes was obtained
under a constant water-to-air ratio [32]. They are only com-
parable at temperatures close to 200 ◦C. It can be seen that
the TFA-cast membranes exhibit slightly higher conduc-
tivity. With cross-linked membranes higher acid-doping

Fig. 6. Proton conductivity of 100% phosphoric acid, Nafion 117, and dif-
ferent types of acid-doped PBI membranes. The PPA-cast membrane was
with an acid-doping level of 32 and at relative humidity of 0% [89]. The
DMAc-cast membrane was with an acid-doping level of 5.7 and under
atmosphere with a water-to-air molar ratio of about 0.7 [32]. The TFA
membrane was with an acid-doping level of 6.0 and at relative humidity
of 5% [33]. Data for cross-linked PBI, 100% PA and Nafion were from [163].

levels of 10–12 can be used, giving conductivities around
0.1 S cm−1 [163].

The membrane processing and morphology have also
significant effects on the proton transport and conduc-
tivity. The NMR study by Jayakody et al. [186] showed
that the proton diffusivity is about an order of magni-
tude higher in the PPA-cast membranes than in DMAc-cast
membranes. Apparently an additional proton transport
mechanism exists involving rapid exchange between the
phosphoric acid and pyrophosphoric acid species. At an
acid-doping level of 32, corresponding to 91 wt% phospho-
ric acid and 9 wt% PBI, the PPA-cast membranes exhibit
a conductivity as high as 0.26 S cm−1 at 200 ◦C under dry
conditions, as seen from Fig. 6 [89]. This conductivity is,
however, still much lower than that of 100% phosphoric
acid. Apart from the effective dilution cause by the poly-
mer, it is likely that the H-bond structures present in pure
H3PO4 are broken by the polymer, making proton jumping
and perhaps also acid molecule movement more difficult.
Similar effects were observed when small molecules such
as imidazole and 1-methyl imidazole were introduced into
concentrated phosphoric acid instead of water [201].

4.2. Electro-osmotic water drag and methanol crossover

The electro-osmotic drag coefficient is defined as the
number of water molecules moved with each proton in the
absence of a concentration gradient [202]. This coefficient
has been determined previously for Nafion membranes
and a coefficient of 2.5–3.0 H2O/H+ has been reported for
liquid water-equilibrated Nafion membranes at room tem-
perature [203,204]. When equilibrated with high relative
humidity vapour, the drag coefficient was found to be in a
range from 0.9 to 3.2 at room temperature. Under fuel cell
operating conditions, especially at higher temperatures and
equilibrated with a water–methanol mixture, this value
was found to be even higher [205]. The large water drag
coefficients for Nafion are resulting from its relatively large
water-filled domains and the vehicle mechanism of proton
conductivity, i.e. via hydration species like H3O+, H5O2

+,
or H9O4

+, etc. For proton conduction entirely by the Grot-
thus mechanism, one would expect an electro-osmotic drag
coefficient of zero, because proton transport occurs without
a net water transport [206]. For acid-doped PBI membranes,
it was found that the electro-osmotic drag coefficient of
water is nearly zero [207,208].

It has been suggested that materials with a low
electro-osmotic drag may offer the potential for improved
selectivity in DMFCs [209]. Because methanol and water
are completely miscible, it is unlikely that high selectiv-
ity can be achieved in polymers with large water domains.
For PBI membranes, the electro-osmotic drag coefficient of
methanol was found to be essentially zero [207]. Similar
results of the methanol crossover rate were obtained by
a methanol sorption/permeation method [21] and a real-
time spectrometric analysis of the cathode exhaust stream
of a fuel cell operating with a current [210], indicating
little contribution of the electro-osmotic drag mecha-
nism. For PBI membranes doped with 5 mol H3PO4 per
repeat unit at 150 ◦C and 50/50 water/methanol vapour,
the methanol crossover was found to be corresponding



Author's personal copy

Q. Li et al. / Progress in Polymer Science 34 (2009) 449–477 465

Table 2
Methanol crossover rates.

Methods and conditions Report results Ref.

Sorption/permeation method, PBI-5H3PO4, 150 ◦C, 90/10 water/methanol vapour 1.5 × 10−6 cm2 s−1 bar−1 [21]
Real-time fuel cell, PBI-5H3PO4, 150 ◦C, water/methanol vapour, 90 �m <10 mA cm−2 (ca. 6 × 10−6 cm2 s−1 bar−1) [2]

Real-time fuel cell, 90 ◦C, 1 M MeOH
Celtec®-V, 120 �m 109 mA cm−2 (ca. 9 × 10−8 cm2 s−1)

[133]
Nafion 117, 213 �m 240 mA cm−2 (ca. 3.6 × 10−7 cm2 s−1)

Diffusion cell, 1 M MeOH (liquid), RT
Undoped PBI 8.3 × 10−9 cm2 s−1

[209]
Nafion 117 2.3 × 10−6 cm2 s−1

Diffusion cell, 6 M MeOH (liquid), RT
Undoped PBI 1.5 × 10−9 cm2 s−1

[114]
S-PBI 2.5 × 10−6 cm2 s−1

Undoped PBI 1.5 × 10−8 cm2 s−1
[211]

N-substituted PBI 6 × 10−8 cm2 s−1

Diffusion cell, 1.8 M MeOH, RT
Hexafluoro(F6)-PBI 2.8 × 10−8 cm2 s−1

[100]F6-PBI-5%MMT 6 × 10−9 cm2 s−1

Nafion 3 × 10−7 cm2 s−1

Diffusion cell, 1 M MeOH, 60 ◦C
SPOP-12%PBI 1 × 10−7 cm2 s−1

[152]
Nafion 3.5 × 10−6 cm2 s−1

to less than 10 mA cm−2 for a 100 �m thick membrane
[21,210], equivalent to a methanol crossover rate of about
10−10 mol cm−1 s−1 bar−1. Similar real-time measurements
with Celtec®-V membranes based on PBI and PVPA were
made by Gubler et al. [133] and showed, however, 10
times higher methanol crossover rate for a liquid fed 1 M
methanol solution at 90 ◦C.

Methanol permeation measurements were reported
using a diffusion cell with a liquid methanol solution as
feed at the source side of the separating membrane and
pure water in the receiving chamber at the other side
[95,203,205,206]. This is a simple method to determine
the methanol permeability via diffusion, which would be
the dominating mechanism in case of a zero electric-
osmotic drag coefficient for PBI membranes. As listed in
Table 2, the results show a degree of scatter, even from
the same research group [114,211]. It seems that undoped
PBI membranes exhibit a methanol crossover rate of about
10−10 mol cm−1 s−1 at room temperature, as compared to
10−8 mol cm−1 s−1 for Nafion 117 membranes. These results
provide an indication of methanol permeability of the base
polymer, but are not relevant to fuel cell operation since
doping with phosphoric acid is necessary to achieve con-
ductivity, and thus are not compatible with liquid fed
methanol solution.

4.3. Solubility, diffusion and permeability of gases

As the polymer electrolyte membrane is acting as a sep-
arator in a fuel cell, the gas permeability of the polymer is of
particularly importance. In general hydrogen has a higher
permeation rate than that of oxygen because of its smaller
molecular size. Nafion membranes, for example, have low
gas permeability for both hydrogen and oxygen. For dry
membranes at 80 ◦C, Broka and Ekdunge [212] reported the
results in a range of 10−11 to 10−12 mol cm−1 s−1 bar−1.

As a glassy polymer PBI membranes are dense
with close chain packing (density of 1.34 g cm−3

[213]), due to the rigidity of the structure and strong
effect of hydrogen bonding. Very low gas perme-
ability has been reported for PBI membranes [70],
i.e. 2 × 10−13 and 5 × 10−15 mol cm−1 s−1 bar−1 for
hydrogen and oxygen, respectively, at room temper-
ature. At elevated temperatures from 80 to 180 ◦C,
He et al. [195] reported a hydrogen permeability of
1.6–4.3 × 10−12 mol cm−1 s−1 bar−1 and an oxygen perme-
ability of 5–10 × 10−14 mol cm−1 s−1 bar−1. Pesiri et al. [69]
reported a similar value (2.7 × 10−12 mol cm−1 s−1 bar−1)
for hydrogen at 180 ◦C.

When doped with acid, the membrane is swollen. At
an acid-doping level of 6, for example, a volume swelling
by 100–110% has been observed [195], resulting in a sig-
nificant separation of the polymer backbones. As a result,
the permeability of hydrogen and oxygen increases by 2–3
orders of magnitude in the temperature range from 80
to 180 ◦C, compared with the pristine PBI membranes, as
shown in Fig. 7 [195]. This hydrogen permeability of acid-
doped PBI membranes is confirmed by an electrochemical
stripping current in a real fuel cell, which corresponds to
2–2.5 × 10−10 mol cm−1 s−1 bar−1 [214].

In addition, the solubility coefficients, defined as
C/p, where C is the gas concentration in the poly-
mer and p is the applied gas pressure, were found
to be 1.6 × 10−5 mol cm−3 bar−1 for hydrogen and
1.9 × 10−5 mol cm−3 bar−1 for oxygen in PBI membranes
[70]. In the low range of solubility or gas pressure, Henry’s
law applies. Assuming to be a constant over the pressure
range, the diffusion coefficient can be calculated from the
permeability and solubility coefficients. For oxygen in PBI
membranes this was found to be 3 × 10−10 cm2 s−1.

For acid-doped PBI membranes, electrochemical tech-
niques have been used for determining the solubility
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Fig. 7. Hydrogen (open) and oxygen (solid) permeability at different tem-
peratures for PBI membranes before (cycles) and after (squares) being
doped with phosphoric acid [195] [reproduced from He et al. with per-
mission of Elsevier Science Ltd.].

and diffusion coefficients of oxygen. For PBI membranes
doped with 6 H3PO4 per repeat unit at 150 ◦C under
10% RH, the solubility coefficient was found to be
6.8 × 10−7 mol cm−3 bar−1 and the diffusion coefficient was
3.2 × 10−6 cm2 s−1 [215]. The diffusion coefficient seems
consistent with diffusion in a mixture of pure phospho-
ric acid under these conditions (1.7 × 10−7 cm2 s−1) and a
second phase where diffusion does not occur. On the other
hand, the oxygen solubility coefficient is about four times
higher than expected for pure phosphoric acid under these
conditions [215].

4.4. Kinetics of oxygen reduction

It is well known that concentrated phosphoric acid
imposes slow kinetics for oxygen reduction on the cath-
ode due to the strong adsorption effect of anions onto the
active sites of catalysts as well as the low solubility and
diffusivity of oxygen. Zecevic et al. [216] studied the oxy-
gen reduction kinetics at the Pt/PBI–H3PO4 interface by
a rotating disk electrode covered with a thin PBI film, in
0.1 M aqueous acid solutions. Liu et al. [215,217] developed
a micro band electrode technique that allows simulation of
the catalyst/electrolyte interface under fuel cell-type oper-
ating conditions. It was found that both the kinetic and
mass transport parameters in the Pt/PBI–H3PO4 system are
comparable to those in the Pt/H3PO4 system under similar
conditions. It seems that it is the amorphous H3PO4 that
functions as the electrolyte, in which the oxygen molecules
are mainly dissolved and through which the dissolved oxy-
gen diffuses.

The cathodic oxygen reduction reaction (ORR) and
anodic hydrogen oxidation reaction (HOR) kinetics on Pt-
based catalysts in real PBI-based fuel cells have been
studied [214,218]. With Pt-Ni/C as cathode catalysts,
Neyerlin et al. [214] observed a significant decrease
in the exchange current density (from 8.2 × 10−7 to
4–5 × 10−9 A cm−2

Pt) for the ORR in acid-doped PBI mem-
branes at 160 ◦C, compared with a Nafion cell at 80 ◦C. This

value is close to 2.2 × 10−9 A cm−2
Pt reported by Liu et al.

[215] for oxygen reduction on a Pt/C catalyst in acid-doped
PBI membranes at 150 ◦C, attributable to the presence of
H2PO4

− anion.
In the early research on PAFC, alternative electrolytes

have been extensively investigated [219–222]. Some perflu-
orinated acids are found to be able to enhance the kinetics
but suffer from low conductivity in concentrated solutions,
high vapour pressure, and flooding the PTFE bonded gas
diffusion electrodes. The possibility of using these perfluo-
rinated acids or salts as additives in the PBI–H3PO4 system
has not been explored in details, though some preliminary
results look promising [223].

To summarize the discussion Table 3 lists properties of
PBI membranes together with those of Nafion as a reference
[209,224]. Data are primarily based on DMAc membranes
from the author groups unless otherwise specified.

5. Fuel cell technologies

5.1. Catalysts, gas diffusion electrodes and
membrane–electrode assemblies

Similar to low temperature PEMFC and PAFC, noble
metals, i.e. platinum and its alloys are exclusively used
as catalysts in PBI-based fuel cells. High surface area car-
bon blacks (e.g. Vulcan-XC 72 and Ketjen black) have been
widely used as the catalyst support, though it is well known
from the PAFC research that corrosion rates of these car-
bon materials are unacceptably high, as to be discussed in
Section 5.5.3.

Limited independent work on the fabrication of gas dif-
fusion electrodes has been reported compared with PAFC
or Nafion-based PEMFC. Gas diffusion electrodes specific
for high temperature PEMFC (>95 ◦C), most likely for acid-
doped PBI membranes, are commercially available from
BASF E-TEK (products HT250EW and HT140EW [225]),
however, little technical information is available.

In the earlier works to develop PBI cells, Wang et al.
[36] used PAFC electrodes treated by impregnation with
the PBI polymer. The group also applied platinum black and
platinum–ruthenium alloy for the manufacturing of cath-
odes and anodes by a filtering–pressing method, at a rather
high loading of noble metal catalysts (4 mg cm−2) for DMFC
[226]. Although catalyst layer thickness and loading were
investigated, electrode optimization was not thoroughly
studied.

In general, PAFC electrodes are made with polyte-
trafluoroethylene (PTFE) as binder to make the catalyst
layer hydrophobic and therefore allow both liquid acid
and reactant gases to access the active sites of the cat-
alyst. In this way a network structure of a three-phase
zone is established, consisting of a proton conducting
electrolyte, electron conducting catalysts, and reactant
gases. For PEMFC electrodes, the key issue is to improve
the protonic access to the majority of catalyst sites not
in intimate contact with the membrane. This can be
accomplished either by impregnating the PTFE bonded
electrodes with an ionomer or using the ionomer as the
binder.
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Table 3
Properties of PBI membranes (DMAc-cast) before and after acid doping. Data were from author groups unless otherwise specified.

Pristine PBI PBI - 5 H3PO4 Nafion 117

Water uptake (mol H2O/repeat unit) ∼3 ∼3 22
Water swelling (vol%) ∼25 ∼25 34

Conductivity (S cm−1) (at 25 ◦C) ∼0 ∼0.001 (25 ◦C) 0.04 (25 ◦C)
∼0.06 (180 ◦C) 0.1 (80 ◦C)

H2 permeability (×1012 mol cm−1 s−1 bar−1) 0.2 (20 ◦C) [70] – 20 (25 ◦C)
1.6 (80 ◦C) 120 (80 ◦C) –
2.7 [69]/4.3 (180 ◦C) 380 (180 ◦C) –

O2 permeability (×1014 mol cm−1 s−1 bar−1) 0.5 [70] (20 ◦C) – 10 (25 ◦C)
5 (80 ◦C) 30 (80 ◦C) –
10 (180 ◦C) 90 (180 ◦C) –

Solubility coefficient of O2 (×105 mol cm−3 bar−1) 1.9 (25 ◦C) [70] (at 20 bar) 0.07 [215] 0.93 (30 ◦C)[224]
0.44 (80 ◦C)[224]

Diffusion coefficient of O2 (×106 cm2 s−1) 0.0003 [70] (at 20 bar) 3.2 [215] 1 × 10−6 (30 ◦C) [224]
(PBI-6PA, 150 ◦C, 10%RH) 8.7 × 10−6 (80 ◦C) [224]

Methanol crossover rate: vapour phase (×109 mol cm−1 s−1 bar−1) – <0.1 (150 ◦C) [210] –
Liquid phase (1 M solution, cm2 s−1) 8 (RT) [209] – 60 (RT) [209]

Electro-osmotic drag coefficient of water (mol H2O/H+) – ∼0 ∼3.2

Tensile strength at break (MPa) 120–160 (21 ◦C, <2% RH) 25 (21 ◦C, <5% RH) 18 (25 ◦C)
55 (150 ◦C, 6.6% RH) 4 (150 ◦C, 6.6% RH) –

Elongation (%) 3 (21 ◦C, <2% RH) 40 (21 ◦C, <5% RH) 120 (25 ◦C)
13 (150 ◦C, 6.6% RH) 86 (150 ◦C, 6.6% RH) –

Thermal stability (◦C) (decomposition in air, 5 ◦C/min) >500 >500 >280
Oxidative degradation (%) 15 (broke into pieces)

Weight loss after 18 h in 3% H2O2 + 4 ppm Fe2+ at 68 ◦C <2 (cross-linked) – <1

Crease-crack resistance (ability to withstand 5-fold after drying) – Passed Passed

For PBI cells, the used ionomers include PBI [227–230]
or PBI–polyvinylidene difluoride (PVDF) [231] blend with
subsequent acid doping, sulphonated polymer, e.g. Nafion
[232] which in combination with phosphoric acid has pro-
ton conductivity at higher temperatures [233,234], or other
polymers [235] that are containing functional groups for
incorporating phosphoric acid. Different types of solvents,
i.e. acetone and DMAc have been evaluated to prepare cat-
alyst inks for the electrode casting [236].

The loading of the ionomer in the catalyst layer should
be optimized by taking into account both ionic conductiv-
ity and the catalytic activity. High ionomer loading leads
to high protonic conductivity, however, more catalytic sites
will be covered by the ionomer and therefore have no access
to the reactant gases. In the early work by the authors’
group, using catalysts composed of 20 wt% Pt on carbon
(Pt/C), the weight ratio of Pt to PBI loadings in the cata-
lyst layer was about 0.7 [37,208,228]. Similar ratios were
reported elsewhere, e.g. 0.6 by Kim et al. [232] and 1.0 by
Seland et al. [227]. An investigation of PBI content used as
the ionomer in the catalyst layer was recently made by Kim
et al. [128,87]. They found that the ionomer to Pt/C ratio of
0.2 in the cathode gave best fuel cell performance. How-
ever, the catalyst composition, i.e. the Pt/C ratio was not
specified in the study. As suggested by Seland et al. [227]
in their study with catalysts of different Pt/C ratios, the
ionomer loading in the catalyst layer should be optimized
according to the surface area or the specific volume of the
catalyst powder, since it is the carbon black that comprises
the major volume of the catalyst layer [163].

A spraying method was developed using an ink of cat-
alyst particles dispersed in a PBI solution in DMAc [227].
A mixture of Pt/C and PBI solution in NMP has been used
for spraying and tape-casting [229,230]. For the purpose of
tape-casting [224], a stiff gas diffusion layer (GDL) material
was used with a supporting layer of PTFE bonded carbon
black to smooth the surface. Effects of the electrode poros-
ity, tailored by introducing various porogens, have been
studied [228]. In general the tape-casting method is more
demanding for a catalyst ink with higher viscosities, which
is difficult to achieve at low ionomer loading without other
additives.

In general, membrane–electrode assemblies (MEA) are
fabricated by hot pressing the prepared electrodes onto the
membrane. The primary challenge in preparing MEAs is to
achieve good contact between the membrane, catalyst layer
and GDL in order to maximize catalyst utilization during
cell operation. An integral MEA structure is also essential
to obtain long-term operation. The hot-pressing is usually
performed at the softening temperature of the ionomer,
typically 150 ◦C for PBI [14] and 200 ◦C for cross-linked PBI
membranes [163].

5.2. Fuel cell performance

With H2 as fuel, PBI cells have been demonstrated
with operation on dry gases, i.e. without humidification
for either hydrogen or air. Since the membrane conduc-
tivity increases with increasing the atmospheric humidity,
it is expected that the cell performance might be further
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Fig. 8. Polarization curves of PBI cells operating with hydrogen and air at 160–180 ◦C. Solid lines are at a pressure of 3 bar absolute. Dashed and dotted
lives are at a pressure of 1 bar absolute. The results by one of the authors’ groups were an average of 44 MEAs of 256 cm2 working area using cross-linked
PBI membranes at an acid-doping level of 11 mol PA [163]. The PEMEAS (now BASF) [51] and PlugPower [238] results were based on PPA membranes. The
Sartorius [239] result was based on post-doped membrane. The Juelich/FuMa-tech result [240] was achieved using cross-linked AB-PBI membranes. The
Volkswagen result was achieved at a 15 cell stack with an active area of 200 cm2 based on their own membranes [253].

improved if the fuel or the air is humidified to some extent,
of course, at the expense of dilution effect. Jalani et al.
[237] found, however, that humidification of anode fuel at
temperatures (dew points) from 40 to 80 ◦C gives slightly
poorer performance.

Fig. 8 shows a set of polarization curves of PBI cells
operating with hydrogen and air at typically 160–180 ◦C,
achieved by different groups. The solid lines are perfor-
mances obtained under pressure of 3 bar absolute and
dashed and dotted lines are from operation at ambient
pressure. The results by one of the authors’ group were
based on cross-linked PBI membranes at an acid-doping
level around 11, under ambient pressure. The electrodes of
active area of 256 cm2 were prepared from 50% Pt/C cata-
lysts with a platinum loading of 0.6–0.7 mg cm−2. The plot
is an average performance at 170 ◦C of all together 44 MEAs.

Both PEMEAS (now BASF) [51] and PlugPower [238] cells
were using the PPA membranes, which in general con-
tain high acid content and therefore exhibit high proton
conductivity. This can be seen from the smaller slopes of
the voltage–current density curves in Fig. 8. The results
by Sartorius were obtained by using the post-doped PBI
membranes [239]. Stolten et al. [240] used cross-linked
AB-PBI membranes from Fumatech. Unfortunately little
information about catalysts and noble metal loadings is
available.

At a cell pressure of 3 bar absolute (solid lines), Plug-
Power reported a performance of 960 mA cm−2 at 0.6 V,
based on PPA membranes. Volkswagen [253] and Sartorius
[239] reported similar performance of about 600 mA cm−2

at 0.6 V. It should be remarked that the Volkswagen result
was achieved at a 15 cell stack with an active area of
200 cm2. For single cell tests, a much higher performance
has been reported based on the so-called advanced PBI
membranes. Under a pressure of 3 bar absolute and at a
cell voltage of 0.6 V, the single cell power density as high
as 0.8 W cm−2 at 160 ◦C and 0.12 W cm−2 at 40 ◦C has been

claimed [253], corresponding to a current density of 1300
and 200 mA cm−2, respectively.

Direct use of methanol as fuel in a PBI cell is of special
interest, since a much lower methanol crossover rate has
been reported. Earlier tests of direct methanol fuel cells
[226] showed, however, that the effect of the methanol
crossover on the cathode performance is still significant,
due to both the mixing potential effect and the poisoning
effect of methanol on the cathode catalyst. Nevertheless,
an open circuit voltage around 0.6–0.7 V and a peak power
of more than 0.2 W cm−2 have been achieved at 200 ◦C
under atmospheric pressure. Ünsal et al. [126,127] operated
a DMFC using the commercial Celtec®-V MEA based on PBI-
PVPA membranes, showing higher OCV and better fuel cell
performance than Nafion 117 at methanol concentrations
above 1 M. Other types of fuels, for example, ethanol, 1-
propanol, 2-propanol [241], trimethoxymethane [242] and
formic acid [243] have also been investigated.

5.3. Poisoning effect of CO and sulphur

Hydrogen produced by reforming of carbon contain-
ing fuels always contains traces of carbon monoxide (CO).
When CO is present in the fuel stream, it competes with
hydrogen for adsorption on the available sites of the catalyst
surface. With the acid-doped PBI electrolytes, the CO poi-
soning effect has been examined [37]. The transient effect
of CO poisoning was modelled and validated with experi-
mental measurements [244].

Using a simple ratio of the poisoned H2 oxidation cur-
rent to the pure H2 oxidation current, the relative activity
of the catalysts for hydrogen oxidation at the presence of
CO was estimated as a function of temperature and CO con-
centration [37], as shown in Fig. 9. The relative activity of
the platinum catalyst for 20 ppm CO at 55 ◦C is about 24%
[245], close to that for 100 ppm CO at 80 ◦C (23%) [246,247]
or that for 1% CO at 125 ◦C (22%). A relative activity around
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Fig. 9. The relative activity of the platinum catalyst for hydrogen oxidation
as a function of temperature at different CO concentrations [37]. Dotted
curves were for Nafion-based cells. Data for 20 ppm CO at 40–115 ◦C and
for 100 ppm CO at 85 ◦C were from [245]. Data for 100 ppm CO at 80 ◦C
were taken from [246,247] [reproduced from Li et al. with permission of
The Electrochemical Society].

97% was observed for 20 ppm CO above 115 ◦C, for 0.5% CO
above 150 ◦C, and for 1% CO above 175 ◦C.

Limited information on the H2S poisoning effect is avail-
able. For PAFC at 190–205 ◦C, it was suggested that the total
amount of sulphur containing compounds (H2S and COS) in
the fuel stream should not exceed 50 ppm with a maximum
H2S level of 20 ppm provided that the CO partial pressure
does not exceed 2% [248]. For low temperature PEMFC,
H2S contents of below 1 ppm were suggested [249,250].
Recently Shi et al. have shown the electrochemical depen-
dence of the H2S poisoning effect [251] and demonstrated
the recovery of the 1 kW stack performance by a potential
cycling [252].

For PBI-based HT-PEMFC, Schmidt and Baurmeister
[248] have demonstrated that, in the range of 10 ppm H2S
and 1% CO, the poisoning effects of these two impurities
are additive, though the poisoning effect of H2S may not
be completely reversible (see Fig. 10). At 180 ◦C, a PBI-cell
has been operating on reformate containing 5 ppm H2S and
2% CO for more than 3000 h with a degradation rate of
20 �V h−1, similar to that for operation with pure hydrogen,
indicating the good tolerance ability. It should be remarked

Fig. 10. Durability of a Celtec®-P1000 MEA at 180 ◦C and 1 bar absolute
using realistic reformate as denoted in the figure [248] [reproduced from
Schmidt and Bauemeister with permission of the Electrochemical Society].

Fig. 11. SO2 tolerance at cathode side of HT PEM fuel cell at 160 ◦C, com-
pared to LT PEM fuel cell at 80 ◦C [253] [reproduced from Hubner, Huslage
and Seyfried with permission of the Volkswagen fuel cell research group].

that this 10 ppm H2S is a higher level than the current fuel
processor and shift catalysts can tolerate over time.

Contamination of the cathode air is often underesti-
mated and little information is available for PEMFC though
the presence of traces of, e.g. sulphur dioxide is well known
both in urban and rural surroundings. Recently the Volk-
wagen group [253] has examined the effect. As can be seen
from Fig. 11, a low temperature PEMFC operating at 80 ◦C
partly irreversibly decreases performance to some extent
already at 0.1 ppm SO2 and significantly at above 1 ppm
SO2. A considerable advantage is observed for high temper-
ature PEMFC, which showed little performance loss for the
SO2 content of 1 ppm and a small restorable performance
loss at 10 ppm SO2.

5.4. Direct use of methanol reformate and integration
with fuel processors

A methanol reformer is often operated at temperatures
of 250–330 ◦C, however, the methanol reforming is also
possible at lower temperatures (180–230 ◦C [41]), though
at a low rate of hydrogen production. The CO content in
the reformate streams is in the tolerance range of the high
temperature PEMFC, allowing the PEMFC to operate with
reformed hydrogen directly from a reformer without fur-
ther CO removal [41,254].

For methanol reforming, it is estimated that a fuel cell
stack produces about 3 times of the heat and water that
a methanol steam reformer needs. This opens the possi-
bility for an integration of the high temperature PEMFC
with a methanol reformer. Holladay et al. [40] and Pan et al.
[41] demonstrated the feasibility of an integrated methanol
reformer and a PBI cell. This integration would have the
advantages of higher efficiency and simple construction
and operation. A reformed methanol fuel cell system was
developed recently, as a chemically and thermally robust
power source in the 2–10 W range [255]. Ultracell has con-
structed miniature methanol reformer/fuel cell systems as
a battery recharger with a power range of 5–100 W [51].
Some calculations of energy savings through integration of
a high temperature PEMFC with a methane or methanol
reformer can be found in [39].

Another possibility is integration of PBI cells with a high
capacity metal hydride hydrogen tank [38]. Sodium alanate,
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for example, can store 4–5 wt% hydrogen reversibly with a
desorption temperature of around 150 ◦C [256]. As hydro-
gen release from a hydride is a highly endothermic process
heat is needed at the desorption temperature. In this case
there is a much better match with the HT-PEMFC than with
a conventional PEMFC. A simple system of a 6 cell PBI stack
thermally integrated with an alanate tank was made at San-
dia National Laboratory [257].

5.5. Durability issues

One of the most significant challenge for PBI mem-
branes and their fuel cells is to improve lifetime. 40,000 h
of operation for stationary uses and 5000 h of operation
for automobile uses are commonly required with limited
performance decay, say, less than 10%.

The reasons for failure of a PEMFC are numerous and not
fully understood [258]. For PBI cells, the most likely mech-
anisms include (1) degradation of the polymer membranes
due to the attack by, for example, H2O2 and its radicals
(•OH or •OOH); (2) leaching of the doping acid from the
membrane electrolyte; (3) loss of catalyst activities due to
the catalyst sintering, catalyst dissolution and the carbon
support corrosion.

5.5.1. Steady-state operation and acid loss
Fig. 12 shows a set of durability test results of PBI

cells operating with hydrogen and oxygen under contin-
uous operation at ambient pressure [223]. At temperatures
around 150 ◦C a lifetime of 5000 h by continuous H2/O2
operation has been achieved at a constant cell voltage
of 0.5 V. At temperatures above 180 ◦C, the lifetime is
limited, and polymer oxidative degradation is likely the
reason of the failure. As the attack by H2O2 and –OH
and/or –OOH radicals is believed to be the principal degra-
dation mechanism of polymer membranes, the Fenton
test (see Fig. 4) showed significant degradation of PBI
membranes, although they can be improved by cross-
linking.

The oxidation by air seems much less than by pure oxy-
gen. Using air, PEMEAS (now BASF) has demonstrated a
lifetime of over 20,000 h at 160 ◦C [248]. From the result,
a degradation rate of the cell performance is estimated to
be about 5–6 �V h−1. This performance degradation rate

Fig. 12. Lifetime test of a PBI cell under continuous operation at different
temperatures with hydrogen and oxygen at ambient pressure [223]. The
membrane was fabricated from linear polymer with an average molecular
weight of about 25,000 g mol−1.

seems confirmed by Sartorius and Fumatech [94] as well as
by Schmidt and Baurmeister [259].

Acid loss may occur through different mechanisms such
as diffusion, capillary transport, membrane compression,
evaporation, and especially, leaching by condensed water
during shutdown and cold start. From the possible acid
loss mechanisms, Staudt [238] estimated that, at a rate of
0.6 �g m−2 s−1 at 160 ◦C, a full size 5 kW stack containing
2100 g of acid will be sufficient for 40,000 h of operation.

With acid-doped AB-PBI, however, Wannek et al. [260]
reported a high degradation rate of 20–25 �V h−1 under
constant load. By collecting the acid from the offgas through
a water condenser, they observed a constant acid loss (ca.
0.2 �g m−2 s−1) at the cathode but only initially an acid loss
(also ca. 0.2 �g m−2 s−1) at the anode [240,260]. This was
confirmed by the nearly constant resistance through the
test period of 1000 h, indicating that the acid loss does not
seem to be the main reason for the performance degrada-
tion.

Similar measurements were made by Yu et al. [98]
under both steady-state and dynamic (load, thermal and
shutdown-startup cycling) conditions. For steady-state
operation a voltage degradation rate of 4.9–6.3 �V h−1 was
reported at 160 ◦C. In the temperature range of 80–160 ◦C
the phosphoric acid loss rate was less than 10 ng cm−2 h−1

or 0.03 �g m−2 s−1, corresponding to a total acid of 2.6%
after 40,000 h of steady-state operation.

5.5.2. Dynamic test
Continuous operation at temperatures above 100 ◦C

involves no formation of liquid water and therefore less
risk of acid leaching. During dynamic tests with thermal,
load and shutdown–startup cycling, the amount and the
vapour pressure of the water product varies and forma-
tion of liquid water might be involved. In addition, the
shutdown–startup or/and temperature cycling cause ther-
mal and mechanical stresses to the membranes and cell
components as well as the volume expansion and contrac-
tions of the acid in MEAs. Another important mechanism of
the cell degradation involved in these dynamic tests is the
corrosion of carbon support and sintering of noble metal
catalysts, as to be discussed in Section 5.5.3.

A thermal cycling test on a hydrogen-air cell with a daily
shutdown and restart was performed by one of the authors’
group. As shown in Fig. 13, over the first 60 daily cycles,
a performance loss rate of 0.7 mW cm−2 per cycle was
observed. This performance loss is significant compared
with that for the steady-state operation. In the following
period of test over a period of more than 3 years, up to 850
cycles have been carried out showing a more or less sta-
bilized performance, however, with a sudden death at the
end. The sudden death was apparently due to the break-
down of the polymer membrane, as an abnormal increase
in the gas permeability occurred. A performance loss rate of
0.07 mW cm−2 per cycle, corresponding approximately to a
voltage drop rate of 0.3 mV per cycle or 40 �V per operating
hour was observed over the whole test period.

Based on the commercial Celtec®-P1000 MEA, Calun-
dann [261] and Schmidt and Baurmeister [259] reported a
similar daily startup–shutdown cycling test (12 h of oper-
ation at 160 ◦C followed by 12 h of shutdown). After a
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Fig. 13. A daily startup–shutdown cycling test of a PBI cell operating with
hydrogen and air at 150 ◦C and ambient pressure. The calendar time was
more than 3 years. The membrane was doped with 5.6 mol H3PO4. Catalyst
loading for both electrodes was 0.61 mg Pt cm−2. The cell was turned on
ca. 7 h every working day through the period of time.

period of 6500 h with 260 cycles under mild conditions
(160 ◦C and H2), an average voltage drop of 0.3 mV per cycle
was observed, corresponding to a performance loss of ca.
11 �V h−1 [259,261]. With the newly developed Celtec®-
P2000 MEA, improved cycling performance of 15 �V h−1

under harsh conditions (180 ◦C and reformate) has been
reported.

Based on the advanced PBI MEAs, the Volkswagen group
performed a temperature cycle test between 160 and 40 ◦C.
The cell operated for 2 h at 160 ◦C and 0.6 V and for 2 h at
40 ◦C and 0.6 V, as shown partly in Fig. 14. These test condi-
tions are critical for acid-doped membranes because of the
formation of liquid water, but prerequisite for automobile
applications. With a specially designed complex membrane
and electrode interfacial structure, a cycling test has been
managed for operation of up to 2500 h, with a degradation
rate of 6% power loss for every 1000 h [253]. For compar-
ison purpose, a degradation rate could be estimated to be
about 44 �V h−1, if assuming the test was performed at a
constant current density (830 mA cm−2).

Staudt [238] reported another load test, by using the so
called “filled” PBI membranes, with an off time (open cir-
cuit voltage) of 2 min and an on time at 0.2 A cm−2 of 30 min
and at 0.6 A cm−2 for 30 min. Little performance degrada-
tion was observed in the first 600 h. The performance loss
was estimated to be about 20 �V h−1 at OCV, 12 �V h−1 at

Fig. 14. Temperature cycling test between 160 and 40 ◦C. The periodic
temperature cycle was 2 h at 160 ◦C and 2 h at 40 ◦C [253] [reproduced
from Hubner, Huslage and Seyfried with permission of the Volkswagen
fuel cell research group].

0.2 A cm−2 and 19 �V h−1 at 0.6 A cm−2, respectively, based
on which a lifetime of 14,000 h was projected.

5.5.3. Catalyst degradation
For low temperature PEMFC, corrosion of the carbon

support and sintering of noble metal catalysts have been
recognized as the main reason of PEMFC performance
degradation [262,263]. This will be obviously aggravated
at elevated temperatures.

Based on Vulcan carbon as the catalyst support, Zhai
et al. [229] observed that, after a constant current
(640 mA cm−2) operation for over 500 h, the mean parti-
cle size of Pt increased from 4.02 to 8.88 nm, indicating that
this might be a main reason of the early performance loss of
PBI cells [230]. Under an OCV operation at 180 ◦C for 224 h,
Qi and Buelte [264] found that the cathodic platinum par-
ticle size increases by 5 times, whereas the anodic catalyst
particle size remains unchanged. It seems that the carbon
corrosion is of more electrochemical nature, depending on
the electrode potential.

Heat-treatments of carbon blacks at elevated tempera-
tures is known to be able to impart graphite character to the
carbon black and therefore increase its resistance to corro-
sion [265,266], however, at expense of a dramatic loss of
the specific surface area. Recent studies showed that the
specific surface area loss was primarily due to the elimina-
tion of pores less than 2.5 nm, which may not be available
for the catalyst loading [267].

Liu et al. [268] introduced ZrO2 into the carbon sup-
port in preparing 40% Pt catalysts for PBI cells. After 3000
cycles between 0.6 and 1.2 V, the ZrO2/C-supported catalyst
showed a decay rate of 6 and 12 �V/cycle at a current den-
sity of 100 and 1000 mA cm−2, respectively, compared to 9
and 28 �V/cycle for the Pt/C based cathode. An accelerated
ageing test was performed by immersing the catalysts in
concentrated phosphoric acid saturated with air at 204 ◦C
for 5 h, which is believed to simulate 2000 h of PAFC opera-
tion. ZrO2/C supported Pt catalysts showed higher sintering
resistance and corrosion resistance [269]. The highly dis-
persed Pt atoms seem to be obstructed by the adjacent
ZrO2 and the agglomeration of Pt particles could be inhib-
ited.

To summarize the discussion of this section, it seems
that a degradation rate of only 5 �V h−1 can be expected
under continuous operation with hydrogen and air at
150–160 ◦C. By defining a failure as 10% performance loss
from 0.6 V, this degradation rate corresponds to a lifetime of
12,000 h. For stationary uses aiming at 40,000 h, this life-
time needs to be further improved. Upon thermal or/and
load on/off cyclings, which are more relevant to automo-
bile applications, a performance loss of 300 �V per cycle or
40 �V per operating hours has been reported, attributable
to more serious acid leaching due to the liquid water for-
mation and the cathodic catalyst activity loss because of
exposure to OCV.

6. Conclusive remarks

The phosphoric acid-doped polybenzimidazole mem-
brane seems so far the most successful system for high
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temperature PEMFC preferably under ambient pressure. It
has in recent years motivated extensive research activities
covering polymer synthesis, membrane casting, physico-
chemical characterizations and fuel cell technologies. To
optimize the membrane properties, high molecular weight
polymers with synthetically modified or N-substituted
structures have been synthesized. Techniques for mem-
brane casting from organic solutions and directly from TFA
and PPA solutions have been explored. Ionic and covalent
cross-linking as well as inorganic–organic composites has
been developed. Acid-doped PBI membranes have been
extensively characterized.

Related fuel cell technologies have been developed and
high temperature PEMFC has been successfully demon-
strated at temperatures of up to 200 ◦C under ambient
pressure. No gas humidification is mandatory, which
enables the elimination of the complicated humidification
system, compared with Nafion cells. Other operating fea-
tures of the PBI cell include easy control of air flow rate
and cell temperature (in a wider range). The latter, together
with the increased temperature gradient, will potentially
simplify the cooling system. The PBI cell operating at above
150 ◦C can tolerate up to 1% CO and 10 ppm SO2 in the fuel
stream, allowing for simplification of the fuel processing
system and possible integration of the fuel cell stack with
fuel processing units.

Long-term durability with a degradation rate of
5–10 �V h−1 has been achieved under continuous opera-
tion with hydrogen and air at 150–160 ◦C. With load or
thermal cycling, a performance loss of 300 �V per cycle
or 40 �V h−1 per operating hour has been observed. Fur-
ther improvement should be done by, e.g. optimizing the
thermal and chemical stability of the polymer, acid–base
interaction and acid management, activity and stability of
catalyst and more importantly the catalyst support, as well
as the integral interface between electrode and membrane.

Other issues than durability that have to be addressed
in further development include (1) the low proton con-
ductivity, especially in the low temperature range, which
is of importance for the cold start; (2) slow oxygen reduc-
tion kinetics due to the strong surface adsorption of acid
anions and low solubility (and diffusivity) of oxygen; (3)
fundamental materials and techniques of stack construc-
tion, including selection and evaluation of bipolar plates,
seals (integrated sealing is very much desired to strengthen
the membrane and improve the acid management) and
coolant/cooling; and (4) system simulation and design with
respect to thermal management, heat recovery, water bal-
ance as well as the possible integration of stack with fuel
processing units.
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