

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport
Ground Handling

Clausen, Tommy

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Clausen, T. (2010). A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground
Handling. Kgs. Lyngby: DTU Management. (DTU Management 2010; No. 7).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13728675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/a-dynamic-programmingbased-heuristic-for-the-shift-design-problem-in-airport-ground-handling(46433aef-b3ce-49a9-8641-4700009872e4).html

Tommy Clausen
April 2010

Report 7.2010

DTU Management Engineering

A Dynamic Programming-Based
Heuristic for the Shift Design
 Problem in Airport Ground Handling

A Dynamic Programming-Based Heuristic for the

Shift Design Problem in Airport Ground

Handling

Tommy Clausen∗†

April 23, 2010

Abstract

We consider the heterogeneous shift design problem for a workforce

with multiple skills, where work shifts are created to cover a given demand

as well as possible while minimizing cost and satisfying a flexible set of

constraints.

We focus mainly on applications within airport ground handling where

the demand can be highly irregular and specified on time intervals as short

as five minutes. Ground handling operations are subject to a high degree

of cooperation and specialization that require workers with different qual-

ifications to be planned together. Different labor regulations or organiza-

tional rules can apply to different ground handling operations, so the rules

and restrictions can be numerous and vary significantly. This is modeled

using flexible volume constraints that limit the creation of certain shifts.

We present a fast heuristic for the heterogeneous shift design problem

based on dynamic programming that allows flexibility in modeling the

workforce. Parameters allow a planner to determine the level of demand

coverage that best fulfills the requirements of the organization. Results

are presented from several diverse real-life ground handling instances.

1 Introduction

The Heterogeneous Shift Design Problem (H-SDP) is concerned with designing
a set of work details (shifts) for an organization that specify requirements of
different types of employees within the planning period. The shift design prob-
lem provide a transformation of the demand from a demand curve (temporal
requirements) to more simple shift based requirements. This provides an impor-
tant tool for organizations to estimate the capabilities of an existing workforce
or the need to adjust the workforce to adequately meet the demand.

∗tomc@man.dtu.dk, DTU Management Engineering, Produktionstorvet, Bygn 426, DK-
2800 Kgs. Lyngby

†WorkBridge A/S, Hauser Plads 18, DK-1127 Copenhagen K

1

The shifts should be designed such that they allow the organization to sat-
isfy constraints from labor regulations or the capacity of the workforce. Such
constraints include the construction of individual shifts, such as shift lengths,
the placement and number of relief breaks or the allowed placement of shifts
with regards to office hours or similar requirements. Special volume constraints
specify a maximum number of shifts within time periods, which may be used to
model the size of the workforce and several regulatory constraints such as limits
on nights or weekend shifts.

We consider the shift design problem with specific emphasis on the venue of
airport ground handling. There is a large number of tasks that must be carried
out for every aircraft that lands at an airport, before it is ready for departure.
Many airports are extremely busy and are already operating at full or near-full
capacity, whilst expecting further growth in passenger numbers in the future.
Furthermore, the emergence of low-cost carriers has created additional demands
for short aircraft turnaround times, while the hub-and-spoke network structures
of larger carriers are creating demand for reduced connection times between
airports. The flight arrival or departure times are often placed at periods of
high demands or to provide short waiting times for transferring passengers. This
means that airport activity can be extremely high during periods of frequent
arrivals and departures, whilst other periods of the day are relatively quiet [9].

The demand at airports is usually represented as a demand curve, in which
the planning period is divided into a number of equal-sized periods called time

slots, each having a number of required workers. Arrival and departure times
are planned for five minute intervals, yielding a demand interval length of five
minutes as well. The combination of short time slots and flight schedules with
high variance in activity means that the demand may contain a high level of
irregularity, where the difference between requirements of two adjacent time
slots can be large.

When the demand is irregular, it is unlikely that a set of shifts can cover the
demand perfectly, or even come close. Covering a single peak may require a lot
of workers, that will be idle before and after the peak. Therefore, it is up to a
planner to find a balance between covering the entire demand and minimizing
expenditures. This emphasizes the need to consider both staff shortage (under-

staffing) and surplus (overstaffing) as part of the desired solution quality. The
desired level of coverage for an organization depends on the demand and the
available workforce.

The work performed within airports is highly specialized. The ability to
perform a specific task may require certain security clearances, training or spe-
cialized equipment. The requirements may vary greatly across tasks. Different
aircraft types may require different types of equipment; different locations in the
airport may require different security clearances, and different computer systems
(such as check-in terminals) may require different abilities. Many workers may
have training in several fields or different certificates, which provide them with
capabilities for different partially overlapping areas [10].

The consequence is that shift design for ground handling must handle a
heterogeneous demand and workforce. The specialization is modeled by using

2

several demand curves. Similarly, the workforce is divided into groups, each with
separate constraints and the ability to cover one or more types of demand.

1.1 Workforce Scheduling

The shift design problem may be viewed as part of a more general problem, the
workforce scheduling or staff scheduling problem. In the workforce scheduling
problem, timetables (rosters) are created for workers, such that each worker
has a sequence of shifts and rest days that in combination meets a specified
demand. Various aspects of the workforce scheduling problem consider different
levels of detail and relevant data is available or required at different times. It
is therefore common to subdivide the problem into several subproblems that
can be solved at different times. One such division into five subproblems (or
stages) is proposed by Tien and Kamiyama [14]: Stage 1 considers the temporal

manpower requirements, i.e. demand at each time period or shift. In stage 2
the total manpower requirements are determined. Stage 3 considers blocks of
recreation days and Stage 4 combines recreation and work days. Finally, Stage 5
assigns shifts to workers. More recently, Ernst et al. [7] provides a comprehensive
survey of workforce scheduling. The survey proposes a taxonomy of different
modules of which most workforce scheduling references implement one or more.

In the subdivision of Tien and Kamiyama, shift design is part of Stage 1,
with some overlap into Stage 2. In the taxonomy of Ernst et al. [7], shift design
falls under the area of demand modeling, in that it transforms flexible demand

into shift based demand.
There are only a few references in the literature that deal directly with shift

design. Musliu et al. [12] present a local search algorithm and show experiments
for both random and real-life data from a call-centre. Herbers [8] presents an al-
gorithm based on constraint programming for a task-based demand. DiGaspero
et al. [5] presents a local search metaheuristic for the minimum shift design prob-

lem, where the number of different shifts should be minimized. A construction
heuristic based on a min cost flow model is also presented.

Dowling [6] describes a metaheuristic based on local search for staff schedul-
ing at an airport. After each neighborhood iteration, the updated solution is
checked for feasibility using an external rule engine. Lau [10] considers the
changing shift assignment problem where the shift scheduling problem is aug-
mented with constraints that specify feasible transitions between shifts. These
shift change constraints are used to model airport ground handling problems,
where required skills are determined by aircraft type.

To the knowledge of the author, no prior references exist in the literature
for the heterogeneous shift design problem.

1.2 Overview

In this paper we describe a fast construction heuristic for the heterogeneous
shift design problem. The heuristic emphasizes the ability to balance demand

3

satisfaction versus minimizing excess shifts, while maintaining an even distribu-
tion of coverage shortage and surplus. The heuristic uses dynamic programming
to iteratively build sequences of shifts to evenly distribute overstaffing and un-
derstaffing across the demand period, while satisfying the constraints of the
problem that limits the number of shifts created from different groups.

Experiments are performed on real-life data from ground handling operations
in major airports around the world. The data is obtained from the WorkBridge
PlanManager software product that specializes in workforce scheduling for air-
port ground handling. The developed algorithm is intended for integration into
WorkBridge PlanManager. The experiments show that good solutions can be
found for most instances in less than a minute.

The paper is organized as follows: In Sections 2 and 3 we present the H-SDP
in detail. Section 4 presents an overview of the solution strategy for iteratively
solving relaxations of the H-SDP. In Section 5, we define the 0-1 Shift Design
problem as a relaxation of the H-SDP that produces a single sequence of shifts
and an algorithm for the 0-1 Shift Design problem based on dynamic program-
ming. Performance considerations are discussed in Section 6. Computational
results for diverse problem instances from ground handling are presented in
Section 7 and conclusions are presented in Section 8.

2 The Heterogeneous Shift Design Problem

A main characteristic of the shift design problem is that there are conflicting
goals, which can be difficult to obtain simultaneously. In this paper, we con-
sider three conflicting goals: Understaffing and overstaffing, and cost. We shall
consider understaffing and overstaffing to be most important, and use cost to
describe the preferential placement of shifts in cases where coverage is not af-
fected. If the cost is derived directly from the worker’s salary, the algorithm will
attempt to avoid expensive shifts, such as nights and weekends. The cost can also
be used to model the possibility of adding overtime, the expected availability of
temp workers or the preferences of the workers.

When the demand is highly irregular, it is impossible to create solutions
which are good in terms of both understaffing and overstaffing. Adding shifts
to cover peaks in the demand will introduce a lot of overstaffing as well. Often
it will be up to the individual planner to decide the optimal balance between
understaffing and overstaffing. A good balance between understaffing and over-
staffing will depend on the workforce available and the ability to absorb peaked
demand into the shifts. If there are few high, thin peaks, the planner may decide
not the cover them, in the expectation that the workers will be able to solve
them on the day of operation. In other cases, the planner may require that all
demand is covered. The correct balance is obtained by allowing the planner to
assign weights to the importance of understaffing, overstaffing and cost.

Sometimes peaks in the demand are explicitly removed by a process known
as peak cutting before planning is done. However, the weighted approach allows
the planner to integrate planning and decision making, rather than making the

4

decision a priori.
Another focus of shift planning is the distribution of shifts throughout the

planning period. When understaffing and overstaffing exists, it should be dis-
tributed as much as possible to increase the robustness of the solution. A good
distribution of understaffing increases the chance for the workers to cover more
demand than scheduled (and thus further reducing understaffing), as well as the
likelihood that enough additional workers from a temp agency will be available.
Distributed overstaffing decreases the effect of additional work, illness and other
disruptions.

3 Basic Notation

Shifts are created for a multi-skilled environment, in which a workload demand
may require several skills at once, and a worker may be able to fulfill several
types of demand. To model capabilities for workers and demand, we introduce
the notion of shift qualifications q ∈ Q and demand requirements r ∈ R. A
requirement (which may include several skills) describes an ability to perform a
certain work and a qualification describes all capabilities of a worker following a
shift. By using qualifications, shifts are created anonymously, so there is no direct
link to the employee that will eventually follow the shift except the implicit
expectation that the employee will possess the required skills. In this way, a
large degree of flexibility in the workforce is maintained, while the ability to
distinguish different employees is preserved.

The shift design problem is specified for at time period, which is subdivided
into T smaller time units. Each time unit t ∈ [0; T − 1] has the same duration g
(typically 5 minutes) and identifies the time interval [t · g; (t+1) · g). We denote
g the granularity of the problem. The time period [0;T) is called the planning
period and is typically one week or one month.

3.1 The Composition of Shifts

A shift specifies the presence of a single worker and the ability to perform certain
types of work, thus covering a portion of the demand. A shift s is defined by
a qualification q, a start time ts, and a length ls. The qualification q serves
two purposes. First it determines the expected capabilities of a worker following
shift s. Second, it serves as an index for the rules and regulations valid for the
worker, so it is assumed that all workers with qualification q work under the
same conditions and constraints.

The shifts are typically not allowed to start at every time t, since for g = 5
minutes, the resulting set of shifts would be impossible to manage. The allowed
starting times are determined by the shift granularity gq. A starting time t is
then valid if t mod gq = 0. The feasible shift lengths are determined by gq and
minimum and maximum lengths Lmin

q and Lmax
q . Typical shift granularities are

15, 30, or 60 minutes, which for g = 5 minutes set gq = 3, 6, 12, respectively.

5

Additionally, a shift may have several breaks in which the worker is not able
to cover demand. These breaks are specified by break rules b(ls) = (tmin

blq , tmax
blq , lbq)

that define valid start positions relative to the shift start and the length of the
break lbq. The valid start positions of the break are subject to the shift granular-
ity and the shift length ls. This allows the break’s time window to expand with
the shift, and to specify that a break is not relevant for certain shift lengths.
A longer shift may for instance require more breaks than a shorter shift. We
denote by Bq the set of all break rules for qualification q and by B =

⋂

q∈Q Bq

the set of all break rules.
A special kind of break can arise where workers may be allotted time for brief-

ings, wardrobe changes, etc. These are denoted preparation and de-preparation

times and are fixed to the start or end of the shifts. These types of breaks are
not uncommon in the airport or ground handling industry [11]. We say in gen-
eral that a shift is active when it is capable of covering demand, and inactive

otherwise.

Preparation Breaks De-preparation

ts es

ls

Figure 1: Illustration of shift composition and related variable names for a shift
s. Inactive time from preparation time, de-preparation time and three breaks is
shown in hatched boxes.

Depending on the flexibility of the shift parameters, a very large number
of different shifts can be created. The number of possible shifts is a key factor
in the complexity of shift design and related problems. In particular the added
dimensions of breaks increase the number of shifts significantly.

The total number of possible shifts is

|S| =
∑

q∈Q

T

gq

·
Lmax

q − Lmin
q

gq

·
∏

b∈Bq

tmax
blq − tmin

blq

gq

(1)

We may bound both Lmax
q −Lmin

q and tmax
blq −tmin

blq by the maximum shift length,
which we may denote Lmax . This gives the following bound on the number of
possible shifts

|S| = O(|Q| · T · Lmax · |B|). (2)

To reduce the size of shifts that needs to be represented in the algorithm,
we define a shift template s′. A shift template represents all shifts s that have
different starting times ts, but are otherwise identical. This means that any shift
s can be obtained from the corresponding shift template s′ by adding a starting
time: s = s′(ts). Each shift template spans l′s time slots that are either covered

6

or uncovered, so we may consider s′ as a binary vector of length l′s. We denote
the set of shift templates S′, which by reduction from (2) has size

|S′| = O(|Q| · Lmax · |B|). (3)

Although the size reduction by T is only linear in the size of the algorithm’s
input (as D has dimensions |R|×T), the decrease may still be significant. For a
planning period of one week with a granularity of 5 minutes, we get T = 2016.

3.2 Volume Constraints

To model restrictions of the workforce or organizational settings, the overall shift
set can be limited by the use of volume constraints. Each volume constraint
vi = (Vi, v

max
i) limits the number of shifts allowed within a (not necessarily

continuous) time period. The set Vi ∈ S contains all shifts affected by the
constraint. Thus, we may write each such constraint as

∑

s∈Vi

s ≤ vmax
i .

Adjusting the constraint set Vi or the volume limit vmax
i allow volume con-

straints to model a large number of different scenarios. If vmax
i = 0, all shifts in

Vi are prohibited, allowing a planner to model closing times or periods where
shifts are not allowed to start or end. Setting other values for vmax

i allows the
planner to limits varying types of shifts to match the workforce or labor regula-
tions. For example, the total number of shifts, the number of shifts on a single
day or the number of certain shift types (e.g. night shifts) may be limited using
volume constraints.

The constraint set Vi can easily be adjusted to shift templates by considering
the combination of shift template and start time, i.e. Vi ∈ {S′ × T }.

∑

(s′,t)∈Vi

s′(t) ≤ vmax
i .

This adjustment allows us to use shift templates directly in volume constraints.

3.3 Workload Demand

The workload demand is represented as a two-dimensional integer matrix D ∈

N
|R|×T

0 . Each entry Drt specifies the required number of active shifts with suit-
able qualification to cover requirement r at time unit t.

The link between qualifications and requirements can be complex. A shift
with qualification q ∈ Q may be able to cover demand from several different
requirements r ∈ R. Similarly, demand for requirement r can be covered by
shifts with different qualifications. We say that q covers r, or q → r, if shifts
with qualification q can contribute to the coverage of demand of requirement r.

7

To describe the level of complexity between requirements and qualifications
we introduce the interaction level of an operation as

int =
∑

q∈Q

|{q | q → r}|

|Q|
, (4)

the average number of requirements covered. Analogously, we may define the
interaction of a single qualification as intq = |{q | q → r}| and for a requirement
as intr = |{r | q → r}|.

We assume that requirements are ordered by increasing interaction level,
r1, · · · , r|R| such that i < j ⇒ intri

≤ intrj
. We say that r1 is the most restrictive

requirement, as it can be covered by the fewest number of qualifications. We
similarly assume that qualifications are ordered by decreasing interaction levels,
such that q1 can cover the largest number of requirements.

A shift with qualification q can cover a demand for at most one requirement r
at each time t. It is allowed for a shift to cover different requirements at different
times. This is because shift qualifications are considered “daily qualifications”,
which detail the requirement a worker is able to cover within a single day. For
practical purposes, this means that given a shift set S∗, the coverage can be
calculated independently for each time unit.

4 Algorithm Overview

We wish to develop a solution method with fast running times, and which can
be terminated prematurely due to time limitations and still produce a solution
of reasonable quality. In this way, the method can be used as a stand-alone
heuristic and as a construction heuristic for the initial stage of a local search
metaheuristic, similar to the approach of DiGaspero et al. [5].

Due to the possible time limitation, we will prefer an algorithm that through-
out the majority of its run is able to return a solution that satisfies the volume
constraints and has a good coverage distribution across the planning period.

The H-SDP may be formally described as minimizing the weighted sum
of understaffing, overstaffing and cost. To achieve the desired distribution of
shifts in regard to the demand, understaffing and overstaffing is squared. As we
consider cases where coverage takes precedence over cost, the weight of the cost
term is set lower than the others.

8

The integer programming model of the H-SDP is

z∗ = min φu

T
∑

t=1

∑

r∈R

(urt)
2 + φo

T
∑

t=1

∑

q∈Q

(oqt)
2 + φc

n
∑

i=1

cixi (5)

s.t.
n

∑

i=1

aitdirxit + urt −
∑

q∈Q

piqoqt ≥ Drt ∀r, 1 ≤ t ≤ T (6)

n
∑

i=1

aitxi +
∑

r∈R

urt +
∑

q∈Q

oqt −
∑

r∈R

Drt = 0 1 ≤ t ≤ T (7)

n
∑

i=1

vijxi ≤ vmax
j 1 ≤ j ≤ V (8)

xi, urt, oqt ∈ N0 (9)

Here, ci is the cost of shift i, 1 ≤ i ≤ n and ait = 1 if shift i is active at time
t, 1 ≤ t ≤ T and ait = 0 if shift i is not active at time t. dir = 1 if shift i can
cover requirement r and piq = 1 if shift i has qualification q. Drt is the demand
for requirement r at time t. The decision variable xi determines the quantity of
each shift type i. Additionally, the decision variable urt and oqt determines the
understaffing of requirement r ∈ R at time t and the overstaffing of qualification
q ∈ Q at time t, respectively.

Each volume constraint vj is specified by the constraint limit vmax
j and the

incidence matrix V , where vij = 1 if shift type i is affected by rule j, and vij = 0
otherwise.

The objective function (5) is a weighted sum of the total shift cost, total
understaffing, and total overstaffing using the weight factors φc, φu and φo, re-
spectively. Constraint (6) links shifts, understaffing and eligible overstaffing to
the demand at each time unit. Constraint (7) enforces that the total amount
of shifts, understaffing and overstaffing adds up, ensuring that a unit of un-
derstaffing or overstaffing is only used once. Constraint (8) ensures that the
volume constraints are not violated. Finally, constraint (9) states that the shift,
understaffing, and overstaffing variables are positive integers.

The formulation (5)–(9) defines an explicit formulation of the SDP, where
any possible shift is represented by a column. This is in a sense an expanded
model of the problem, since each shift is directly represented. This means that
each shift template s′ is represented a large number of times with different
starting times.

This kind of model is typically used in the related shift scheduling problem,
where it was originally proposed by Dantzig [4] as a set covering model. As the
number of shift templates grows rapidly with the flexibility of the shift design,
the model can become very large. For this reason, several implicit models have
been proposed to reduce the size of the model. Most often the size is reduced by
adding special forward and backward constraints to handle break placements,
thus reducing the number of shifts considerably. See e.g. [1], [2], [8], and [13].

9

In this paper we use a modeling similar to the explicit model (5)–(9). Instead
of reducing the problem size by implicit modeling, we use shift templates instead
of shifts to obtain a lesser reduction in problem size. We then solve a relaxed
version of the problem.

4.1 Iterated Relaxations

The main idea of the algorithm is to perform a two-step relaxation of the H-
SDP to get a series of inner and outer subproblems. The outer subproblem
considers one requirement at a time. For each requirement, a number of inner
subproblems are solved, each producing a single non-overlapping sequence of
shifts. Each outer subproblem terminates when no shifts are returned from the
inner subproblem.

The outer subproblem splits the multi-requirement problem into a series of
single-requirement problems. That is, we split the H-SDP with demand matrix
D into separate subproblems SDPr with demand vector d = Dr∗. We itera-
tively solve the subproblems SDPr, and for each restriction r we consider only
qualifications that can cover r.

The relaxed subproblem is then essentially a single-skill shift design problem,
although coverage is still evaluated across all subproblems. This means that any
understaffing or overstaffing in the solution of one subproblem will be carried to
the next. Also, the same qualification can occur in more than one subproblem, so
the volume constraints will become more restrictive during the iterations. Each
subproblem SDPr is then still somewhat heterogeneous, although less than the
original problem. The amount of information lost in the subdivision depends on
the interaction level of the problem instance. To minimize the effect of previously
considered subproblems, we consider the requirements in order of restrictiveness,
starting with the most restrictive requirement, r1.

The inner subproblem subdivides SDPr even further. Instead of considering
demand as an integer vector d ∈ N

T
0 , we consider a binary vector d′ ∈ {0, 1}T

that for each time t denotes if uncovered workload remains, i.e. if urt > 0.
Having reduced the dimension of the demand, we can analogously seek a “one-
dimensional” solution to the problem as well. The relaxation of SDPr is therefore
to find a sequence of shifts σ ∈ S that covers d′ as well as possible without
violating any of the volume constraints vi. We denote the binary subproblem 0-
1-SDPr. To avoid cases where 0-1-SDPr repeatedly returns valid but poor shift
sequences, we only return a sequence if it satisfies the termination criteria maxu

and maxo that limits the maximum understaffing and overstaffing allowed for a
sequence.

The conceptual idea of the algorithm is summarized as follows: For each
requirement ri, we solve the subproblem SDPr by iteratively creating sequences
of shifts as specified by the 1-dimensional inner subproblem 0-1-SDPr. The
conceptual algorithm is sketched in Algorithm 1.

10

Algorithm 1 Pseudocode of conceptual algorithm for solving the H-SDP

S∗ ← ∅
for r← r1 to r|R| do

Qr ← {q | q → r}
dr ← Dr,∗

repeat

σ∗ = Solve 0-1 SDPr(Qr, dr)

S∗ ← σ
until σ∗ = ∅

end for

return

5 Solving the 0-1 Shift Design Problem

For the 0-1 shift design problem, a number of simplifications can be made which
allow the problem to be solved more efficiently than the full H-SDP. As both
the demand vector d′ and the sequence of created shifts σ is one-dimensional,
the volume constraints and coverage measures can be calculated efficiently. The
sequence can be considered both as set of shifts: σ = s1 ∪ s2 ∪ · · · ∪ sn; and as a
set of shift templates: σ = s′1(t1) ∪ s′2(t2) ∪ · · · ∪ s′n(tn). We will mainly use the
latter representation in the following.

When considering a non-overlapping sequence of shifts σ, at most one shift
can contribute to the demand at any time t. Therefore, we can consider σ as
a binary vector σ ∈ {0, 1}T , which is obtained by concatenating the binary
representations of the shift templates in σ.

When considering sequences of shifts for the 0-1-SDPr, a lot of the complex-
ities of the original H-SDP is removed. To compensate for this, the objective
function is in some ways simpler, but require other terms to compensate for the
simplifications. The quadratic coverage terms of the original problem u2 and o2

have been reduced to linear versions u(σ) and o(σ) since there is no effect of
squaring the coverage of a 0− 1 demand. Instead, we rely on the iterated solu-
tion method to distribute the coverage. To ensure that the least capable shift is
used whenever possible, we minimize the shift sequence’s overall interaction level
int(σ). This will prioritize the least capable shifts for the currently considered
requirement, and save the more capable shifts for less restrictive requirements
considered in later iterations, where they are most likely to be usable.

As a technical term, we also introduce the coverage of a sequence on a 1-
dimensional demand d′ as the number of time units where d′t = 1 and σt = 1.

For a shift sequence, the set of volume constraints can be combined into a
single binary matrix V ′ ∈ {true, false}T×|S′| that for each combination of shift
template s′ and start time st determines if the corresponding shift is legal. We
write V ′(σ) = true if V ′[st, s

′] = true for all shifts in σ. When computing a
sequence, V ′ is considered static, so it is possible to construct a sequence where
each individual shift is legal, but the entire sequence violates a volume constraint
(since several shifts contribute to the same constraint). There are several ways to

11

handle this, the simplest being to allow small violations to the value constraints.
Another simple method is to arbitrarily remove a shift from the sequence, if it
contributes to a violated volume constraint. After each sequence is created, V ′

is updated to reflect the new shifts.
The terms of φ and V ′ can be calculated efficiently by using simple opera-

tions.

u(σ) = ‖d′t ∧ ¬σ‖1 (10)

o(σ) = ‖¬d′t ∧ σ‖1 (11)

cov(σ) = ‖d′t ∧ σ‖1. (12)

c(σ) =
∑

s∈σ

c(s) (13)

int(σ) =
∑

s∈σ

intq(s) (14)

V ′(σ) =
∧

s∈σ

V ′(s) (15)

Here, ‖·‖1 denotes the Manhattan norm, which is the sum of the vector
elements. For the binary vectors used here, this corresponds to counting the
number of ones in the vector. This problem is also known as the population

count or popcount problem and can be solved efficiently by using e.g. the HAKMEM
method [3].

We use a weighted sum of these measures as the objective function for the
0-1 SDP:

φ(σ) = −φcovcov(σ) + φuu(σ) + φoo(σ) + φcc(σ) + φintint(σ).

The relaxed subproblem 0-1-SDPr may be formally described as an IP model
by reducing the original model (5)–(9) in Section 4. The relaxed model is

z′∗ = min

n
∑

i=1

φ(xi) (16)

s.t.

n
∑

i=1

aitxi + ut − ot = d′t 1 ≤ t ≤ T (17)

n
∑

i=1

aitxi ≤ 1 1 ≤ t ≤ T (18)

n
∑

i=1

vijxi ≤ vmax
j − v′j 1 ≤ j ≤ V (19)

xi, urt, oqt ∈ {0, 1} (20)

With a slightly changed notation, φ(xi) is the objective φ(s) for the shift s
identified by xi. The understaffing variables ut and overstaffing variables ot have
been simplified, since for a one-dimensional demand, there can only be a single

12

item of either understaffing or overstaffing. As in the H-SDP model (5)–(9), ut

and ot are connected to the shifts by constraint (17). Constraint (18) ensures
that there is no overlap in the generated shift sequence. Constraint (19) enforces
the volume constraints, where v′j is the shift contribution to volume constraint j
obtained in previous iterations. In this way, the rules can be evaluated globally,
across the different subproblems. Finally, constraint (20) states that the decision
variables are binary.

5.1 The Dynamic Programming Recursion

We use dynamic programming to solve the 0-1-SDPr. The dynamic program-
ming table ν is two-dimensional and contains time as one dimension and the
maximum number of time slots with uncovered demand as the other. A cell
ν[u, t] on the table indexes a sequence ending at t and has maximum under-
staffing u.

A partial sequence can be any sequence σt,e starting at time t and ending
at time e. We may combine partial shift sequences by concatenation to create
new partial sequences for which it holds

σt,e = σt,t′ ⊕ σt′,e (21)

φ(σt,e) = φ(σt,t′) + φ(σt′,e) (22)

Some notable cases of partial sequences are the full sequence σ = σ0,T and a
single shift template s′(t) = σt,ds′

.
Intuitively, the content of any cell ν[u, t] represents the best legal shift se-

quence σ of shifts that ends at t and leaves no more than u time slots of workload
demand uncovered. To determine the best shift sequence for a table position, we
use a restricted version of the objective function φ(σ). Since the understaffing
u(σ) is explicitly considered in the dynamic programming table, φ′(σ) consists
of the remaining terms:

φ′(σ) = φ(σ) − u(σ) = −φcovcov(σ) + φoo(σ) + φcc(σ) + φintint(σ).

We use φ′(σ) as the dominance criterion of the dynamic programming recursion,
so sequence σ1 dominates σ2 if φ′(σ1) < φ′(σ2). For ease of notation, we use
ν[u, t] to denote both the cell at (u, t) and the partial sequence indexed by cell.

We solve the dynamic programming table using a recursion that gradually
builds sequences starting at cell ν[1, 1]. We set φ′(ν[1, 1]) = 0 and φ′(ν[1, 1]) =∞
for all other t and u. From each cell ν[u, t], the partial shift sequence ν[u, t] is
extended with all shift candidates to produce longer sequences. Thus from cell
ν[u, t] we create sequence σ′ = ν[u, t] ⊕ s′ and we set ν[u + us, t + ls] = σ′ if
σ′ ∈ V ′ and φ′(σ′) < φ′(ν[u + us, t + ds]). If no valid sequence exists for some
understaffing/time pair (u, t) then φ(ν[u, t]) =∞. Every cell should satisfy the
invariant that the sequence indexed by the cell minimizes φ′ over all partial
sequences ending at t with understaffing less than u:

ν[u, t] = argmin
σ0,t

{φ′(σ) | u(σ) ≤ u ∩ σ ∈ V } , (23)

13

We may formally write the dynamic programming recursion as

ν[u, t] =

min
s′∈S′

0 t = 0,

φ′(s′(t− ls′) + ν[u− u(s′(t− ls′)), t− ls′] V ′[s′, t] = true,

t ≥ ls′ ,

u ≥ u(s′(t− ls′))

(24)

From the recursion it can be seen directly that the invariant (23) will be
satisfied for all cells.

After running the recursion, each cell ν[u, T] contains a full non-dominated
valid shift sequence with understaffing u or less, if such a sequence exists. Each
full sequence can then be selected as the solution σ∗ to the 0-1-SDPr. The
approach we have chosen is to use the full objective function φ by taking

σ∗ = arg min
0≤u≤umax

{φ′(ν[u, T]) | o(ν[u, T]) ≤ omax }. (25)

If φ(σ∗) = ∞ or no sequence with o(σ) ≤ maxo can be found, we set σ∗ = ∅.
If this is the case, no shifts are created and the inner loop of the algorithm
terminates. No further shifts are created for the current requirement ri and the
algorithm moves on to requirement ri+1.

For the terms of φ′ that are calculated using bitwise operations, the terms
can also be calculated on partial sequences by adding a few extra bitwise shifts
and bitmasks. This allows the calculation of φ′ to be decomposed into separate
partial sequences, as in (22).

5.2 Algorithm Complexity

The algorithm for solving the H-SDP may be described in detailed pseudocode
in Algorithm 2. In the pseudo-code, 1d-Demand produces the binary vector d′

of one-dimensional demand. The function UpdateRules creates or updates the
matrix V ′ of allowed shift templates based on the volume constraints. Function
CalculateSequence uses dynamic programming to produce a sequence of shifts
σ∗, which are then added to the solution set S∗.

The complexity of the algorithm depends on the complexities of SDPr and
0-1-SDPr. The inner problem 0-1-SDPr builds the dynamic programming table
ν and runs the recursion. The size of ν is T ×‖d′‖1 · umax , where umax ≤ 1 and
‖d′‖1 ≤ T . For each cell in ν, the recursion loops over all shift templates s′ ∈ S′.
The evaluation of each shift template s′ is done by calculating φ(s′).

By using bitwise operations, φ(s′) can be calculated in time logb(|s
′|), where

b is the number of bits in a cpu register word (usually 32 or 64). For a word
size of 32 bits, 5 words can represent a shift spanning 160 time units. With a
granularity g of 5 minutes, 5 words can then represent a shift longer than 13
hours. We assume that this is always sufficient for representing shifts, i.e. that
logb(|s

′|) ≤ 5. We consider φ(s′) to be a constant time operation.

14

Algorithm 2 Algorithm pseudo-code

S∗ ← ∅
umax ← maximum understaffing ratio
omax ← maximum overstaffing ratio
for r← r1 to r|R| do

repeat

d′ ← 1d-Demand(r)
u′ ← umax · ‖d

′‖1
o′ ← omax · ‖d′‖1
V ′ ← UpdateRules()
σ ← CalculateSequence(d′, V ′)
S∗ ← S∗ ∪ σ

until σ = ∅ or uσ > u′ or oσ > o′

end for

return S∗

The time complexity of 0-1-SDPr is then

O(T 2 · |S′|).

The outer subproblem SDPr calls 0-1-SDPr until the termination criteria is
met. The number of calls depends on the termination criteria and on the amount
of demand. In the worst case, the sequence returned by each call will cover a
single unit of demand, so the number of iterations may equal the number of
units of demand for requirement r, ‖Dr∗‖1.

The total time complexity of solving SDPr is then

O(‖Dr∗‖1 · T
2 · |S′|)

As we solve SDPr once for each r ∈ R, the overall time complexity of the
algorithm is

O(‖D‖∗ · T
2 · |S′|) (26)

where ‖·‖∗ denotes the sum of all the elements in the matrix (corresponding to
the Manhattan norm of the vectorization of the matrix),

‖D‖∗ = ‖vec(D)‖1 =
∑

r∈R

T
∑

t=1

Drt.

The algorithm is polynomial in the factors |R| and T , since the demand
matrix D of size |R|×T is provided as input. The algorithm is pseudo-polynomial
in the term ‖D‖∗, as complexity depends directly on the values of the entries in
D, which are given as integers in the input.

Note that even in the optimal case where perfect coverage is achieved,
the number of iterations will still equal the highest point of demand in Dr,
maxt{Drt}, which is also pseudo-polynomial in the size of the input.

15

The number of shift candidates is given by (3) in Section 3.1. By inserting
in (26), we get

O(|R| · ‖Dr‖∗ · T
2 · |Q| · Lmax · |B|).

From this we see that the number of shift templates is also pseudo-polynomial
in the size of the input, as the complexity depends directly on the maximum
shift length Lmax which is given as an integer value. Combined with the other
factors contributing to the number of shift templates, the complexity relating
to |S′| may increase rapidly.

6 Performance Considerations

The running time of the algorithm presented in the previous section is mainly
dominated by the time complexity of the dynamic programming recursion. In
this section we review several approaches to improving performance by reducing
the time of the recursion.

6.1 Bi-directional Recursion

The size of the dynamic programming table is determined by the maximum
understaffing maxu. Even with a restrictive choice of maxu, the table may get
large if there are many ones in the demand vector. However, the need for under-
staffing increases as the time t increases, so if we were to generate a sequence
for only half of the planning period, the expected need for understaffing could
be halved as well. This is the idea behind a bi-directional approach, where par-
tial sequences are simultaneously generated from the beginning and end of the
planning period and then merged into full sequences. The basic approach and
expected reduction in table size is illustrated in Figure 2.

More formally, the bi-directional approach constructs partial sequences ex-
tending forward σ+ = σ0,t+ and backwards σ− = σt−,T . The partial sequences
can be combined into a full sequences if t− = t+, in which case the sequence
score is φ(σ) = φ(σ+) + φ(σ−). We compute the forward sequences in the in-
terval [0; T +] and the backward sequences in the interval [T−; T]. To be able to
merge the sequences, we must have T + ≥ T−. The distance between T + and
T− must be large enough to allow any full sequence to have at least one shift
start/end point within the interval. To achieve this, we set T + = T

2 + Lmax

2 and

T− = T
2 −

Lmax

2 , where Lmax is the maximum shift length.
The generation and merging of forward and backward sequences is illustrated

in Figure 3.
When merging forward and backward sequences, all cells in the interval

[T−; T +] need to be considered. Since the dominance criterion φ′(σ) only con-
siders a single sequence, each cell in [T−; T +] can have a value for both the
forward and backward recursion. We denote these ν+[u, t] and ν−[u, t], respec-
tively.

16

σ 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0

d′ 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0

u = 0

u = 1

u = 2

u = 3

u = 4

u = 5

u = 6

b

b

b

b

b

b

b b

b

b

b b

Figure 2: Illustration of a path through the table for a shift sequence σ. The
shifts and associated binary vector are shown on top, above the binary demand
vector. The tables shows the space requirements for the forward recursion (center
+ bottom) and the bi-directional approach (center only).

0 T− T + T

b

b

b

b

b

b

b

b

b

b

Figure 3: Merging forward and backward recursion paths. Paths can be merged
if they share ending column (dashed).

17

Selecting the best sequence σ∗ is similar to (25) for the single-directional
recursion:

σ∗ = arg min
0≤u≤maxu

T−≤t≤T+

{φ(ν+[u, t])+φ(ν−[u, t]) | o(ν+[u, t])+o(ν−[u, t]) ≤ omax }. (27)

As for the single-directional recursion, the inner loop is terminated if φ(σ∗) =∞
or no sequence is found with o(σ∗) ≤ omax .

6.2 Limiting Table Size

In order to limit the running time of the recursion, we limit the state space in
several ways, some of which have already been described: The strict dominance
of the objectives ensures that the dynamic programming table have only two
dimensions, keeping the number of table cells relatively small.

Shift granularities and the volume constraints reduce the number of time
slots that can be a start time or end time for a shift. Since the construction of
the sequence is only concerned with the transitions between shifts, we remove
cells where start or end cannot occur. We denote the set of remaining active

time units T ∗. For instances with restrictive constraints on the placements of
shifts due to office hours or low shift granularity, T ∗ may be significantly smaller
than T . The coverage objectives are still calculated on the full demand, taking
into account that there may be an uneven distance between two adjacent time
units in T ∗.

Another determining factor in the running time of the recursion is the num-
ber of shift templates. The set of templates can be reduced by superimposing a
more restrictive granularity g∗ on the shift granularity gq. Since gq is related to
both the flexibility of shifts and breaks, the effect of using g∗ may be significant.
Substituting g∗ for gq also affects the size of T ∗.

Finally, the limit on understaffing umax limits the table size directly, so
setting a restrictive limit not only causes the algorithm to terminate sooner,
but also reduces the running time of each recursion.

7 Computational Results

In this section we review the computational aspects of the dynamic program-
ming algorithm on several instances from real life ground handling operations.
We investigate the effect of different combinations of parameters on a subset
of the instances, and present full results on all instances on the selected set of
parameters. The experiments are focused on balancing overstaffing and under-
staffing. As a result, we will use a simplified model for cost, and not consider
the effects of this parameter in detail.

We introduce the problem instances and their characteristics in Section 7.1.
Parameter effects are presented in Section 7.2 and finally, large scale results are
presented in Section 7.3.

18

Type Abbre-
viation

Description

Passenger Services pax Terminal work, such as check-in counter
staffing and boarding.

Ramp ramp Aircraft-centric tasks, e.g. pushback or
refueling.

Transportation trans Airport transportation tasks, such as
baggage delivery.

Cargo cargo Loading and handling of cargo.
Operations ops General operations handling.

Table 1: Characterization of operation types

7.1 Problem Instances

The problem instances are taken from real-life instances modeling ground han-
dling operations. There are several different types that varies in the type of
operation, and in the size and complexity of the problem. The instance type re-
flects the ground handling tasks performed by the modeled operation. There are
several types with different characteristics, as presented in Table 7.1 Another
key characteristic of a problem instance is the size, which can be measured
along the two axes of the workload demand curve. First, the number of dis-
tinct data points T , and secondly the total workload demand, measured as the
area of the demand curves, ‖D‖∗. The final characteristic is the complexity of
the operation, which we measure as the interaction level between requirements
and qualifications, int, as defined in (4). A list of problem instances and their
characteristics is provided in Table 2.

7.2 Parameter Tuning Results

In this section we investigate the effects of different parameter values on the
solution quality. We group the parameters into several groups, which we ad-
dress separately in order to limit the overall complexity. To simplify the exper-
iments presented here, we use pre-determined weights for the scoring function
φw = (φo, φcov, φu, φint, φc) = (100,−10, 1, 0.5, 0.1). These weights have been
selected to maintain a lexicographic ordering between the individual terms.
Overstaffing will always be weighted highest, followed by coverage, and so on.
Setting the weights to these values corresponds to a planner having high priority
on obtaining a good coverage and lowest priority on minimizing cost.

We review the performance of the algorithm with different sets of parameters
using two sample scenarios: pax.r.a and ramp.g.a. These scenarios have been
chosen because they represent each of the two major operation types, pax and
ramp and are not too similar in terms of interaction level and size.

19

Scenario |R| |Q| int T ‖D‖∗
cargo.m.a 8 5 0.44 2016 15294
ops.e.a 3 5 0.5 8064 17887
pax.e.a 6 10 0.21 8064 59329
pax.g.a 1 2 0.5 1008 11981
pax.g.b 1 2 0.5 1008 14143
pax.m.a 10 9 0.52 2016 12796
pax.r.a 3 8 0.15 336 3721
pax.r.b 3 12 0.15 336 3721
ramp.e.a 9 15 0.08 1344 6677
ramp.e.b 7 10 0.58 8064 59383
ramp.e.c 7 10 0.58 8064 59383
ramp.g.a 1 2 0.5 1008 7275
ramp.g.b 1 2 0.5 1008 8710
ramp.m.a 13 9 0.19 2016 3448
ramp.r.a 1 4 0.25 336 1943
trans.o.a 6 12 0.5 1008 12925
trans.o.b 6 12 0.5 1008 19603

Table 2: Characteristics of problem instances

7.2.1 Termination Criteria

We first address the termination criteria maxu and maxo. Table 3 presents the
effects of running with different termination limits on pax.r.a and ramp.g.a.

Figure 4 graphically shows the connection between relative understaffing
u/|D|, relative overstaffing o/|D| and the running time of the experiments.
As seen in the figure, the selected termination criteria each produce a non-
dominated solution, where u cannot be decreased without increasing o. As u/|D|
approaches 0, o/|D| becomes increasingly higher (and analogously for o/|D| and
u/|D|), which means that in many cases a balanced approach is preferable.

All non-dominated sets of parameters may be considered good, so choosing
the best combination depends on the priorities of the planner.

The actual levels of coverage obtained by setting different termination cri-
teria are illustrated again in Figure 5. The figure shows the coverage as con-
tour on the workload for scenario ramp.g.a with the two termination crite-
ria (maxu, maxo) = (0.7, 0.4) and (maxu, maxo) = (0.8, 0.6). The result for
(maxu, maxo) = (0.8, 0.6) covers more of the demand, but with a higher degree
of overstaffing.

From the illustrations we identify (maxu, maxo) = (0.7, 0.4) as the most
promising combination for obtaining a balance between understaffing and over-
staffing, while keeping the running time low. We choose these parameters for
further study, as we wish to emphasize this aspect of the algorithm.

20

Scenario umax omax Iters o u o/‖D‖∗ u/‖D‖∗ |S∗| Time (s)
pax.r.a 0.5 0.2 29 288 4074 0.01 0.18 398 10.25
pax.r.a 0.5 0.4 33 666 3150 0.03 0.14 438 10.48
pax.r.a 0.5 0.6 37 1272 2478 0.06 0.11 465 10.96
pax.r.a 0.7 0.2 38 384 3570 0.02 0.16 448 14.66
pax.r.a 0.7 0.4 57 2472 1596 0.11 0.07 502 17.78
pax.r.a 0.7 0.6 84 4020 504 0.18 0.02 595 20.35
pax.r.a 0.8 0.2 49 576 3294 0.03 0.15 477 18.18
pax.r.a 0.8 0.4 119 4176 456 0.19 0.02 618 28.09
pax.r.a 0.8 0.6 143 4770 210 0.21 0.01 682 29.78
pax.r.a 0.9 0.2 179 3708 846 0.17 0.04 589 43.92
pax.r.a 0.9 0.4 287 5166 114 0.23 0.01 722 55.89
pax.r.a 0.9 0.6 290 5214 78 0.23 0 725 54.61
ramp.g.a 0.5 0.2 16 1036 4450 0.07 0.31 151 2.35
ramp.g.a 0.5 0.4 20 1926 2904 0.13 0.2 185 2.65
ramp.g.a 0.5 0.6 24 3120 1686 0.21 0.12 218 3.03
ramp.g.a 0.7 0.2 28 1590 3360 0.11 0.23 176 4.71
ramp.g.a 0.7 0.4 39 3506 1436 0.24 0.1 230 5.64
ramp.g.a 0.7 0.6 44 4454 932 0.31 0.06 250 6.47
ramp.g.a 0.8 0.2 44 2260 2554 0.16 0.18 197 7.91
ramp.g.a 0.8 0.4 61 4292 1010 0.29 0.07 248 9.22
ramp.g.a 0.8 0.6 68 5178 648 0.36 0.04 267 9.77
ramp.g.a 0.9 0.2 96 3812 1454 0.26 0.1 251 14.38
ramp.g.a 0.9 0.4 151 6694 412 0.46 0.03 311 17.06
ramp.g.a 0.9 0.6 170 7718 296 0.53 0.02 330 17.9

Table 3: Effects of altering termination parameters for the recursion. maxu and
maxo are the termination limits, o and u are the resulting units of over- and un-
derstaffing and o/|D| and u/|D| presents the coverage ratio to the total demand.
|S∗| is the number of created shifts.

21

pax.r.a

0.08 0.15 0.23 0.3

u%

0.08

0.15

0.23

0.3

o%

5
,2

5
,4

5
,6

7
,2

7
,4

7
,6

8
,2

8
,4

8
,6

9
,2

9
,4

9
,6

ramp.g.a

0.15 0.3 0.45 0.6

u%

0.15

0.3

0.45

0.6

o%

5
,2

5
,4

5
,6

7
,2

7
,4

7
,6

8
,2

8
,4

8
,6

9
,2

9
,4

9
,6

Figure 4: Illustration of results for different termination criteria for scenarios
pax.r.a (left) and ramp.g.a (right). Each circle represents the results of a
run. The position indicates the resulting mix of relative understaffing and over-
staffing. The diameter of the circle represents the runtime. Used termination
criteria umax , omax (×10) is shown next to each run.

Figure 5: Coverage for a sample day using termination criteria (maxu, maxo) =
(0.7, 0.4) (left) and (maxu, maxo) = (0.8, 0.6) (right) for scenario ramp.g.a.

22

Scenario g∗ B-D Iters Cells |S′| o/‖D‖∗ u/‖D‖∗ |S∗| Time (s)
pax.r.a 60 N 57 50913.49 239.21 0.11 0.07 502 18.16
pax.r.a 60 Y 52 26357.06 242.46 0.07 0.11 481 10.58
pax.r.a 30 N 54 82778.50 1284.33 0.02 0.02 492 148.16
pax.r.a 30 Y 54 41149.57 1298.59 0.02 0.02 481 85.86
ramp.g.a 60 N 39 60447.15 31 0.24 0.1 230 5.83
ramp.g.a 60 Y 40 29840.85 31 0.24 0.11 232 4.46
ramp.g.a 30 N 37 124157.95 91 0.22 0.09 225 28.05
ramp.g.a 30 Y 39 61801.72 91 0.22 0.09 231 18.03

Table 4: Effects of altering shift granularity and recursion direction for the
sample scenarios. B-D indicates whether the bi-directional recursion is used.
Cells and |S∗| is the average number of visited cells and shift templates per
iteration. o/|D| and u/|D| is the relative amount of over- and understaffing
compared to the total workload demand. |S∗| is the resulting number of shifts.

7.2.2 Performance Parameters

In this section, we review the effect of two parameters that directly influences
the size of the problem: The bi-directional recursion, and the granularity of the
used shift templates. The finer the granularity, the more different shift templates
are allowed. We run experiments with a modest setting of 60 minutes and a more
fine-grained setting of 30 minutes. Results of the experiments are presented in
Table 4.

As seen, the bi-directional recursion is consistently faster than the single-
direction version, as the average number of cells visited per iteration can be
roughly halved. The time savings are in the range 25–50%, depending on the
size of the problem.

Increasing the granularity greatly increases the number of shift templates S′

and consequently, the running time is also increased. As an example, consider
the single- and bi-directional run on pax.r.a. The exact same number of shifts
was created in both cases, but with significantly better results using the 30
minute granularity. However, the running time was also increased significantly
from 10 to 90 seconds.

We observe from the results that the bi-directional recursion provides a sig-
nificant improvement in running times. We identify the bi-directional recursion
with 60 minute granularity as the most promising candidate for the declared
goal of quickly creating solutions of reasonable quality. If the focus instead was
on higher solution quality, the 30 minute granularity is clearly preferred.

7.3 Dynamic Programming Results

This section presents the results for the bi-directional dynamic programming
heuristic with 60 minute granularity. Results of running the heuristic on all
scenarios are presented in Table 5. Table 5 shows that 10 of the 17 instances are
solved within 15 seconds and 15 are solved within one minute, with the final two
instances solved in 94 and 191 seconds. Table 5 also shows a large differences in

23

Scenario Iters |T ∗| |S′| o/‖D‖∗ u/‖D‖∗ z∗ |S∗| Time (s)
cargo.m.a 28 59 7.86 0.03 0.42 1690.32 90 1.17
ops.e.a 11 587 38 0.11 0.24 2806.56 208 27.95
pax.e.a 34 587 84 0.1 0.13 11011.25 791 178.82
pax.g.a 64 560 31 0.23 0.14 51827.83 399 33.15
pax.g.b 74 560 31 0.23 0.13 67266.31 469 38.48
pax.m.a 37 59 6.68 0.17 0.56 8513.59 88 1.87
pax.r.a 52 153 242.46 0.07 0.11 5666.14 481 10.2
pax.r.b 63 153 145.92 0.12 0.06 2414.79 521 5.98
ramp.e.a 35 504 66.46 0.07 0.48 3442.19 606 14.03
ramp.e.b 45 517.8 30.47 0.22 0.26 34674.76 767 85.52
ramp.e.c 45 227.33 16.64 0.2 0.22 43681.81 780 26.71
ramp.g.a 40 140 31 0.24 0.11 23628.24 232 4.32
ramp.g.b 47 140 31 0.23 0.1 31522.56 278 5.22
ramp.m.a 17 59 13.88 0.06 0.67 607.73 15 1.63
ramp.r.a 23 153 111 0.09 0.1 974.59 276 2.29
trans.o.a 110 147 22 0.29 0.2 50372.61 462 10.05
trans.o.b 111 224 22 0.26 0.19 57942.08 664 25.01

Table 5: Results of running with the determined parameters on all scenarios.
Iters shows the number of iterations. |T ∗| and |S′| shows the average value of
T ∗ and the average number of shift templates for the iterations. o/‖D‖∗ and
u/‖D‖∗ shiws the relative staffing levels. z∗ shows the total objective function
value and |S∗| shows the number of created shifts.

the size reductions possible for the instances. The largest scenario, pax.e.a has
an average of 587 active time units (out of 8064 total) and 84 shift candidates.
In comparison, the scenario ramp.e.c is of comparable size, but was reduced
much further to 227 active time units and 16 shift candidates. This instance was
solved in 26 seconds, which illustrates the effectiveness of the size reductions.

8 Conclusions

We have presented an algorithm for the heterogeneous shift design problem
that emphasizes an even distribution of shifts throughout the planning period.
Furthermore, the algorithm is highly customizable in the amount of working
rules satisfied and the trade-off available between running time and solution
quality.

Experimental results are presented for a number of real-life problem in-
stances taken from a variety of airport ground handling operations. The ex-
periments show that the algorithm is able to generate good quality solutions for
all problem instances quickly, and that the algorithm provides efficient param-
eters for balancing understaffing and overstaffing.

24

References

[1] I. Addou and F. Soumis. Bechtold-jacobs generalized model for shift
scheduling with extraordinary overlap. Annals of Operations Research,
155(1):177–205, 2007.

[2] S. E. Bechtold and L. W. Jacobs. Implicit modeling of flexible break assign-
ments in optimal shift scheduling. Management Science, 36(11):1339–1351,
1990.

[3] M. Beeler, R. W. Gosper, and R. Schroeppel. Hakmem. Memo 239, Artifi-
cial Intelligence Laboratory, Massachusetts Institute of Technology, Cam-
bridge, Mass., 1972. Item 169.

[4] G. B. Dantzig. A comment on edie’s ”traffic delays at toll booths”. Journal

of the Operations Research Society of America, 2(3):339–341, 1954.

[5] L. Di Gaspero, J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf, and
W. Slany. The minimum shift design problem. Annals of Operations Re-

search, 155(1):79–105, 2007.

[6] D. Dowling, M. Krishnamoorthy, H. Mackenzie, and D. Sier. Staff rostering
at a large international airport. Annals of Operations Research, 72(0):125–
147, 1997.

[7] A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and
rostering: A review of applications, methods and models. European Journal

of Operational Research, 153(1):3–27, 2004.

[8] J. Herbers. Models and Algorithms for Ground Staff Scheduling On Air-

ports. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen,
Faculty of Mathematics, Computer Science and Natural Sciences, 2005.

[9] N. Kohl, A. Larsen, J. Larsen, A. Ross, and S. Tiourine. Airline disrup-
tion management-perspectives, experiences and outlook. Journal of Air

Transport Management, 13(3):149–162, 2007.

[10] H. C. Lau. On the complexity of manpower shift scheduling. Computers &

Operations Research, 23(1):93–102, 1996.

[11] A. J. Mason, D. M. Ryan, and D. M. Panton. Integrated simulation, heuris-
tic and optimisation approaches to staff scheduling. Operations Research,
46(2):161–175, 1998.

[12] N. Musliu, A. Schaerf, and W. Slany. Local search for shift design. European

Journal of Operational Research, 153(1):51–64, 2004.

[13] M. Rekik, J.-F. Cordeau, and F. Soumis. Implicit shift scheduling with mul-
tiple breaks and work stretch duration restrictions. Journal of Scheduling,
13(1):49–75, 2009.

25

[14] J. M. Tien and A. Kamiyama. On manpower scheduling algorithms. SIAM

Review, 24(3):275–287, 1982.

26

We consider the heterogeneous shift design problem for a workforce with multiple skills, where work
shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a
flexible set of constraints.

We focus mainly on applications within airport ground handling where the demand can be highly
irregular and specified on time intervals as short as five minutes. Ground handling operations are
subject to a high degree of cooperation and specialization that require workers with different qualifi-
cations to be planned together. Different labor regulations or organizational rules can apply to differ-
ent ground handling operations, so the rules and restrictions can be numerous and vary significantly.
This is modeled using flexible volume constraints that limit the creation of certain shifts.

We present a fast heuristic for the heterogeneous shift design problem based on dynamic program-
ming that allows flexibility in modeling the workforce. Parameters allow a planner to determine
the level of demand coverage that best fulfills the requirements of the organization. Results are
presented from several diverse real-life ground handling instances.

ISBN 978-87-90855-76-5

DTU Management Engineering

Department of Management Engineering

Technical University of Denmark

Produktionstorvet

Building 424

DK-2800 Kongens Lyngby

Denmark

Tel. +45 45 25 48 00

Fax +45 45 93 34 35

www.man.dtu.dk

	Rap7-2010-4T
	dynamicprogramming.pdf

