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Abstract 
In recent papers [4],[7],[8],[11], [12],[14] different forms 
of neural network based predictive controllers have been 
proposed.The main emphasis in these papers is on the 
implementation aspects of the controller, i.e. the devel- 
opment of a robust optimization algorithm for the con- 
troller, which will be able to perform in real time. Row- 
ever, the stability issue has not been addressed specifi- 
cally for these controllers. On the other hand a number 
of results concerning the stability of receding horizon 
controllers on a non-linear system exist 121, (lo] and 191. 

In this paper we present a proof of stability for a pre- 
dictive controller controlling a newal network model. 
The resulting controller is tested on a non-linear pneu- 
matic servo system. 

1 Introduction 
Predictive control of non-linear systems has become 
increasingly interesting because good stability(see [2], 
[lo], [9]) and robustness(see [SI and [l]) properties can 
be proven. These proofs are relatively general in the 
sense that only general properties of the non-linear sys- 
tem are required. The stability proofs are given both in 
continuous [5], [SI and [3] and discretetime (21, [l],[lO] 
and [9]. In particular the discrete-time stability guar- 
antee is interesting in connection with real-time imple- 
mentations. 
In a number of papers the use of receding horizon con- 
trol with neural network models or controllers has been 
investigated [3],[10] [9] and [13]. In particular, the pa- 
per [13] develop a fully implementable algorithm for 

a generalized predictive controller GPC, with a feed 
forward neural network as a model of the non-linear 
plant([l3]). Since we are dealing with non-linear sys- 
tems, the minimization of the GPC cost function has 
to be performed numerically. In [13] the numerical o p  
timization is developed in detail and convergence of the 
numerical algorithm is emphasized. However, the sta- 
bility of the resulting controller cannot be guaranteed. 
The present paper addresses this problem, and gives a 
proof of asymptotic stability. 

In [13] the system model is a non-linear input-output 
model but for convenience we assume here that the sys- 
tem to be controlled is non-linear, timeinvariant and 
described by a discrete time state equation of the form: 

where f E C (the set of continuous vector-functions on 
X x U), f ( 0 , O )  = 0, X and U are compact sets on Rn 
and Rm respectively, and they include the origin. 

If the function f is formed from a feed forward neural 
network with continuous activation functions the con- 
tinuity properties off  are guaranteed. 

The neuro GPC cost function in [13] is 

N* 

J ( k ,  U @ ) )  = c [r(k + i )  - $(k + i)I2 

(2) 
i=Nl 

N" 
+ p r A u ( k  + i ) 2  

i=O 
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It is seen to be a quadratic cost function of the system 
error (reference minus model output) summed over the 
time interval from NI to N 2  in the future, Also the 
cost function includes the future control signal changes 
( A u k  = u k  - u k - 1 )  over the control horizon ( N u ) .  Pa- 
per (131 gives a detailed account of the implementation 
of the optimizing controller. This cost function makes it 
possible to reduce the number of control signals(Nu) to 
compute independably of the prediction horizon. More- 
over the prediction does not have to begin at sample k, 
but can be moved beyond the systems time delay. 

2 The proof 
The proof of stability is based on rewriting the cost 
function and system model in such a form that the gen- 
eral proof of stability in [9] can be utilized. This can be 
achieved by only minor changes in the assumptions. 

2.1 The cost function 
First a few changes to (2) are neccesary. The outputs 
in (2) are replaced with the system states. This is done 
for the sake of simplicity. This does not impair the 
generality of the scheme. One can always make a state 
transformation to make the origin an equilibrium point 
of the new system. Let for instance the system 

Zk+l = f ( Z k ,  a k )  (3) 

have an equilibrium point ( f ( k ,  ii) = k )  in x = 5, U = 5, 
then a new system that satisfies the assumptions can be 
found by defining a new state and a new control signal. 

x k  = T k - z  

u k = c k - c  (4) 
xk+1 = f ( x k ,  u k )  = f ( X k  + 2, u k  + fi) - 2 

The cost function (2) is supplemented with a final state 
penalty. This is necessary to ensure stability. Also we 
generalize the cost function by replacing the quadratic 
terms with positive functions, hereby obtaining the cost 
function: 

N2-1 

+ al l zk+Nz II$ 
(5) 

Where h,,h, E C, h,(O) = h,(O) = 0 , h,(x) 2 
0,  v x  E xo - (0) h,(u) 2 ovu E U- (0) , 

As in [13], the control signal Uk+j follows some prede- 
termined sequence for Nu 5 i 5 N 2  - d, where d is the 
system time delay. 

2.2 Assumptions 
The assumptions needed to guarantee stability are ba- 
sically the same as in [9] , but there are a few changes 
to accommodate the extra h-function h,(u). 

Assumption 1: The linearized system 
(A, B) = ($& l z = ~ , u = ~ ,  
Assumption 2: 

l z = ~ , u = ~  ) is stabilizable. 

rz(llxll2) I h&) L ~z(11~1I2) 

ru(l1412) I M U )  I S u ( l l 4 l 2 )  9 v x  E x > v?J E U 
(6) 

where rz, sz , ru, su E C and are strictly increasing 
rz(0) = S z ( O )  = 0, ru(0) = S,(O) = 0 

Assumption 3: There exists a compact set XO X ,  
which includes the origin, with the property that there 
exists a control horizon M 2 1 such that there exists a 
sequence of admissible control vectors 

missible state trajectory ( x k , .  . . , X N ~ }  ending in the 
origin. Here {?&+Aft . .  . , Zdk+N2-d} is a predetermined 
sequence (Usually 'Uk+M+i = w+M+;-I , 0 I i I 
N2 - d) that uk is should follow for IC 2 Nu. 

{ U k ,  . . . , 'Ilk+M-l,  ' ( l k + M , .  . . , Uk+N2-d}  that yield an ad- 

Assumption 4: The optimal control signal '1Lk+,, 0 5 
i 5 N 2  is continuous with respect to x k + l .  

The trajectory in assumption 3, that u k  follows for k 2 
Nu, is determined by the user of this algorithm. This 
information is needed by the minimization algorithm 
used, since the value of the states are used in the cost 
function for k 2 Nu. This trajectory usually reflects 
the stationary behavior of the system to be controlled. 

2.3 Rewriting the costfuntion 
Now we have made all the assumptions necessary to 
make use of the proof in [9] , and here we will write the 
cost function (5 )  in same form as in (9). 
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where 

This would make the cost function in (5) equal to 

N-1 

J ( Z k , N )  = hbk+i,Uk+i) +41zk+NlI; (9) 
i=O 

for N = N2. By the new assumptions. 

h(O,O) = Iz(i,Nl,N2)hz(O) + Iu(i,Nu)hu(O) 
= I, (i, Nl ,  N2)O + Z(i,  N,)O (10) 
= O  

h(z ,u)  is continuous in z and U since h,(z) and hu(u) 
are. 

Noting that the cost h(x,u)  > 0, VX,U # 0, the as- 
sumptions in [9] are fulfilled and the predictive control 
strategy minimizing the cost function in (5) are guar- 
anteed stable. 

2.4 A neural model 
The function f in (1) could be a neural network since 
a neural network is continuous. 

Zk+l = f (Zk, Uk) = "(a", 'Lek) (12) 

Where NN(zk ,  uk) is a neural network function trained 
to describe the system being considered. So if the sys- 
tem can be described by a neural network, this control 
is a stable and very useful strategy for nonlinear sys- 
tems with significant time delays. 

If one makes use of the cost function (5) then the com- 
putational burden can be drastically reduced since the 
control signal usually becomes constant after a short 
while, and therefore does not need to be calculated ex- 
plicitly by the minimization algorithm. 

3 Example 
In figure 1 and 2 is a simulation of a GPC controller 
in action on pneumatic servo system. Figure 1 shows 
the response when using the original cost function as in 
[13]. Figure 2 shows the response using the cost func- 
tion (5). Both controllers are tuned as accurately as 
possible. This to  see if there is any significant loss in 
performance or change in behaviour by adding the final 
term cost. In both simulations, the following parame- 
ters were used. NI = 1,N2 = 10, Nu = 2 , p  = 0.05 

As is seen in the figures, the performance is almost fully 
preserved for the present system. This means that the 
addition of the stabilizing term in the cost function does 
not significantly degrade the performance fo the system. 

4 Conclusion 
We have found that the costfunction (5) leads to a sta- 
bilizing control signal for a system that can be acurately 
modelled by a neural network. The system performance 
was only slightly reduced when using the cost function 
that guarantees stability. 

The next step will be to examine what happens if you 
have a neural network model that does not model the 
system accurately. 

References 
[l] Alamir, M. and Bornard, G. Optimization based 

stabilizing strategy for nonlinear discrete time sys- 
tems with unmatched uncertain. Second Interna- 
tional Symposium on Methods and Models in Au- 
tomation and Robotics, 1995. 

[2] Alamir, M. and Bornard, G. Stability of a 
Truncated Infinite Constrained Receding Horizon 
Scheme: the General Discrete Nonlinear Case. Au- 
tomatica, No. 9, 31, 1995. 

[3] Mason, J.D. Kambhampati, C., Delgado, A. and 
Warwick,K. Stable receding horizon control based 
on recurrent networks. IEE Proc.-Control Theory 
Appl., No. 3, 144, 1997. 

[4] Lightbody, G. and Irwin, G. A novel neural in- 
ternal model control structure. Proceedings of 
the American Control Conference, pages 350-354, 
1995. 

[5] Michalska, H. Mayne, D.Q. Receding Horizon Con- 
trol of Nonlinear Systems. IEEE Dansactions on 
automatic control, No. 7, 35, 1990. 

2089 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 11,2010 at 13:49:15 UTC from IEEE Xplore.  Restrictions apply. 



0.3 

0 2  

0 1 

-0.1 

-02- 

-0.3 

Figure 1: A simulation using the cost function without a final state cost added. 
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Figure 2: A simulation using the cost function with the final state cost added. 
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