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Abstract

The Multicommodity Flow Problem (MCFP) considers the efficient routing of commodities from their origins
to their destinations, subject to capacity restrictions and edge costs. This paper studies theNP-hard Minimum
Cost Multicommodityk-splittable Flow Problem in which each commodity may use at mostk paths between its
origin and its destination. The problem has applications intransportation problems where a number of commodi-
ties must be routed, using a limited number of transportation units at each destination. Based on a three-index
formulation from (Truffot et al., 2005) we present a new two-index formulation for the problem, and solve both
formulations through branch-and-price. The three-index algorithm by Truffot et al. is improved by introducing a
heuristic method to reach a feasible solution by eliminating some symmetry. A novel branching strategy for the
two-index formulation is presented, forbidding subpaths in the branching children. The proposed heuristic for
the three-index algorithm improves the performance, but the three-index algorithm is still outperformed by the
two-index algorithm, both with respect to running time and to the number of solved test instances.

Keywords: mixed integer programming, k-splittable, Multicommodity Flow, Branch-and-Price

1 Introduction

We consider theNP-hard Minimum Cost,k-splittable variant of the Multicommodity Flow Problem (MCFP).
A MCFP consists of a network with capaciteted edges, and of a set of commodities, and the goal is to either
minimize the total cost of sending all flow of the commodities, or to maximize the total amount of flow sent for
all the commodities. The MCFP can be formulated as a linear programming problem and is thus polynomial [1].
Often, however, extra conditions must be satisfied, making the problemNP-hard. An example of such a condition
is, that all flow for each commodity must be sent via just one path. This problem is denoted theUnsplittableMCFP,
and was introduced and provedNP-hard by Kleinberg [5]. Yet another practically relevant condition is an upper
bound on the number of paths used by a commodity. This is called the Multicommodityk-splittable Flow Problem
(MCkFP). We consider the Minimum Cost MCkFP, which for instance is relevant in the transportation sector or
in telecommunication context.

Barnhart et al. [4] considered the Minimum Cost Unsplittable MCFP. They presented a branch-and-price-and-
cut algorithm with a new branching rule allowing new columnsto be generated effectively. The Multicommodity
k-splittable Flow Problem (MCkFP) was introduced and proved to beNP-hard by Baier et al. [3], who also
presented approximation algorithms for the Single- and Multicommodityk-splittable Flow Problems. Truffot et
al. [8, 10] used branch-and-price to solve the Maximum MCkFP. The pricing problem is a shortest path problem
solvable in polynomial time. Truffot et al. [9] also introduced the Minimum Cost MCkFP. A three-index model for
the problem was solved using a branch-and-price algorithm.The algorithm is closely related to the one presented
in [10].
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The Minimum Cost MCkFP is represented by a directed graph,G = (V, E), whereV is the set of vertices and
E the set of edges. An edgee ∈ E has weightce ≥ 0, and capacityue > 0. The set of commodities is denotedL.
Commodityl ∈ L has sourcesl and destinationtl, an amount to be shippedF l and an upper bound on the number
of used routeskl.

The main contribution of this paper is to compare various formulations of theMinimum CostMCkFP when
solved through branch-and-price. Truffot et al. [8] introduced both a two-index and a three-index formulation,
but discarded the two-index formulation due to complications in the branching strategy. We present and compare
branch-and-price algorithms for both formulations, add a heuristic for the three index-model, and introduce a new
branching strategy for the two-index model.

2 Three-index model

Let P l be the set of possible paths for commodityl. The variablexhl
p denotes the amount of flow on pathp for the

h’th path of commodityl. The binary variableyhl
p decides whether pathp for theh’th path of commodityl is to be

used or not. The model is:

(MIP1)
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yhl
p ∈ {0, 1} ∀l ∈ L, h = 1, . . . , kl, ∀p ∈ P l

The objective function minimizes the total cost. Constraint (1) is a capacity constraint, in whichδp
e indicates

whether or not edgee is used by pathp. In (2), up denotes the capacity constraint on pathp, which is defined as
up = min{ue | e ∈ p}, hence (2) forces every decision variable,yhl

p , to be set, if there is flow on the corresponding
path,xhl

p . Constraint (3) ensures, that at most one path is used as theh’th path of a commodityl, and finally (4)
ensures that all commodities are shipped.

The model is relaxed into an LP-model: first the binary variablesyhl
p are LP-relaxed to0 ≤ yhl

p ≤ 1. From (2)
and (3) we have that:xhl

p /up ≤ yhl
p ≤ 1. We setyhl

p to its lower bound, which leaves the following model:

(LP2)
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Model(LP2), causes symmetry in the solution space, as theh-index may result in equivalent solutions being treated
as different solutions. To eliminate some of this symmetry,the followingvariable orderingconstraint is added to

2



(MIP1):
∑

p∈P l

x
(h+1)l
p −

∑

p∈P l

xhl
p ≤ 0, ∀l ∈ L, h = 1, . . . , kl − 1 (8)

The reduced cost is calculated. Letπe ≤ 0 be the dual of (5),λhl ≤ 0 the dual of (6),σl ∈ R the dual of
(7) andωhl ≤ 0 the dual of (8). Furthermore let̄ωhl = ωhl, h = 1, ω̄hl = ωhl − ω(h−1)l, h = 2, . . . kl − 1 and
ω̄hl = −ω(h−1)l, h = kl. Even though the primal model only consists of one variable type, the dual formulation
has three constraints because of the symmetry constraint (8). The reduced costs are:

∑

e∈E

δp
e (ce − πe) −

λhl

up

+ σl + ω̄l ∀l ∈ L, h = 1, . . . , kl,∀p ∈ P l (9)

For each pair of values(h, l) the task is to find a pathp ∈ P l which has negative reduced cost in (9). If the
value forup is known in advance, then the problem can be recognized as a shortest path problem defined in costs
(ce − πe) ≥ 0, which can be solved in polynomial time using e.g. Dijkstra’s algorithm [1]. The path capacityup

can take on at most|E| different values; for each of the|E| values ofup the shortest path problem is solved on a
graph, where edges withue < up are removed.

The chosen branching scheme seeks to reach a solution, whereat mostkl paths is used for each commodity
l. Let the first divergence nodeof a commodity be defined as the node, to which all flow of theh’th path of the
commodity is following the same route, and from which the flowis using two or more routes. For theh’th path of
commodityl, the strategy is based on dividing all edges going out from the first divergence node, into two subsets.
The two resulting subsets of outgoing edges are disjoint andbalanced. Now, the branching strategy generates two
branching children, in which each of the subsets of outgoingedges is forbidden. In this manner, the branching
strategy eventually ensures, that at most one route is used for theh’th path of the commodity.

To decrease the running time of the branch-and-price algorithm, we suggest a simple heuristic method to reach
a feasible solution by eliminating some symmetry in the relaxed LP-model. Asxhl

p /up will not always be binary,
the relaxed model may allow several paths to be used as theh’th path of commodityl, and identical paths may take
on differenth values for a commodityl. To reach a feasible solution faster, the heuristic seeks toeliminate these
issues by performing the following steps:1: For a commodity, several identical paths have different values ofh.
The paths are merged and assigned a single value ofh. 2: More than one path is used for a single value ofh for a
commodity. Each path is assigned a unique value ofh, if possible.

3 Two-index model

A two-index formulation of the Minimum Cost MCkFP, without the use ofh-indices is presented:

(MIP3)







































































min
∑

l∈L

∑

p∈P l

cpxl
p

s.t.
∑

l∈L

∑

p∈P l

δp
exl

p ≤ ue ∀e ∈ E (10)

xl
p − upyl

p ≤ 0 ∀l ∈ L, ∀p ∈ P l (11)
∑

p∈P l

yl
p ≤ kl ∀l ∈ L (12)

∑

p∈P l

xl
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Here xl
p is the total flow of commodityl on pathp, and the corresponding variableyl

p is set, if and only if,
commodityl has flow on pathp. The remaining variables have the same meaning as in the three-index model. The
model is similar to(MIP1), only constraint (12) has been added to limit the number of used paths for commodityl
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to kl. The problem is relaxed in the same manner as the three-indexmodel, i.e. we replaceyl
p with xl

p/up getting:

(LP4)
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Let πe, λl andσl be the dual variables for equations (14), (15) and (16) in(LP4). The reduced cost for a path
p ∈ P l for a commodityl ∈ L is given by:

∑

e∈E

δp
e(ce − πe) −

λl

up

+ σl (17)

The reduced cost is similar to that for the three-index model, hence the pricing problem is solved using Dijk-
stra’s algorithm for the shortest path problem for each pairof values(h, l) and for each of the at most|E| values
of up.

The branching strategy for the three-index model cannot be reused, because theh-indices are omitted. A new
strategy is developed, which considers the paths emanatingfrom the first divergence node for each commodity. If
the number of emanating paths is greater thankl, then branching is necessary. The number of edges with positive
flow going out of the divergence node may be smaller than the number of paths emanating from the node. Thus, it
does not suffice to forbid the use of an edge. Rather, the branching strategy must forbid the use of a subpath. For
each emanating path, the strategy finds the smallest sequence of edges, which makes the path unique. That is, the
strategy seeks to minimize the size of the forbidden subpath. The number of branching children iskl +1, in which
forbidden edge sequences are evenly distributed such that each branching child contains at least one forbidden edge
sequence. No feasible solution is omitted from the combinedsolution space of the branching children. A feasible
solution can use at mostkl of the subpaths we consider in a branch and each of these is forbidden in exactly one
of the kl + 1 branching children. Any valid solution will therefore be valid in at least one of these branching
children, where itskl used subpaths are forbidden in the remainingkl branching children. The solution space of
the branching children is not necessarily disjoint, which may result in degeneracy problems, since a solution can
exist in several branching children, which must thus be explored.

The branching strategy necessitates some changes to the pricing problem. When solving the shortest path
problem, we need to ensure that we do not use the forbidden edge sequences. The shortest path problem with
forbidden paths is a polynomial problem and can be solved using a modifiedk-shortest path algorithm [11].

4 Computational Results

The described branch-and-price algorithms for the two models are tested on an Intel Pentium 4, 3.00 GHz machine
with 2 GB RAM. The algorithms have been implemented using theframeworkCOIN [7] with ILOG CPLEX 9.1
as LP-solver. We have through preliminary results decided to use strong branching, where all possible branching
candidates are generated. A best-first search strategy is used in the branch-and-bound tree. Computations regarding
selection of branching candidate and branching child are handled byCOIN. The number of paths priced in per
iteration to0.5 · |L| · k for the three-index algorithm and to0.5 · |L| for the two-index algorithm.

The algorithms are tested on four types of problems: The randomly generated Carbin instances (bl andbs) [2],
thegrid instances formed as grids andplanar instances simulating problems arising in telecommunication [6].
Three different values fork has been tested:k = 2, 3 and10. Whenk = 1 the problem becomes the unsplittable
MCFP, where more specialized algorithms are developed [4].For large values ofk, the problem becomes the linear
MCFP.
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Problem, k Heur. Time Tree size Depth Gap UB

bl03, 2 no 225.06 >34000 75 0.23 15836.0
bl03, 2 yes 225.38 >34000 75 0.23 15836.0
bl03, 3 no 2.98 317 49 0.00 15799.0
bl03, 3 yes 0.44 1 0 0.00 15799.0
bl03, 10 no 2.17 63 31 0.00 15799.0
bl03, 10 yes 0.13 1 0 0.00 15799.0
bs03, 2 no 0.59 125 28 0.00 16488.0
bs03, 2 yes 0.47 97 25 0.00 16488.0
bs03, 3 no 0.17 29 14 0.00 16488.0
bs03, 3 yes 0.02 1 0 0.00 16488.0
bs03, 10 no 1.31 61 25 0.00 16488.0
bs03, 10 yes 0.08 1 0 0.00 16488.0

Table 1: Results for the three-index algorithm with and without the proposed heuristic. The columnH. Time
denotes the time spent in the heuristic.

Name k # instances 3-index 2-index
A.Mean Opt. A.Mean Opt.

bl 2 11 5.06 6/11 1.90 11/11
bl 3 11 0.43 10/11 0.21 11/11
bl 10 11 0.87 11/11 0.22 11/11
bs 2 11 41.66 3/11 0.32 9/11
bs 3 11 37.95 8/11 0.32 11/11
bs 10 11 1.08 11/11 0.27 11/11
planar 2 5 117.92 4/5 3.09 5/5
planar 3 5 2.58 4/5 2.75 5/5
planar 10 5 267.40 5/5 15.13 5/5
grid 2 7 1.40 4/7 0.24 5/7
grid 3 7 0.09 5/7 0.73 7/7
grid 10 7 7.00 7/7 1.31 7/7

Table 2: The number of test instances solved to optimality with the 3-index and 2-index algorithms, for variousk
values.A.Mean is the average mean time in seconds calculated over those instances solved to optimality by both
algorithms.

First off, results of computational evaluations of the branch-and-price algorithm for the three-index model with
and without the heuristic are showed in Table 1. The running times are improved significantly by including the
proposed heuristic, as this gives a smaller search tree. Hence, the heuristic is included in the remaining tests.

Next, we compare the two branch-and-price algorithms with each other, see Table 2. Fork = 2, the three-index
algorithm shows diffulty in solving many instances, whereas the two-index algorithm has much greater success.
The latter also has better running times for instances, bothalgorithms can solve. Both algorithms, however, fail
for larger instances. Fork = 3 andk = 10 both algorithms perform well with respect to the number of solved
instances, but the branch-and-price algorithm for the two-index model has better running times.

The running times reflect the complexity of the corresponding problem instances and used algorithms. When-
ever the value ofk exceeds some threshold value, the running time for solving the instance decreases. The reason
for this is that at some point,k does not impose a constraint on the problem, i.e., the instance corresponds to the
linear MCFP. The value ofk has greater impact on the three-index algorithm. Whenk takes on a value greater than
the mentioned threshold, the running time of the three-index algorithm increases, because columns are generated
for eachi = 1, . . . , k, and are priced into the master problem. Generating columnsand solving a larger master
problem is time consuming. The same is obviously not the casefor the two-index algorithm.

The three-index algorithm is capable of solving instances with up to 2239 commodities, 850 edges and 150
nodes (planar150), and 400 commodities, 1520 edges and 400 nodes (grid400:1520:400) for k = 10, and instances
with up to 532 commodities, 1085 edges and 100 nodes (planar100) for k = 2. The two-index algorithm solves
instances with up to 2239 commodities, 850 edges and 150 nodes (planar150) and 400 commodities, 1520 edges
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and 400 nodes (grid400:1520:400) for k = 10, and instances with up to 2239 commodities, 850 edges and 150
nodes (planar150) for k = 2. Also, the three-index algorithm is capable of solving about 76% of the test instances
to optimality, while the two-index has solved just over 96% of the test instances to optimality. Hence, for the
far majority of the problem instances the two-index algorithm outperforms the three-index algorithm, both with
respect to time spent and to the number of instances solved tooptimality. We conclude, that this is partly due to the
extrah-index in the three-index model causing symmetry in the solution space, and partly due to the three-index
algorithm havingk times as many variables as the two-index algorithm.

5 Conclusions

In this paper we have presented a branch-and-price algorithm for the MCMCkFP, which outperforms existing
methods. The new branch-and-price algorithm is based on a mathematical formulation, which unlike previous
formulations omits a symmetry inducing index for each of thek paths per commodity. Hence, we have named
our formulation the two-index model, while the existing model is a three-index model. The two-index model has
parallelly been suggested for the Maximum Flow MCkFP by Truffot et al. [9], but they discarded the model because
it complicates branching. We have presented a branching strategy for the model, which ensures that the pricing
problem can be solved efficiently. The branching strategy and the algorithm for the resulting pricing problem can
be directly used on the Maximum Flow problem.

Furthermore, we have introduced a heuristic for the three-index branch-and-price algorithm which transforms
certain fractional solutions into feasible solutions. Though the heuristic boosts the performance of the three-index
algorithm, it is still outperformed by the two-index algorithm both with respect to time usage and to the number
of solved instances. The three-index algorithm including the proposed heuristic has solved 76% of the problem
instances to optimality, where the two-index has solved 96%of the problem instances to optimality.
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