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Abstract

The Multicommodity Flow Problem (MCFP) considers the effitirouting of commodities from their origins
to their destinations, subject to capacity restrictiond adge costs. This paper studies ffé-hard Minimum
Cost Multicommodityk-splittable Flow Problem in which each commodity may use astk paths between its
origin and its destination. The problem has applicatiortsansportation problems where a number of commodi-
ties must be routed, using a limited number of transponatioits at each destination. Based on a three-index
formulation from (Truffot et al., 2005) we present a new tindex formulation for the problem, and solve both
formulations through branch-and-price. The three-indggrithm by Truffot et al. is improved by introducing a
heuristic method to reach a feasible solution by elimirggiame symmetry. A novel branching strategy for the
two-index formulation is presented, forbidding subpatishie branching children. The proposed heuristic for
the three-index algorithm improves the performance, betttinee-index algorithm is still outperformed by the
two-index algorithm, both with respect to running time aadhe number of solved test instances.
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1 Introduction

We consider the\P-hard Minimum Costk-splittable variant of the Multicommaodity Flow Problem (NF@).

A MCFP consists of a network with capaciteted edges, and @it afscommodities, and the goal is to either
minimize the total cost of sending all flow of the commoditiesto maximize the total amount of flow sent for
all the commodities. The MCFP can be formulated as a lineagnamming problem and is thus polynomial [1].
Often, however, extra conditions must be satisfied, makiegotoblem\/P-hard. An example of such a condition
is, that all flow for each commodity must be sent via just ort pahis problem is denoted thénsplittableMCFP,
and was introduced and provéd@-hard by Kleinberg [5]. Yet another practically relevanhdition is an upper
bound on the number of paths used by a commaodity. This iscctike Multicommodityk-splittable Flow Problem
(MCKFP). We consider the Minimum Cost MEP, which for instance is relevant in the transportationoear

in telecommunication context.

Barnhart et al. [4] considered the Minimum Cost UnsplittalICFP. They presented a branch-and-price-and-
cut algorithm with a new branching rule allowing new colunimbe generated effectively. The Multicommodity
k-splittable Flow Problem (MEFP) was introduced and proved to h&P-hard by Baier et al. [3], who also
presented approximation algorithms for the Single- andtigluinmodity k-splittable Flow Problems. Truffot et
al. [8,10] used branch-and-price to solve the Maximumi¥e. The pricing problem is a shortest path problem
solvable in polynomial time. Truffot et al. [9] also introcked the Minimum Cost MEFP. A three-index model for
the problem was solved using a branch-and-price algorifftm.algorithm is closely related to the one presented
in [10].



The Minimum Cost MGFP is represented by a directed gra@hs= (V, E), whereV is the set of vertices and
E the set of edges. An edgec E has weight. > 0, and capacity:, > 0. The set of commodities is denotéd
Commodityl € L has source; and destination;, an amount to be shippdd and an upper bound on the number
of used routes’.

The main contribution of this paper is to compare variousnigiations of theMinimum CostMCLFP when
solved through branch-and-price. Truffot et al. [8] intnodd both a two-index and a three-index formulation,
but discarded the two-index formulation due to compliaagion the branching strategy. We present and compare
branch-and-price algorithms for both formulations, adeartstic for the three index-model, and introduce a new
branching strategy for the two-index model.

2 Three-index model

Let P! be the set of possible paths for commoditfhe variable,tgl denotes the amount of flow on patitfor the
h'th path of commodity. The binary variablq;{}l decides whether paghfor the h'th path of commodity is to be
used or not. The model is:
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The objective function minimizes the total cost. Constrgilr) is a capacity constraint, in whicff indicates
whether or not edge is used by patfp. In (2), v, denotes the capacity constraint on pathvhich is defined as
u, = min{u. | e € p}, hence (2) forces every decision varialg)zél,, to be set, if there is flow on the corresponding
path,x;,"l. Constraint (3) ensures, that at most one path is used dstthpath of a commodity, and finally (4)
ensures that all commodities are shipped.

The model is relaxed into an LP-model: first the binary vadap/ are LP-relaxed t6 < y"' < 1. From (2)
and (3) we have that:?! /u,, < yi! < 1. We sety}! to its lower bound, which leaves the following model:
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Model(LP2), causes symmetry in the solution space, aktirelex may result in equivalent solutions being treated
as different solutions. To eliminate some of this symmetrg,followingvariable orderingconstraint is added to



(MIP1):
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The reduced cost is calculated. et < 0 be the dual of (5)\* < 0 the dual of (6),c! € R the dual of
(7) andw” < 0 the dual of (8). Furthermore la&t" = w" h =1, 0" = WM — W=D p =2 . k! —1 and
oMt = —wh=Dl p = k! Even though the primal model only consists of one variajge t the dual formulation
has three constraints because of the symmetry constrintt{8 reduced costs are:
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For each pair of valueéh, ) the task is to find a path € P' which has negative reduced cost in (9). If the
value foru, is known in advance, then the problem can be recognized asrgeshpath problem defined in costs
(ce —me) > 0, which can be solved in polynomial time using e.g. Dijkstralgorithm [1]. The path capacity,
can take on at mosE| different values; for each of theé| values ofu,, the shortest path problemis solved on a
graph, where edges with. < u,, are removed.

The chosen branching scheme seeks to reach a solution, atherasti! paths is used for each commodity
l. Letthe first divergence nodaf a commodity be defined as the node, to which all flow of ilth path of the
commodity is following the same route, and from which the fiswising two or more routes. For thé&h path of
commodityl, the strategy is based on dividing all edges going out fraafitist divergence node, into two subsets.
The two resulting subsets of outgoing edges are disjoinbatehced. Now, the branching strategy generates two
branching children, in which each of the subsets of outgeitiges is forbidden. In this manner, the branching
strategy eventually ensures, that at most one route is os¢kdh’th path of the commodity.

To decrease the running time of the branch-and-price algoriwe suggest a simple heuristic method to reach
a feasible solution by eliminating some symmetry in thexetbl P-model. As::ﬁ’/up will not always be binary,
the relaxed model may allow several paths to be used astthpath of commodity, and identical paths may take
on differenth values for a commodity. To reach a feasible solution faster, the heuristic seektindnate these
issues by performing the following stepk: For a commodity, several identical paths have differenteslofh.
The paths are merged and assigned a single valuefMore than one path is used for a single valué. dér a
commodity. Each path is assigned a unique valug, @fpossible.

3 Two-index modéd

A two-index formulation of the Minimum Cost MEFP, without the use di-indices is presented:
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Here x;) is the total flow of commodity on pathp, and the corresponding variabgbé is set, if and only if,
commodityl has flow on patty. The remaining variables have the same meaning as in theeithdex model. The
model is similar tqMIP1), only constraint (12) has been added to limit the number eflygths for commoditly



to k'. The problem is relaxed in the same manner as the three-inddel, i.e. we replacgf, with xi,/up getting:

min Z Z cpx;
leL pepl
st > > fa,<uc Vec€E (14)
lEL pepl
!
X
(LP4) 32! VieL (15)
Up
pe P!
> al=F vielL (16)
pe P!
zh, >0 vl e L,Vp € P!

Let 7., A' ando! be the dual variables for equations (14), (15) and (1§LP4). The reduced cost for a path
p € P! for a commodityl € L is given by:
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The reduced cost is similar to that for the three-index mdukhce the pricing problem is solved using Dijk-
stra’s algorithm for the shortest path problem for each phiralues(h, ) and for each of the at mokE| values
of up.

The branching strategy for the three-index model cannoebsed, because tlheindices are omitted. A new
strategy is developed, which considers the paths emarfatingthe first divergence node for each commodity. If
the number of emanating paths is greater thlathen branching is necessary. The number of edges withiyosit
flow going out of the divergence node may be smaller than tineboew of paths emanating from the node. Thus, it
does not suffice to forbid the use of an edge. Rather, the birgstrategy must forbid the use of a subpath. For
each emanating path, the strategy finds the smallest segjoéedges, which makes the path unique. That is, the
strategy seeks to minimize the size of the forbidden sub¥ath number of branching childreni$+ 1, in which
forbidden edge sequences are evenly distributed suchablateanching child contains at least one forbidden edge
sequence. No feasible solution is omitted from the combswdation space of the branching children. A feasible
solution can use at moét of the subpaths we consider in a branch and each of thesebisiden in exactly one
of the k! + 1 branching children. Any valid solution will therefore belidain at least one of these branching
children, where its:’ used subpaths are forbidden in the remairkhgranching children. The solution space of
the branching children is not necessarily disjoint, whiciymesult in degeneracy problems, since a solution can
exist in several branching children, which must thus beaqul.

The branching strategy necessitates some changes to thegpproblem. When solving the shortest path
problem, we need to ensure that we do not use the forbiddes sslguences. The shortest path problem with
forbidden paths is a polynomial problem and can be solvamyusimodifiedk-shortest path algorithm [11].

4 Computational Results

The described branch-and-price algorithms for the two riscale tested on an Intel Pentium 4, 3.00 GHz machine
with 2 GB RAM. The algorithms have been implemented usingtameworkCO N [7] with ILOG CPLEX 9.1

as LP-solver. We have through preliminary results decidagse strong branching, where all possible branching
candidates are generated. A best-first search strateggdsuthe branch-and-bound tree. Computations regarding
selection of branching candidate and branching child arellea byCO N. The number of paths priced in per
iteration t00.5 - | L| - k for the three-index algorithm and €5 - | L| for the two-index algorithm.

The algorithms are tested on four types of problems: Theaamyggenerated Carbin instancés (andbs) [2],
thegri d instances formed as grids aptanar instances simulating problems arising in telecommurocei].
Three different values fot has been tested: = 2,3 and10. Whenk = 1 the problem becomes the unsplittable
MCFP, where more specialized algorithms are developedrgt]large values of, the problem becomes the linear
MCFP.



Problem, & Heur. Time Treesize Depth Gap uB

bl03, 2 no 225.06 >34000 75 0.23 15836.0
bl03, 2 yes 225.38 >34000 75 0.23 15836.0
bl03, 3 no 2.98 317 49 0.00 15799.0
bl03, 3 yes 0.44 1 0 0.00 15799.0
bl03, 10 no 217 63 31 0.00 15799.0
bl03, 10 yes 0.13 1 0 0.00 15799.0
bs03, 2 no 0.59 125 28 0.00 16488.0
bs03, 2 yes 0.47 97 25 0.00 16488.0
bs03, 3 no 0.17 29 14 0.00 16488.0
bs03, 3 yes 0.02 1 0 0.00 16488.0
bs03, 10 no 131 61 25 0.00 16488.0
bs03, 10 yes 0.08 1 0 0.00 16488.0

Table 1. Results for the three-index algorithm with and without tliegwsed heuristic. The colunta  Ti e
denotes the time spent in the heuristic.

Name k  #instances 3-index 2-index
A.Mean Opt. A.Mean Opt.

bl 2 11 5.06 6/11 190 11711
bl 3 11 0.43 10/11 021 11711
bl 10 11 0.87 11/11 0.22 11/11
bs 2 11 41.66 3/11 0.32 9/11
bs 3 11 37.95 8/11 0.32 11/11
bs 10 11 1.08 11/11 0.27 11/11
planar 2 5 117.92 4/5 3.09 5/5
planar 3 5 2.58 4/5 2.75 5/5
planar 10 5 267.40 5/5 15.13 5/5
grid 2 7 1.40 417 0.24 5/7
grid 3 7 0.09 5/7 0.73 717
grid 10 7 7.00 77 131 77

Table 2: The number of test instances solved to optimality with thad&x and 2-index algorithms, for varioés
values.A.Mean is the average mean time in seconds calculated over thasa@es solved to optimality by both
algorithms.

First off, results of computational evaluations of the ltasand-price algorithm for the three-index model with
and without the heuristic are showed in Table 1. The runnimgg are improved significantly by including the
proposed heuristic, as this gives a smaller search treecd{léme heuristic is included in the remaining tests.

Next, we compare the two branch-and-price algorithms vattheother, see Table 2. For= 2, the three-index
algorithm shows diffulty in solving many instances, wheréze two-index algorithm has much greater success.
The latter also has better running times for instances, algtbrithms can solve. Both algorithms, however, fail
for larger instances. For = 3 andk = 10 both algorithms perform well with respect to the number d¥ed
instances, but the branch-and-price algorithm for the itvd®x model has better running times.

The running times reflect the complexity of the correspoggiroblem instances and used algorithms. When-
ever the value of exceeds some threshold value, the running time for solV¥iadristance decreases. The reason
for this is that at some poink does not impose a constraint on the problem, i.e., the instaarresponds to the
linear MCFP. The value df has greater impact on the three-index algorithm. Wheakes on a value greater than
the mentioned threshold, the running time of the threexradgorithm increases, because columns are generated
for eachi = 1,...,k, and are priced into the master problem. Generating colandssolving a larger master
problem is time consuming. The same is obviously not the fragle two-index algorithm.

The three-index algorithm is capable of solving instancéh wp to 2239 commodities, 850 edges and 150
nodes (planakg), and 400 commodities, 1520 edges and 400 nodesy(grisho.400) for & = 10, and instances
with up to 532 commodities, 1085 edges and 100 nodes (plandor £ = 2. The two-index algorithm solves
instances with up to 2239 commodities, 850 edges and 150snptinarso) and 400 commaodities, 1520 edges



and 400 nodes (grido.1520:400) for &k = 10, and instances with up to 2239 commaodities, 850 edges and 150
nodes (planagg) for £ = 2. Also, the three-index algorithm is capable of solving a6 of the test instances

to optimality, while the two-index has solved just over 96¥ilee test instances to optimality. Hence, for the
far majority of the problem instances the two-index aldoritoutperforms the three-index algorithm, both with
respect to time spent and to the number of instances sohagatitoality. We conclude, that this is partly due to the
extrah-index in the three-index model causing symmetry in thetgmiuspace, and partly due to the three-index
algorithm havingk times as many variables as the two-index algorithm.

5 Conclusions

In this paper we have presented a branch-and-price algofith the MCMCkFP, which outperforms existing
methods. The new branch-and-price algorithm is based onthematical formulation, which unlike previous
formulations omits a symmetry inducing index for each of khpaths per commodity. Hence, we have named
our formulation the two-index model, while the existing nebs a three-index model. The two-index model has
parallelly been suggested for the Maximum Flow MEP by Truffot et al. [9], but they discarded the model because
it complicates branching. We have presented a branchiategly for the model, which ensures that the pricing
problem can be solved efficiently. The branching strategiytha algorithm for the resulting pricing problem can
be directly used on the Maximum Flow problem.

Furthermore, we have introduced a heuristic for the thnelex branch-and-price algorithm which transforms
certain fractional solutions into feasible solutions. Tigh the heuristic boosts the performance of the three-index
algorithm, it is still outperformed by the two-index algthiin both with respect to time usage and to the number
of solved instances. The three-index algorithm includimg proposed heuristic has solved 76% of the problem
instances to optimality, where the two-index has solved ®b%e problem instances to optimality.
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