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Analysis of the magnetic field, force, and torque for
two-dimensional Halbach cylinders
R. Bjørk, C. R. H. Bahl, A. Smith and N. Pryds

Abstract
The Halbach cylinder is a construction of permanent magnets used in applications such as nuclear magnetic
resonance apparatus, accelerator magnets and magnetic cooling devices. In this paper the analytical expression
for the magnetic vector potential, magnetic flux density and magnetic field for a two dimensional Halbach cylinder
are derived. The remanent flux density of a Halbach magnet is characterized by the integer p. For a number of
applications the force and torque between two concentric Halbach cylinders are important. These quantities are
calculated and the force is shown to be zero except for the case where p for the inner magnet is one minus p for
the outer magnet. Also the force is shown never to be balancing. The torque is shown to be zero unless the
inner magnet p is equal to minus the outer magnet p. Thus there can never be a force and a torque in the same
system.

Department of Energy Conversion and Storage, Technical University of Denmark - DTU, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
*Corresponding author: rabj@dtu.dk

1. Introduction
The Halbach cylinder (1; 2) (also known as a hole cylinder
permanent magnet array (HCPMA)) is a hollow permanent
magnet cylinder with a remanent flux density at any point that
varies continuously as, in polar coordinates,

Brem,r = Brem cos(pφ)

Brem,φ = Brem sin(pφ) , (1)

where Brem is the magnitude of the remanent flux density and
p is an integer. Subscript r denotes the radial component of
the remanence and subscript φ the tangential component. A
positive value of p produces a field that is directed into the
cylinder bore, called an internal field, and a negative value
produces a field that is directed outwards from the cylinder,
called an external field.

A remanence as given in Eq. (1) can, depending on the
value of p, produce a completely shielded multipole field in
the cylinder bore or a multipole field on the outside of the
cylinder. In Fig. 1 Halbach cylinders with different values of
p are shown.

The Halbach cylinder has previously been used in a num-
ber of applications (3; 4), such as nuclear magnetic resonance
(NMR) apparatus (5), accelerator magnets (6) and magnetic
cooling devices (7).

In these applications it is very important to accurately
calculate the magnetic flux density generated by the Halbach
cylinder. There exist several papers where the magnetic field
and flux density for some parts of a Halbach cylinder are
calculated (8; 9; 10; 11), but a complete spatial calculation as
well as a detailed derivation of the magnetic vector potential
has previously not been published.

p = 1 p = 2

p = −2 p = −3

ϕ

Figure 1. The remanence of a p = 1, p = 2, p =−2 and
p =−3 Halbach cylinder. The angle φ from Eq. (1) is also
shown.

http://dx.doi.org/10.1016/j.jmmm.2009.08.044
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In this paper we wish to calculate the magnetic vector
potential and subsequently the magnetic flux density at any
point in a two dimensional space resulting from a Halbach
cylinder.

Once the analytical solution for the magnetic flux density
has been obtained we will proceed to calculate the force and
torque between two concentric Halbach cylinders.

For p = 1 and a relative permeability of 1 the more com-
plicated problem of computing the torque between two finite
length concentric Halbach cylinders has been considered (12),
and it is shown that a torque arises due to end effects. How-
ever, neither the field nor the torque is evaluated explicitly.
Below we show that for special values of p a nonzero force
and torque may arise even in the two dimensional case.

2. Defining the magnetostatic problem
The problem of finding the magnetic vector potential and
the magnetic flux density for a Halbach cylinder is defined
in terms of the magnetic vector potential equation through
the relation between the magnetic flux density, B, and the
magnetic vector potential, A,

B = ∇×A . (2)

If there are no currents present it is possible to express the
magnetic vector potential as

−∇
2A = ∇×Brem . (3)

For the two dimensional case considered here the vector
potential only has a z-component, Az, and the above equation,
using Eq. (1), is reduced to

−∇
2Az(r,φ) =

Brem

r
(p+1) sin(pφ) . (4)

This differential equation constitutes the magnetic vector po-
tential problem and must be solved. In the air region of the
problem the right hand side reduces to zero as here Brem = 0.

Once Az has been determined Eq. (2) can be used to find
the magnetic flux density. Afterwards the magnetic field, H,
can be found through the relation

B = µ0µrH+Brem , (5)

where µr is the relative permeability assumed to be isotropic
and independent of B and H. This is generally the case for
hard permanent magnetic materials.

2.1 Geometry of the problem
Having found the equation governing the magnetostatic prob-
lem of the Halbach cylinder we now take a closer look at the
geometry of the problem. Following the approach of Xia et al.
(11) we will start by solving the problem of a Halbach cylinder
enclosing a cylinder of an infinitely permeable soft magnetic
material, while at the same time itself being enclosed by an-
other such cylinder. This is the situation depicted in Fig. 2.
This configuration is important for e.g. motor applications.
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Figure 2. A Halbach cylinder with inner radius Ri and outer
radius Ro enclosing an infinitely permeable cylinder with
radius Rc while itself being enclosed by another infinitely
permeable cylinder with inner radius Re and infinite outer
radius. The regions marked I and III are air gaps.

The Halbach cylinder has an inner radius of Ri and an outer
radius of Ro and the inner infinitely permeable cylinder has
a radius of Rc while the outer enclosing cylinder has a inner
radius of Re and an infinite outer radius. Later in this paper we
will solve the magnetostatic problem of the Halbach cylinder
in air by letting Rc → 0 and Re → ∞. The use of the soft
magnetic cylinders results in a well defined set of boundary
equations as will be shown later. Of course one can also solve
directly for the Halbach cylinder in air using the boundary
conditions specific for this case.

When solving the magnetostatic problem three different
expressions for the magnetic vector potential, field and flux
density will be obtained, one for each of the three different
regions shown in Fig. 2. The geometry of the problem re-
sults in six boundary conditions. The requirement is that the
radial component of B and the parallel component of H are
continuous across boundaries, i.e.

HI
φ = 0 | r = Rc

BI
r = BII

r | r = Ri

HI
φ = HII

φ
| r = Ri

BIII
r = BII

r | r = Ro

HIII
φ = HII

φ
| r = Ro

HIII
φ = 0 | r = Re . (6)

The two equations for Hφ = 0 come from the fact that the soft
magnetic material has an infinite permeability.
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2.2 Solution for the vector potential
The solution to the vector potential equation, Eq. (4), is
the sum of the solution to the homogenous equation and a
particular solution. The solution is

Az(r,φ) =
∞

∑
n=1

(Anrn+Bnr−n)sin(nφ)+Brem
r

p−1
sin(pφ) ,

(7)

where An and Bn are constants that differ for each different
region and that are different for each n. Using the boundary
conditions for the geometry defined above one can show that
these are only nonzero for n = p.

Thus the solution for the defined geometry becomes

Az(r,φ) = (Arp+Br−p)sin(pφ)+Brem
r

p−1
sin(pφ) , (8)

where A and B are constants that differ for each different
region and that are determined by boundary conditions.

The solution is not valid for p = 1. For this special case
the solution to Eq. (4) is instead

Az(r,φ) = (Ar+Br−1)sin(φ)−Bremrln(r)sin(φ) , (9)

where A and B are defined like for Eq. (8).
Note that for p= 0 we have that Brem,r =Brem and Brem,φ =

0 in Eq. (1). This means that Az = 0 and consequently B is
zero everywhere. The magnetic field, H, however, will be
nonzero inside the magnetic material itself, i.e. in region II,
but will be zero everywhere else.

We now derive the constants in Eq. (8) and (9) directly
from the boundary conditions.

3. Deriving the vector potential constants

The constants of the vector potential equation can be derived
from the boundary conditions specified in Eq. (6). We first
derive the constants for the case of p 6= 1.

First we note that the magnetic flux density and the mag-
netic field can be calculated from the magnetic vector potential

Br =
1
r

∂Az

∂φ

Bφ = −∂Az

∂ r

Hr =
1

µ0µr
(Br−Brem,r)

Hφ =
1

µ0µr
(Bφ −Brem,φ ) . (10)

Performing the differentiation gives

Br =

[
pArp−1 + pBr−p−1 +Brem

p
p−1

]
cos(pφ)

Bφ =

[
−pArp−1 + pBr−p−1−Brem

1
p−1

]
sin(pφ)

Hr =

[
p

µ0µr
(Arp−1 +Br−p−1)

+
Brem

µrµ0

(
p

p−1
−1
)]

cos(pφ)

Hφ =

[
p

µ0µr
(−Arp−1 +Br−p−1)

− Brem

µrµ0

(
1

p−1
−1
)]

sin(pφ) . (11)

Using the radial component of the magnetic flux density
and the tangential component of the magnetic field in the set
of boundary equations we get a set of six equations containing
the six unknown constants, two for each region. The constants
A and B will be termed AI and BI in region I, AII and BII in
region II, and AIII and BIII in region III.

Introducing the following new constants

a =
R2p

e −R2p
o

R2p
e +R2p

o

b = −
R2p

i −R2p
c

R2p
i +R2p

c
, (12)

the constants are determined to be

BII =−
R1−p

o −R1−p
i

µra−1
µra+1 R−2p

o − µrb−1
µrb+1 R−2p

i

Brem

p−1
, (13)

and

AI =
BII

R2p
i +R2p

c

(
1− µrb−1

µrb+1

)
BI = AIR2p

c

AII = −BII µra−1
µra+1

R−2p
o − Brem

p−1
R1−p

o

AIII =
BII

R2p
o +R2p

e

(
1− µra−1

µra+1

)
BIII = AIIIR2p

e . (14)

Using these constants in Eq. (8) and (11) allows one to calcu-
late the magnetic vector potential, the magnetic flux density
and the magnetic field respectively.

The constants are not valid for p = 1. The solution for
this case will be derived in a later section.

3.1 Halbach cylinder in air
We can find the solution for a Halbach cylinder in air if we
look at the solution for Re→ ∞ and Rc→ 0. Looking at the
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previous expression for the constants a and b we see that

for p > 1 :
a→ 1
b→−1

for p < 0 :
a→−1
b→ 1 (15)

in the limit defined above.
This means that the constant BII now becomes

BII =


− R1−p

o −R1−p
i

µr−1
µr+1 R−2p

o − µr+1
µr−1 R−2p

i

Brem
p−1 p > 1

− R1−p
o −R1−p

i
µr+1
µr−1 R−2p

o − µr−1
µr+1 R−2p

i

Brem
p−1 p < 0

(16)

and the remaining constants for p > 1 become


AI

BI

AII

AIII

BIII

=



BIIR−2p
i

(
1− µr+1

µr−1

)
0
−BII µr−1

µr+1 R−2p
o − Brem

p−1 R1−p
o

0

BII
(

1− µr−1
µr+1

) (17)

while for p < 0 they become


AI

BI

AII

AIII

BIII

=



0

BII
(

1− µr−1
µr+1

)
−BII µr+1

µr−1 R−2p
o − Brem

p−1 R1−p
o

BIIR−2p
o

(
1− µr+1

µr−1

)
0

(18)

This is the solution for a Halbach cylinder in air. Note
that the solution is only valid for µr 6= 1. In the special case
of µr = 1 the constants can be reduced even further.

3.2 Halbach cylinder in air and µr = 1
We now look at the special case of a Halbach cylinder in
air with µr = 1. This is a relevant case as e.g. the highest
energy density type of permanent magnet produced today, the
so-called neodymium-iron-boron (NdFeB) magnets, have a
relative permeability very close to one: µr = 1.05 (13).

Using the approximation of µr→ 1 for a Halbach cylinder
in air reduces the constant BII to

BII = 0 . (19)

The remaining constants depend on whether the Halbach
cylinder produces an internal or external field.

For the internal field case, p > 1, the constant AII will be
given by

AII =− Brem

p−1
R1−p

o . (20)

The constant AI determining the field in the inner air
region is equal to

AI =
Brem

p−1

(
R1−p

i −R1−p
o

)
. (21)

The remaining constants, BI , AIII and BIII are zero.
Using Eq. (11) the two components of the magnetic flux

density in both the cylinder bore, region I, and in the magnet,
region II, can be found.

BI
r =

Brem p
p−1

(
1−
(

Ri

Ro

)p−1
)
×

(
r
Ri

)p−1

cos(pφ)

BI
φ = −Brem p

p−1

(
1−
(

Ri

Ro

)p−1
)
×

(
r
Ri

)p−1

sin(pφ)

BII
r =

Brem p
p−1

(
1−
(

r
Ro

)p−1
)

cos(pφ)

BII
φ = − Brem

p−1

(
1− p

(
r

Ro

)p−1
)

sin(pφ) . (22)

Considering now the external field case, p < 0, the con-
stant AII is given by

AII =− Brem

p−1
R1−p

i . (23)

The constant AIII determining the field in the outer air
region is given by

AIII =
Brem

p−1

(
Rp−1

o −Rp−1
i

)
. (24)

The remaining constants, AI , BI and BIII are zero.
Again using Eq. (11) we find the two components of the

magnetic flux density in region II and III to be

BIII
r =

Brem p
p−1

(
1−
(

Ri

Ro

)−p+1
)
×

(
Ro

r

)−p+1

cos(pφ)

BIII
φ = −Brem p

p−1

(
1−
(

Ri

Ro

)−p+1
)
×

(
Ro

r

)−p+1

sin(pφ)

BII
r =

Brem p
p−1

(
1−
(

Ri

r

)−p+1
)

cos(pφ)

BII
φ = − Brem

p−1

(
1− p

(
Ri

r

)−p+1
)

sin(pφ) . (25)

The equations for BIII
r and BIII

φ
are identical to the expressions

for BI
r and BI

φ
in Eq. (22) except for a minus sign in both

equations.
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3.3 The constants for a p = 1 Halbach cylinder
Having determined the solution to the vector potential equa-
tion and found the constants in the expression for the magnetic
flux density and the magnetic vector potential for a Halbach
cylinder both in air and enclosed by a soft magnetic cylinder
for all cases except p = 1 we now turn to this specific case.
This case is shown in Fig 1. We have already shown that the
solution to the vector potential problem for this case is given
by Eq. (9). The boundary conditions are the same as previous,
i.e. they are given by Eq. (6).

In order to find the constants the components of the mag-
netic field and the magnetic flux density must be calculated
for p = 1 as the boundary conditions relate to these fields.
Using Eq. (10) we obtain

Br = [A+Br−2−Bremln(r)]cos(φ)
Bφ = [−A+Br−2 +Brem(ln(r)+1)]sin(φ)

Hr =
1

µ0µr

[
A+Br−2−Brem(ln(r)+1)

]
cos(φ)

Hφ =
1

µ0µr

[
−A+Br−2 +Bremln(r)

]
sin(φ) .(26)

Using these expressions for the magnetic flux density and
the magnetic field we can again write a set of six equations
through which we can determine the six constants, two for
each region.

Reintroducing the two constants from Eq. (12)

a =
R2

e−R2
o

R2
e +R2

o

b = −
R2

i −R2
c

R2
i +R2

c
, (27)

the following equations for the constants are obtained:

AI =
BII

R2
i +R2

c

(
1− µrb−1

µrb+1

)
BI = AIR2

c

AII = −BII µra−1
µra+1

R−2
o +Brem ln(Ro)

BII = −
(

aµr−1
aµr +1

R−2
o −

µrb−1
µrb+1

R−2
i

)−1

×

Brem ln
(

Ri

Ro

)
AIII =

BII

R2
e +R2

o

(
1− µra−1

µra+1

)
BIII = AIIIR2

e . (28)

We see that the constants AI , BI , AIII and BIII are identical
to the constants in Eq. (14).

The magnetic flux density and the magnetic field can now
be found through the use of Eq. (26).

3.4 Halbach cylinder in air, p = 1
We can find the solution for a p = 1 Halbach cylinder in air if
we look at the solution for Re→ ∞ and Rc→ 0. In this limit
the previously introduced constants are reduced to

a → 1
b → −1 . (29)

The expressions for the constants can then be reduced to

AI = BIIR−2
i

(
1− µr +1

µr−1

)
BI = 0

AII = −BII µr−1
µr +1

R−2
o +Brem ln(Ro)

BII = −
(

µr−1
µr +1

R−2
o −

µr +1
µr−1

R−2
i

)−1

×

Brem ln
(

Ri

Ro

)
AIII = 0

BIII = BII
(

1− µr−1
µr +1

)
. (30)

Again we see that the constants AI , BI , AIII and BIII are
equal to the constants in Eq. (17). This solution is valid for
all µr except µr = 1.

Combining the above constants with Eq. (26) we see that
the magnetic flux density in the cylinder bore is a constant,
and that its magnitude is given by

||BI ||=
(

µr−1
µr +1

R−2
o −

µr +1
µr−1

R−2
i

)−1

×
(

µr +1
µr−1

−1
)

R−2
i Brem ln

(
Ri

Ro

)
, (31)

for µr 6= 1.

3.5 Halbach cylinder in air, p = 1 and µr = 1
For the special case of µr = 1 for a p = 1 Halbach cylinder in
air the constants can be reduced further to

AI = Brem ln
(

Ro

Ri

)
AII = Brem ln(Ro)

BI ,BII ,AIII ,BIII = 0 . (32)

Combining the above constants with Eq. (26) one can
find the magnetic flux density in the bore, region I, and in the
magnet, region II,

BI
r = Brem ln

(
Ro

Ri

)
cos(φ)

BI
φ = −Brem ln

(
Ro

Ri

)
sin(φ)

BII
r = Bremln

(
Ro

r

)
cos(φ)

BII
φ = −Brem

(
ln
(

Ro

r

)
−1
)

sin(φ) . (33)
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As for the case of µr 6= 1 the magnetic flux density in the
cylinder bore is a constant. The magnitude of the magnetic
flux density in the bore is given by

||BI || = Brem ln
(

Ro

Ri

)
. (34)

which we recognize as the well known Halbach formula (2).

3.6 Validity of the solutions
To show the validity of the analytical solutions we compare
these with a numerical calculation of the vector potential and
the magnetic flux density.

We have chosen to show a comparison between the ex-
pressions derived in this paper and numerical calculations for
two selected cases. These are shown in Fig. 3 and 4.

In Fig. 3 the magnitude of the magnetic flux density
is shown for a enclosed Halbach cylinder. Also shown in
Fig. 3 is a numerical calculation done using the commer-
cially available finite element multiphysics program, Comsol
Multiphysics (14). The Comsol Multiphysics code has previ-
ously been validated through a number of NAFEMS (National
Agency for Finite Element Methods and Standards) bench-
mark studies (15). As can be seen the analytical solution
closely matches the numerical solution.

In Fig. 4 we show the magnetic vector potential, Az, as
calculated using Eqs. (8) and (18) compared with a numerical
Comsol simulation. As can be seen the analytical solution
again closely matches the numerical solution.

We have also tested the expressions for the magnetic flux
density given by Xia et. al. (2004) (11) and compared them
with those derived in this paper and with numerical calcula-
tions. Unfortunately the equations given by Xia et. al. (2004)
(11) contain erroneous expressions for the magnetic flux den-
sity of a Halbach cylinder in air with µr = 1 as well as for the
expression for a Halbach cylinder with internal field enclosed
by soft magnetic material.

4. Force between two concentric Halbach
cylinders

Having found the expressions for the magnetic vector potential
and the magnetic flux density for a Halbach cylinder we now
turn to the problem of calculating the force between two
concentric Halbach cylinders, e.g. a situation as shown in
Fig. 5. In a later section we will calculate the torque for
the same configuration. This configuration is interesting for
e.g. motor applications and drives as well as applications
where the magnetic flux density must be turned “on” and “off”
without the magnet being displaced in space (7).

The force between the two Halbach cylinders can be cal-
culated by using the Maxwell stress tensor,

←→
T , formulation.

The force per unit length is given by

F =
1
µ0

∮
S

←→
T ·dS . (35)

Analytical solution

x [mm]
y
 [
m

m
]

−40 −20 0 20 40
−40

−20

0

20

40

Numerical solution

x [mm]

y
 [
m

m
]

−40 −20 0 20 40
−40

−20

0

20

40

Figure 3. (Color online) Comparing the analytical solution as
given by Eq. (11) and (14) with a numerical solution
computed using Comsol. Shown are contours of
||B||= [0.3,0.5,0.7,0.9] T for an internal field p = 2
enclosed Halbach cylinder with dimensions Rc = 10 mm,
Ri = 20 mm, Ro = 30 mm, Re = 40 mm, and Brem = 1.4 T,
µr = 1.05. The solutions are seen to be identical. The shaded
areas in the figures correspond to the similar shaded areas in
Fig. 2.
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Figure 4. (Color online) Comparing the analytical solution as
given by Eqs. (8) and (18) with a numerical solution
computed using Comsol. Shown are contours of
Az =±[0.002,0.004,0.006,0.008]V s m−1 for an external
field p =−2 Halbach cylinder in air with dimensions Ri = 20
mm, Ro = 30 mm and Brem = 1.4 T, µr = 1.05. The red
contours are positive values of Az while the blue are negative
values. As with Fig. 3 the solutions are seen to be identical.

φ
0

Figure 5. An example of a concentric Halbach cylinder
configuration for which the force and torque is calculated.
The outer magnet has p = 2 while the inner magnet is a
p =−2. The inner magnet has also been rotated an angle of
φ0 = 45◦. The dotted circle indicates a possible integration
path.

The Cartesian components of the force are given by

Fx =
1
µ0

∮
S
(Txxnx +Txyny)ds

Fy =
1
µ0

∮
S
(Tyyny +Tyxnx)ds , (36)

where nx and ny are the Cartesian components of the outwards
normal to the integration surface and where Txx, Tyy and Txy
are the components of the Maxwell stress tensor which are
given by

Txx = B2
x−

1
2
(B2

x +B2
y)

Tyy = B2
y−

1
2
(B2

x +B2
y)

Txy, Tyx = BxBy . (37)

When using the above formulation to calculate the force
a closed integration surface in free space that surrounds the
object must be chosen. As this is a two dimensional problem
the surface integral is reduced to a line integral along the air
gap between the magnets. If a circle of radius r is taken as the
integration path, the Cartesian components of the outwards
normal are given by

nx = cos(φ)
ny = sin(φ) . (38)

Expressing the Cartesian components through the polar com-
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ponents as

Bx = Brcos(φ)−Bφ sin(φ)
By = Brsin(φ)+Bφ cos(φ) , (39)

the relation for computing the force per unit length becomes

Fx =
r

µ0

∫ 2π

0

(
1
2
(B2

r −B2
φ )cos(φ)−BrBφ sin(φ)

)
dφ

Fy =
r

µ0

∫ 2π

0

(
1
2
(B2

r −B2
φ )sin(φ)+BrBφ cos(φ)

)
dφ ,

(40)

where r is some radius in the air gap. The computed force
will turn out to be independent of the radius r as expected.

We consider the scenario where the outer magnet is kept
fixed and the internal magnet is rotated by an angle φ0, as
shown in Fig. 5. Both cylinders are centered on the same axis.
Both of the cylinders are considered to be in air and have a
relative permeability of one, µr = 1, so that their magnetic
flux density is given by Eqs. (22) and (25) for p 6= 1. For
p = 1 Eq. (33) applies instead.

As µr = 1 the magnetic flux density in the air gap between
the magnets will be a sum of two terms, namely a term from
the outer magnet and a term from the inner magnet. If the
relative permeability were different from one the magnetic flux
density of one of the magnets would influence the magnetic
flux density of the other, and we would have to solve the
vector potential equation for both magnets at the same time in
order to find the magnetic flux density in the air gap.

Assuming the above requirements the flux density in the
air gap is thus given by

Br = BIII
r,1 +BI

r,2

Bφ = BIII
φ ,1 +BI

φ ,2 , (41)

where the second subscript refers to either of the two magnets.
The inner magnet is termed “1” and the outer magnet termed
“2”, e.g. Ro,1 is the inner magnets outer radius. The integer p1
thus refers to the inner magnet and p2 to the outer magnet.

There can only be a force between the cylinders if the
inner cylinder produces an external field and the outer cylinder
produces an internal field. Otherwise the flux density in the
gap between the magnets will be produced solely by one of
the magnets and the force will be zero.

Performing the integrals in Eq. (40) one only obtains a
nonzero solution for p1 = 1− p2 and p2 > 1. In this case the
solution is

Fx =
2π

µ0
Kcos(p1φ0)

Fy =
2π

µ0
Ksin(p1φ0) , (42)

where K is a constant given by

K = Brem,1Brem,2(R
p1
i,2−Rp1

o,2)(R
p2
o,1−Rp2

i,1) . (43)
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Figure 6. The two cartesian components of the force per unit
length given by Eq. (42) compared with a Comsol calculation
for a system where the outer magnet has p2 = 2, Ri,2 = 45
mm, Ro,2 = 75 mm and Brem,2 = 1.4 T and the inner magnet
has p1 =−1, Ri,1 = 15 mm, Ro,1 = 35 mm and Brem,1 = 1.4
T. The analytical expression is in excellent agreement with
the numerical data. The force is per unit length as we
consider a two dimensional system.

Notice that the force is independent of r, as expected.
In Fig. 6 we compare the above equation with a numerical

calculation of the force. The results are seen to be in excellent
agreement. Notice that the forces never balance the magnets,
i.e. when Fx is zero, Fy is nonzero and vice versa.

If p2 = 1 the magnetic flux density produced by the outer
magnet is not given by Eq. (22) but is instead given by Eq.
(33). However this equation has the same angular dependence
as Eq. (22) and thus the force will also be zero for this case.

5. Torque between two concentric nested
Halbach cylinders

Having calculated the force between two concentric Halbach
cylinders we now focus on calculating the torque for the same
system.

The torque can also be calculated by using the Maxwell
stress tensor,

←→
T , formulation. The torque per unit length is

given by

τ =
1
µ0

∮
S

r×←→T ·dS

=
1
µ0

∮
S

r
(
(B ·n)B− 1

2
B2n

)
dS , (44)

where again the integration surface is a closed loop in free
space that surrounds the object. Again choosing a circle of
radius r as the integration path, the relation for computing the
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torque per unit length around the central axis becomes

τ =
1
µ0

∫ 2π

0
r2BrBφ dφ , (45)

where Br and Bφ are the radial and tangential components of
the magnetic flux density in the air gap and r is some radius
in the air gap. Again the computed torque will be shown to be
independent of the radius r when r varies between the inner
and outer radii of the air gap.

We consider the same case as with the force calculation,
i.e. the outer magnet is kept fixed, both magnets have the same
axis, the internal magnet is rotated by an angle φ0 and both of
the cylinders are considered to be in air and have a relative
permeability of one. Again there can only be a torque between
the cylinders if the inner cylinder produces an external field
and the outer cylinder produces an internal field.

To find the torque per unit length we must thus integrate

τ =
1
µ0

∫ 2π

0
r2(BIII

r,1 +BI
r,2)(B

III
φ ,1 +BI

φ ,2)dφ . (46)

This integration will be zero except when p1 =−p2. For
this special case the integral gives

τ =
2π

µ0

p2
2

1− p2
2

K1K2sin(p2φ0) , (47)

where the constants K1 and K2 are given by

K1 = Brem,2

(
R1−p2

i,2 −R1−p2
o,2

)
K2 = Brem,1

(
Rp2+1

o,1 −Rp2+1
i,1

)
. (48)

The validity of this expression will be shown in the next
section. It is seen that there are p2 periods per rotation.

For p2 = 1 the expression for the magnetic flux density
produced by the outer magnet is not given by Eq. (22) but
instead by Eq. (33), and so we must look at this special case
separately.

5.1 The special case of p2 = 1
For the special case of a p2 = 1 outer magnet the flux density
produced by this magnet in the air gap will be given by Eq.
(33). The external field produced by the inner magnet is still
given by Eq. (25).

Performing the integration defined in Eq. (46) again gives
zero except when p2 = 1 and p1 = −1. The expression for
the torque becomes

τ = − π

µ0
K2K3sin(φ0) (49)

where the two constants K2 and K3 are given by

K2 = Brem,1
(
R2

o,1−R2
i,1
)

(50)

K3 = Brem,2 ln
(

Ro,2

Ri,2

)
.

Note that K2 is identical to the constant K2 in Eq. (48) for
p2 = 1. We also see that Eq. (49) is in fact just τ = m×B for
a dipole in a uniform field times the area of the magnet.

Table 1. The parameters for the two cases shown in Fig. 7
and 8.

Magnet Ri Ro p Brem
[mm] [mm] [T]

Case 1: inner 5 15 -2 1.4
outer 20 30 2 1.4

Case 2: inner 10 35 -1 1.4
outer 45 75 1 1.4

5.2 Validating the expressions for the torque
We have shown that there is only a torque between two Hal-
bach cylinders if p1 =−p2 for p2 > 0, with the torque being
given by Eq. (47) for p2 6= 1 and Eq. (49) for p2 = 1.

To verify the expressions given in Eq. (47) and Eq. (49)
we have computed the torque as a function of the angle of
displacement, φ0, for the two cases given in Table 1, and
compared this with a numerical calculation performed using
Comsol. The results can be seen in Fig. 7 and 8.
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Figure 7. A numerical calculation of the torque per unit
length between two concentric Halbach cylinders compared
with the expression given in Eq. (47) for the physical
properties given for Case 1 in Table 1. The analytical
expression is in excellent agreement with the numerical data.
τ is per unit length as we consider a two dimensional system.

As can be seen from the figures the torque as given by
Eq. (47) and Eq. (49) are in excellent agreement with the
numerical results.

6. Force and Torque for finite length
cylinders

The force and torque for finite length cylinders will be differ-
ent than the analytical expressions derived above, because of
flux leakage through the ends of the cylinder bore.

To investigate the significance of this effect three dimen-
sional numerical simulations of a finite length system corre-
sponding to the system shown in Fig. 6 has been performed
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Figure 8. The torque per unit length given by Eq. (49)
compared with a numerical calculation for the physical
properties given for Case 2 in Table 1. As with the case for
p2 6= 1, i.e. Fig. 7, the analytical expression is in excellent
agreement with the numerical data. τ is per unit length as we
consider a two dimensional system.

using Comsol. For this system the force has been calculated
per unit length for different lengths. The results of these cal-
culations are shown in Fig. 9. From this figure it can be seen
that as the length of the system is increased the force becomes
better approximated by the analytical expression of Eq. (42).
A short system produces a lower force due to the leakage
of flux through the ends of the cylinder. However, even for
relatively short systems the two-dimensional results give the
right order of magnitude and the correct angular dependence
of the force.

Similarly, the torque for a three dimensional system has
been considered. Here the system given as Case 1 in Table 1
was considered. Numerical simulations calculating the torque
were performed, similar to the force calculations, and the
results are shown in Fig. 10. The results are seen to be similar
to Fig. 9. The torque approaches the analytical expression
as the length of the system is increased. As before the two
dimensional results are still qualitatively correct.

Above we have considered cases where the two dimen-
sional results predict a force (p1 = 1− p2) or a torque (p1 =
−p2). However, for finite length systems a force or a torque
can be present in other cases. One such case is given by
Mhiochain et al. (12) who report a maximum torque of
≈ 12 Nm for a system where both magnets have p = 1,
are segmented into 8 pieces and where the outer magnet
has Ri,2 = 52.5 mm, Ro,2 = 110 mm, L2 = 100 mm and
Brem,2 = 1.17 T and the inner magnet has Ri,1 = 47.5 mm,
Ro,1 = 26 mm, L1 = 100 mm and Brem,1 = 1.08 T. This torque
is produced mainly by the effect of finite length and to a lesser
degree by segmentation. The torque produced by this system
is ≈ 120 N per unit length, which is significant compared to
the expected analytical value of zero. The torque for finite
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Figure 9. The two cartesian components of the force per unit
length for a three dimensional system with dimensions as
those given in Fig. 6. The analytical expressions as well as
the results of a three dimensional numerical simulation are
shown.
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Figure 10. The torque per unit length for a three dimensional
system with dimensions as those given as Case 1 in Table 1.
The analytical expressions as well as the results of a three
dimensional numerical simulation are shown.

length systems with p1 6= −p2 is, as noted above, a higher
order effect. This makes it significantly smaller per unit length
than for the corresponding system with p1 =−p2.

10 this system, which is designed to have a torque, produce
a larger torque even though the system is much smaller.

The end effects due to a finite length of the system can
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be remedied by several different techniques. By covering the
ends of the concentric cylinder with magnet blocks in the
shape of an equipotential surface, all of the flux can be con-
fined inside the Halbach cylinder (16). Unfortunately this also
blocks access to the cylinder bore. The homogeneity of the
flux density can also be improved by shimming, i.e. placing
small magnets or soft magnetic material to improve the ho-
mogeneity (17; 18; 19). Finally by sloping the cylinder bore
or by placing strategic cuts in the magnet the homogeneity
can also be improved (20). However, especially the last two
methods can lower the flux density in the bore significantly.

7. Discussion and conclusion
We have derived expressions for the magnetic vector potential,
magnetic flux density and magnetic field for a two dimensional
Halbach cylinder and compared these with numerical results.

The force between two concentric Halbach cylinders was
calculated and it was found that the result depends on the
integer p in the expression for the remanence. If p for the
inner and outer magnet is termed p1 and p2 respectively it was
shown that unless p1 = 1− p2 there is no force. The torque
was also calculated for a similar system and it was shown
that unless p1 = −p2 there is no torque. We compared the
analytical expressions for the force and torque to numerical
calculations and found an excellent agreement. Note that
either there can be a force or a torque, but not both.

The derived expressions for the magnetic vector potential,
flux density and field can be used to do e.g. quick parameter
variation studies of Halbach cylinders, as they are much more
simple than the corresponding three dimensional expressions.

An interesting use for the derived expressions for the
magnetic flux density would be to derive expressions for the
force between two concentric Halbach cylinders, where one
of the cylinders has been slightly displaced. One could also
consider the effect of segmentation of the Halbach cylinder,
and of course the effect of a finite length in greater detail. Both
effects will in general result in a nonzero force and torque for
other choices of p1 and p2, but as shown these will in general
be smaller than for the p1 = 1− p2 and p1 =−p2 cases.

It is also worth considering computing the force and torque
for Halbach cylinders with µr 6= 1. Here one would have to
solve the complete magnetostatic problem of the two concen-
tric Halbach cylinders to find the magnetic flux density in the
gap between the cylinders.
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[14] COMSOL AB, Tegnèrgatan 23, SE-111 40 Stockholm,
Sweden.

[15] Comsol, Comsol Multiphysics Model Library, third ed.
COMSOL AB, Chalmers Teknikpark 412 88 G (2005).

[16] E. Potenziani, J. P. Clarke, and H. A. Leupold, J. Appl.
Phys. 61 (1987), 3466.

[17] M. G. Abele, H. Rusinek, and W. Tsui, J. Appl. Phys. 99
(8) (2006), 903

[18] R. Bjørk, C. R. H. Bahl, A. Smith, and N. Pryds, J. Appl.
Phys., 104 (2008), 13910

[19] A. Rowe, and A. Tura, J. Magn. Magn. Mater. 320 (2008),
1357.

[20] J. E. Hilton, and S.M. McMurry, IEEE Trans. Magn., 43
(5) (2007), 1898


	Introduction
	Defining the magnetostatic problem
	Geometry of the problem
	Solution for the vector potential

	Deriving the vector potential constants
	Halbach cylinder in air
	Halbach cylinder in air and r = 1
	The constants for a p = 1 Halbach cylinder
	Halbach cylinder in air, p = 1
	Halbach cylinder in air, p=1 and r = 1
	Validity of the solutions

	Force between two concentric Halbach cylinders
	Torque between two concentric nested Halbach cylinders
	The special case of p2 = 1
	Validating the expressions for the torque

	Force and Torque for finite length cylinders
	Discussion and conclusion

