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Summary

This thesis deals with development of data-based dynamic models for refinery processes by
using the methods in Process Chemometrics. The models are developed in order to predict the
qualities of intermediate product streams in gasoline processing area. Multivariate predictive
models are developed for prediction of Research Octane Number (RON), Reid Vapor
Pressure (RVP), and concentration of aromatic compounds, e.g. benzene, in the product
streams of catalytic reformer and isomerization units sent to blendstock tanks which are used
for gasoline blending. 

The chemometric models are applied in a multiperiod nonlinear optimization problem for the
gasoline blending in order to provide prediction of previous, present and future values of the
qualities in blendstocks tanks based one the variation of the upstream process. The
optimization goal is to produce the required amount of high quality final gasoline products at
the required time and to minimize the production and inventory costs. Solution of the
optimization problem determines the optimum value of quality and amount of the blend
components used in the gasoline blending in such a way that the needed quantities of the
different final gasoline products can be produced on-time with the desired specifications with
minimum operation and inventory cost.

In this work the available historical data is used to develop models based on information and
knowledge obtained from the data. This is data-based modeling and the purpose is to predict
quality variables which are expensive or difficult to measure as frequently as it is desired for
control and optimization applications. 

The general principle for data-based predictive modeling in this work is the methods in
Process Chemometrics. These methods are divided in four general categories according to the
linear, nonlinear, static, and dynamic characteristics of the system under study.
A brief review of the methods used in this work for development of data-based dynamic model
is presented. This review include the essence of process chemometrics in order to be able to
discuss the multivariate modeling techniques applied for development of process models in the
subsequent chapters of this thesis. 
In the class of static linear methods Principal Component Analysis (PCA), Principal
Component Regression (PCR), and Partial Least Squares Regression (PLS) are discussed.
PCA is used in data assessment, dimensional reduction through extracting the latent variables
and applied mostly for process monitoring. PLS and PCR are used for developing
input-output regression models. In the class of static nonlinear approaches Artificial Neural
Networks (ANNs) exhibit a strong ability to nonlinear functional approximation. Nonlinear
PLS regression in which nonlinear function is defined for the inner relationship of the PLS is
another approach in this class of chemometrics methods. A Nonlinear Principal Component
Analysis (NLPCA) model is developed based on Input Training Neural Networks (ITNN)
which is used for data rectification. The method in the class of dynamic linear includes the  
methods in System Identification. System Identification deals with knowledge based predictive
modeling using linear time series regression. The linear methods include ARX and ARMAX
(Auto Regressive Moving Average with Exogenous input), which are linear models based on
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parametric input output representations. A short description for the dynamic nonlinear
methods is presented, in which the time-series type of model can be integrated in a nonlinear
PLS model. 

Different criteria in model validation is discussed in which two different reference models as
average-model and zero-model are presented in order to assess the ability of prediction of the
developed chemometric model. The concept of informative data set and persistence of
excitation is presented, and the issue concerning the impact of closed-loop control on
persistence of excitation of input is discussed

A description of the preliminary steps in the model development work in this thesis is
presented. These preliminary steps concerns mainly with definition of the system limit,
description of the output and selected input variables, assessment of data, data scaling and
sampling, and description of data treatment. The outliers are found first by visualization of
data in respective plots, and then a PCA model is performed in order to assess the
representability of the data, discover any collinearity in the selected inputs, detection of
distinct clusters of data due to different operation of the plant.

It has been observed that the quality variables are dependent on the previous value of
themselves and the input variables. This means that a dynamic, time-series modeling approach
is a suitable choice in this application. The method applied for model development in this work
is ARX (Auto Regressive with Exogenous input) type of model in System Identification, in
which Partial Least Squares Regression (PLS) method is used for its parameter estimation. 
The advantage of developing a linear time-series model by a PLS regression is that the
variation and structure of the output variable is directly used in PCA decomposition of the
input variables. Applying PLS will use the strength of PCA in dimensional reduction of the
data set and hence more effective modeling of the output.
Since the quality variables are either expensive or time consuming  to measure, there are only
a limited number of them available. A solution for the problem of missing output data is
proposed by a suitable structure of ARX model. 

An optimization model for gasoline processing area of the refinery has been developed. The
model concerns prediction of the qualities of the products from reforming and isomerization
processes and gasoline blending over multiple periods. 
A decomposition of this model yield in a multi-period optimization model for gasoline
blending unit. The objective is to minimize the cost of operation for gasoline production such
that the quality and quantity demands are satisfied. The optimization model assumes that the
qualities of final gasoline product is a linear function of the qualities of the blend component
streams sent to the blending unit. 
The objective function is a cost function which represent the cost of operation for production
of gasoline products plus the inventory cost. This objective function is minimized subject to a
set of constraints which represent the demands for quality and quantity of final gasoline
products. The optimum solution yields in quality and quantity of the blend components needed
to produced the desired products.
A case study is considered and the results are discussed. The results of testing the model
during the case study indicate that the solution is a feasible, local optimum solution, and there
is good agreement with the demands.
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Resumé

Nærværende afhandling handler om udvikling af data-baserede dynamiske modeller for
raffinaderi processer ved anvendelse af metoder i Proces Kemometri. Modellerne er udviklet
til forudsigelse af kvalitetsvariable for mellem-produkt strømme i benzin-produktion sektionen
i et olie raffinaderi. Multi-variable prædiktive modeller er udviklet til forudsigelse af oktan tal
Research Octane Number (RON), damp-trykket Reid Vapor Pressure (RVP), og
koncentrationen af aromatisk komponenter (benzen)  i produkt-strømme fra en katalytisk
reformer, og et isomerizerings anlæg. Disse strømme sendes til mellem-produkt tank og
bruges som komponenter i benzin blandingen.

Kemometriske modeller bruges i et multi-periode ikke-lineært optimeringsproblem i
benzin-blandingen til forudsigelse af foregående, nuværende, og fremtidige kvaliteter af
indholdet af mellem-produkt tankerne baseret på proces variationen i reformer og
isomerizering anlæg. Formålet med optimeringen er at producere de ønskede mængder af høj
kvalitets benzinprodukter på en bestemt tid og samtidig minimere produktions og lagrings
omkostninger.

Historiske data fra processen udnyttes til at udvikle modeller baseret på informationen gemt i
data. Dette kaldes data-baseret modellering og formålet er at forudsige de variabler som er
kostbare eller tidskrævende til at måle.

De generelle principper for data-baseret prædiktiv modellering der anvendes i dette projekt er
metoder i Proces Kemometri. Metoderne i proces kemometri er opdelt i fire forskellige
kategorier efter lineære og ikke-lineære såvel som statiske og dynamiske egenskaber af
systemet.
En kortfattet gennemgang af metoder der anvendes til udvikling af modellerne i dette projekt
er præsenteret. Denne gennemgang omfatter de væsentlige emner i proces kemometri og
formålet er at kunne diskutere de anvendte fremgangsmåder i modeludviklingen i de
efterfølgende kapitler i denne afhandling.
Blandt statiske lineære metoder er "Principal Component Analysis (PCA)", "Principal
Component Regression (PCR), og "Partial Least Squares Regression (PLS)" diskuteret. PCA
bruges til kvalitetsvurdering af data, og dimension reduktion af data og anvendes
hovedsageligt til visualisering af processens opførsel. PLS og PCR anvendes til at udvikle
input-output regressions modeller.
I den modelklasse der omfatter statiske og ikke-lineære metoder, anvendes "Artificial Neural
Networks (ANNs)" der omfatter en god evne til approksimation af ikke-lineære funktioner.
Ikke-lineær PLS regressions modeller hører også til denne klasse af kemometriske metoder,
idet relationen mellem score matricer i input og output er defineret som en ikke-lineær
funktion. 
En ikke-lineær PCA, "Nonlinear Principal Component Analysis (NLPCA)" model er udviklet
baseret på "Input Training Neural Networks (ITNN)", som kan anvendes til at rektificere data.
Metoder i "System Identification" anvendes til dynamiske lineære modeller i proces kemometri
som er specielt egnet til at udvikle prædiktions modeller for dynamiske systemer.  System
Identifikation omhandler data-baseret prædiktiv modellering ved brug af lineær tids-serie
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regression metoder, såsom ARX og ARMAX (Auto Regressive Moving Average with
Exogenous input), som er lineær, tids-serie regressions modeller baseret på en parametrisk
input-output repræsentation. Dynamiske ikke-lineære metoder er beskrevet kort. Denne type
model opnås ved at integrere tids-serie modeller i en for eksempel ikke-lineære PLS regression
modeller. 

Forskellige kriterier til model-validering er diskuteret og to reference-modeller er defineret, en
gennemsnit-model og en nul-model, for at vurdere prædiktionsevnen hos de udviklede
kemometriske modeller. Koncepterne i "persistence of excitation" og "informative data" er
præsenteret og virkning af lukket-sløjfe regulering på "persistence of excitation"  er diskuteret.

De forskellige trin i udvikling af kemometriske modeller i dette projekt er beskrevet. Disse
består hovedsagelig af system definition og begrænsning, beskrivelse af input og output data,
data skalering, og data behandling. De data som falder langt udenfor normale data områder, de
såkaldte outliers, er fundet ved hjælp af først en visualisering af data og dernæst i en PCA
analyse som også bruges til at afsløre lineære sammenhænge mellem input variable, og
grupperinger i data som kan være tegn på forskellige typer af proces operation.  

Det er observeret at output variablene er relateret til de tidligere værdier af variablene selv og
input variblene. Dette bevirker at en dynamisk tids-serie modellering kan anvendes.
Kemometriske modeller er udviklet ved brug af ARX (Auto Regressive with Exogenous input)
i system idenfikation, idet PLS modellen er anvendt til parameter estimationen.
Fordelen ved at bruge PLS regressionen i en tids-serie model er at informationen i output
bruges direkte i PCA dekomponering af input variable, samt at PCA modellens evne til
dimensionsreduktion bruges hvorved effektiv modellering kan opnås.
På grund af at måling af kvalitetsvariablene er både kostbar og tidskrævende er der sparsomme
mængde af output data til rådighed. En måde at behandle problemet med manglende output
data er at anvende en passende struktur af ARX modellen.

En optimerings model er udviklet til benzin produktions sektionen på raffinaderiet. Modellen
dækker produktionen af både blandingskomponenter og de færdige benzinprodukter over
multiple tids-perioder. 
Dekomponering af denne optimerings model resulterer i en multi-periode optimerings model
til benzin-blandingen. Formålet er at minimere operationsomkostningerne for benzin
produktionen således at mængde og kvalitets kravene overholdes. I optimerings modellen er
det antaget at selve blandingen er en lineær proces, og kvaliteten i det færdige benzin produkt
er en lineær funktion af kvaliteten i blandings-komponent strømme som sendes til benzin
blander enheden.
Mål-funktionen er en "Variable Cost" funktion som repræsenterer processens produktions og
lagringsomkostninger. Denne mål-funktion minimeres. Begrænsningerne er specifikationen for
produktet kvalitet og kravet for færdig benzin produktmængde, samt bånd på variablene. Den
optimale løsning indeholder optimale værdier for komponenternes mængde og kvalitet som er
nødvendigt for at producere de ønskede produkter. Disse optimale værdier sendes videre til
avancerede proceskontrol for implementering.
Et eksempel på en produktion plan er betragtet og resultaterne er diskuteret. Resultaterne for
test af modellen viser at løsningen er en realisabel, lokalt optimal løsning, og der er gode
overensstemmelser med kravet. Modellen svaghed er at priserne for blandings komponenter er
uafhængige af proces betingelserne. 
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Chapter 1     

Introduction

1.1 Background

The control of a typical refinery operation from management down to the smallest process unit
can be hierarchically classified in the following four levels:

1 Planning & Scheduling

2 Optimization

3 Advanced Control

4 Regulation

The highest level is Planning & Scheduling which is responsible for short and long term
planning and scheduling for manufacturing different products in order to fulfill the refinery's
obligation and meet its engagements on time. The lowest level, Regulation, covers the
conventional PID controllers used in different unit operations. These two levels, the highest
and the lowest, have existed for many years and have continuously been under development.
During the last decades Advanced Control has been developed intensively and has caused a
remarkable progress in process control engineering.  

Chapter 1 Introduction
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The missing link between the planning & scheduling level and advanced control is
Optimization. The optimization system receives goals and constraints from the higher level,
which can be for instance the specifications for high quality gasoline. Also, it receives
information and constraints from the lower level, for instance the quality of naphtha products
from each production unit or capacity of inventory tanks. Based on these information, the
optimization system computes an improved operating point, and the targets for reaching that
point. The targets are sent to the advanced control system, that implements the targets by
computing the appropriate set points for the controllers. Figure 1.1 shows the control
hierarchy along with the different actions at each level. From a topological point of view, the
operations in a refinery are normally divided into the following hierarchical structure, as it is
also shown on the right hand side of figure 1.1: 

1 Complete Refinery

2 Processing Area

3 Production Unit

4 Unit Operation

A Processing Area consists of one part of a refinery which has a close economical and
functional coherence. An example for this is gasoline processing area which consists all those
units and sections of the refinery which are directly involved in gasoline production, covering
naphtha products from crude oil distillation column down to gasoline blending unit and final
product tanks.  A processing area include several production units

Optimization

Objective Function

Advanced Control

Targets

Data Reconciliation

Constraints

Regulation

Process

Planning  & Scheduling

Set Points

To Actuators
Measurements

Processing Area

Complete Refinery

Plant

Production Unit

Unit Operation

Figure 1.1: The Control Hierarchy, and Process Plant Hierarchy
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A Production Unit is a part of processing area in the refinery which is responsible for a
specific product improvement or production of a particular type of product in the processing
area. Examples of production units are catalytic reformer, isomerization unit, and
desulphurization plant. A production unit consists of a sequence of Unit Operations. A unit
operation is the lowest level in the process plant hierarchy for instance a single distillation
column.

As it is suggested in figure 1.1, there is direct connections between levels in the control and
process plant hierarchies. Each of the four levels in the process plant hierarchy determines the
functional domain and delimitation for the respective level in the control hierarchy. 
Planning & scheduling at the top of the hierarchy is related to the whole refinery, a processing
area, and even a production unit according to its time horizon. A long-term planning with a
time horizon of one or several months is related to the whole refinery. For a specific
processing area an intermediate-term planning for several weeks of operation is used to check
the feasibility of the long-term planning. A short-term planning, usually a few days, concerns
with a production unit (Singh et. al. 2000, Sullivan 1990, Agrawal 1995). Advanced control is
related to a production unit in order to control some unit-operations which have close
coherence. The time horizon for advanced control and conventional regulation is normally
hours, minutes, or even seconds for PID controllers. Finally, at the end of the process plant
hierarchy, a unit operation is subject to the conventional process control.

The long-term planning and scheduling is performed by using an off-line optimization and
forecasts for crude oil prices, product demands, and process units performances. In
intermediate-term planning, the information of quantities and qualities of refinery feedstocks,
and intermediate products are used to revise and check the feasibility the long-term planning. 
Optimization is the link needed to close the connection between the short-term planning and
control on production unit level in order to produce the required amount of high quality
products at the required time and to minimize the production cost. 

Gasoline is one of the most important refinery products. The specifications for high quality
gasoline products includes antiknock property, volatility, sulfur and aromatics contents. The
antiknock property is expressed as octane number of the gasoline. The octane number of a fuel
is defined as the percentage of iso-octane in a blend with n-heptane that exhibits the same
resistance to knocking as the test fuel under standard condition in a standard engine. Isooctane
and n-heptane are assigned to octane number of 100 and 0 respectively. (Palmer et. al. 1985).
There are two standard test procedure in order to characterize the antiknock property. These
are defined by American Society for Testing and Materials (ASTM). One definition is
designated by ASTM D-908 and is called Research Octane Number (RON), and the other is
Motor Octane Number (MON) under designation ASTM D-357 (Garry et al. 1994). RON
represents antiknock property under the condition of low speed and frequent acceleration,
normally during city driving, and MON represents the engine performance under heavy load
and high speed condition, which is normally the condition of highway driving. 
The vapor pressure of the gasoline is expressed in Reid Vapor Pressure (RVP) which is given
by ASTM D-323. RVP together with gasoline boiling ranges represent the characteristics of
gasoline like ease of starting, quick warm-up, tendency to vapor lock. High RVP improve
engine economics and starting characteristics, and low RVP prevent vapor lock and reduce
evaporation losses. The correct RVP is a compromise between high and low vapor pressure
and depends very much to ambient temperature, climate, and season of the year and varies
between 49 kPa in the summer and 93 kPa in the winter (Gary et. al., 1994). 
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The demands for environmental friendly gasoline products includes for instance the limit for
aromatic compounds, lead, and sulfur contents in gasoline. A type of hydrocarbon compound
containing at least one benzene ring  is called aromatic compound. 
In addition, regulations imposed by the governments in different countries place maximum
restrictions on RVP to limit the emission of volatile organic compound in to the atmosphere.
Furthermore, the global efforts for reducing the consumption of fossil oil products,
encouragement to use alternative form of energy, and improving the engine efficiency by car
manufacturing company, have caused a downward tendency of gasoline consumption which
consequently caused an over-capacity situation for the gasoline market.

This situation encourages the refiners to effectively reduce the amount of give-away for their
products by employing optimization. The give-away situation can basically occur when several
quality specifications have to be met at the same time and one or two of them become better
than the desired. Re-blending in the gasoline blending system can also cause a significant
reduction in refinery revenue by taking valuable tank space and blending time. Re-blending will
become necessary if a blend does not meet the specification of the final gasoline product. 

1.2 Motivation

The optimization level is an important step in the control hierarchy which is inevitable in
fulfillment of the following essential requirements:

Maintain product quality

Meet the environmental demands

Reducing the amount of giveaway

Eliminate re-blending

Increasing the profitability and flexibility of the refinery operation is related to produce basic
intermediate streams that can be blended to produce a variety of more specified final product.
This concept is widely use in gasoline processing area. The gasoline blending challenge is to
produce final gasoline product in such a way as to maximize profit while meeting all the
specifications for the final gasoline products. Optimization of the gasoline blending process is
thus an important issue considering that gasoline can yield 60-70% of total revenue of a
typical refinery (Singh et al. 2000).

Gasoline blending can be considered as a batch process in which the quality and volume of the
products are fixed by the refinery production schedule. If the blendstock tanks can be
considered as so called standing tanks, in which there is no feed to the tank during the period
of blending, then the measured or predicted qualities of the blend components is constant
during the blending and a Linear Programming (LP) approach in optimization of blending
process would be successful (Singh et al. 2000). The prediction of the qualities is performed
by using multivariate regression methods and then applying a bias updating. The bias updating
involves comparing measured blend component qualities with those predicted by the model
and then the difference is added as a constant in order to appropriate the prediction model.
The qualities are normally  measured by daily laboratory analyses. This approach has been the
existing practice in most refineries in which the quality variation of the blend component is
assumed to be unchanged during the period of bias updating.
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However, the current trend in the process of gasoline blending is based on a continuous feed
to the component blend tanks, i.e. so called running tank. In this situation applying the
bias-updated regression model would not be adequate since the qualities of the blend
component will change due to the upstream process variation. The LP plus bias-updating
formulation will not handle such time-varying feedstock qualities in order to find the optimal
solution for the blending problem. 
Thus, improved and advanced prediction model is needed for on-line prediction of the quality
in the blendstock tank based on the variation of the upstream process.

The intermediate product used for gasoline blending are the products of different production
units in the gasoline processing area. The products from catalytic reformer and isomerization
units are the most important blendstocks. 
The demand for high octane quality of gasoline has stimulated the use of catalytic reformer
and isomerization unit. In the reformer process the hydrocarbon molecule structure is changed
to form higher octane aromatics with a minor amount of cracking. In the isomerization process
the isomers are formed from paraffins by catalytic reactions. 
The qualities for some other blendstocks can be calculated or estimated more easily. For
instance, oxygenate, butane and isopentane can be assumed to be pure components and thus
their qualities can be reasonably estimated based on pure component property. The qualities of
some blend components like Light Virgin Naphtha (LVN) can also be calculated or estimated
since LVN contain light hydrocarbon components which can be identified by chromatographic
analysis. 
However, for the reformate and isomerate products from catalytic reformers and isomerization
unit it is not possible to estimate or calculate the qualities easily. Besides, the variation of the
RVP, and RON qualities, in the product streams of the catalytic reformers and isomerization
units, i.e. reformate and isomerate, will particularly provide the possibility of producing
different gasoline products with more definite octane number and vapor pressure
specifications, and thus larger optimization potential. It is essentially important to have
accurate information of the RON quality for reformate and isomerate products, since these are
the only high octane number blendstocks applied for gasoline blending. 
Furthermore, it is expensive to have on-line quality measurements for these intermediate
products in order to have the same sampling frequency as the other process variables. The
only existing measurement is laboratory analyses which are available only one per day, i.e. a
sample rate of 24 hours, for each quality.

Hence, the above mentioned reasons form the foundation of the strong motivation for
developing multivariate prediction models for quality variables of the blendstock.

1.3 Purpose

An important basis for optimization of the gasoline blending process is accurate predictive
models for qualities of the blendstocks, especially reformate and isomerate products from
catalytic reforming and isomerization processes. 
The main purpose of this work is to develop data-based dynamic models in order to be able to
predict the qualities of the blend components and supply the optimization system by the past,
present and predicted future values of the qualities. The developed model are then used in a
multiperiod nonlinear optimization problem for the gasoline blending.
The models are mainly for prediction of Research Octane Number (RON), Reid Vapor
Pressure (RVP), concentration of aromatic compounds, e.g. benzene, in the blendstocks.
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The optimization is concentrated around the gasoline blending unit of the refinery, and the
objective is to determine the targets for the advanced control and conventional process control
system by minimizing a cost function subject to a set of process and quality constraints in such
a way that the needed quantities of the different final gasoline products can be produced
on-time, with the desired specifications.  The objective function represent the cost of operation
for production of blending components plus the inventory cost, which is minimized subject to
a set of constraints which represent the demands for quality and quantity of final gasoline
products, provided the prediction of the qualities of the blend components. 
The methods used in predictive quality modeling and optimization are discussed in the next
section. 

1.4 Method

The new developments in computer technology in general and specifically the developments in
chemical engineering sciences made it possible for chemical engineers to handle the problems
concerning process monitoring, evaluation, modeling, control and optimization more
efficiently. Chemical engineers often need to extract the useful information from a large
volume of data obtained from mostly poorly-known chemical processes. The obtained data
from a chemical process is often noisy and faulty. Usually, in a control and optimization
application, the data must be rectified before it is used in both calibration and validation of the
process and prediction models. 
Using first principal methods for prediction of quality variables for oil refinery processes are
very difficult. For example in a catalytic reformer process dehydrogenization, cyclization and
isomerization are the desired reactions in which the octane number will be improved (Garry et
al. 1994).  However hydrocracking and condensation reactions are not desired in this process
in which the first one will produce light hydrocarbon and the second one will cause formation
of coke. Controlling these reactions and estimating reaction kinetic parameters is a very
challenging job, since the heavy naphtha feed is made up of a complex  hydrocarbon mixture
of  C7 to C10 . 
The alternative to first principal models is Data-based Based modeling, in which available
historical data is used in order to  develop parametric models based on input-output data set.
The methods in Process Chemometrics are applied for model development in this work.

Chemometric methods have their background in statistic analysis. Principal Component
Analysis (PCA) is used in the data assessment, dimensional reduction, and extracting the latent
variable. Partial Least Squares Regression (PLS), and Principal Component Regression (PCR)
are commonly used for developing input-output regression models (Wise 1991, Esbensen et
al. 1994, and Wise et al. 1996).
Since the qualities of the blendstocks depends on the past values of process variables, a
dynamic modeling approach is used for model development. In this work most quality
prediction models are developed mainly by ARX (Auto Regressive with Exogenous input)
type of models, which are linear models based on time-series parametric input-output
representations. This method has its background in System Identification theory (Ljung,
1987). 
Artificial Neural Network (ANNs) are also used in developing predictive models for the case
of static nonlinear models. ANNs show great ability in nonlinear functional approximation,
because of their inherent nonlinarity. A neural network model, applying nonlinear sigmoid
transfer function, can be trained to learn input-output data matching by recursive updating and
training the internal model parameters, i.e. weights and biases (Haykin, 1994). A multilayer
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feedforward network can approximate any continuous function with arbitrary accuracy
(Hornik, et al., 1989, Cybenko, 1989). Choosing suitable inputs, which are derived from a
basic chemical process knowledge is crucial for a successful ANN modeling. In this sense
neural networks should not be considered as a black box, and effective implementation always
requires a minimum degree of process knowledge to identify the relevant inputs (R. Braratti,
et al., 1995). 

Optimization Model

Objective Function

Constraints

Demands

Online Measurement

Data Validation

Optimum  Targets  to 
Advanced Cntrol

Quality Prediction 
Databased Dynamic Model 

Figure 1.2: Optimization model, objective function, and  constraints

Figure 1.2 shows a schematic diagram of data flow for optimization model; i.e. objective
function and constraints. Data from on-line measurement of the variables are available to be
applied in process and quality prediction models after appropriate pre-treatment by removing
the outliers and performing autoscaling. 
The developed dynamic models are used for prediction of the blend component qualities and
used as constrained in optimization model. The blending problem is a multiperiod  nonlinear
optimization problem.
The demands and specification of final gasoline product are included and expressed as the
constraints. The objective function is a cost function. The optimum values of variables are sent
to the advanced control level to be implemented in the control of the gasoline unit.
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1.5 Outline

In chapter 2 the process plant relevant for this work is described in order to provide a general
knowledge about the mainstream flow and operation of different production units in the
refinery. The feed streams to gasoline processing area are three naphtha streams. A set of
stabilizer/splitter followed by catalytic reforming and isomerization processes are the main
production units in this processing area that ends with a gasoline blending system and the final
inventory product tanks.

Chapter 3 reviews briefly  the methods used in multivariate predictive modeling . This review
include the essence of process chemometrics in order to be able to discuss the multivariate
modeling techniques applied for development of process models in this thesis. 

In chapter 4 a description of the preliminary steps in the model development work in this
thesis is presented. These preliminary steps concern mainly with definition of the system limit,
description of the output and selected input variables, assessment of data, data scaling and
sampling, and description of data treatment. Furthermore, it is attempted to present a scope
for model development and to describe a procedure and different steps in the process
chemometric approach of modeling. The described procedure in this chapter can be used as
guidelines to model development

In chapter 5 the structure, calibration, validation, and performance of the chemometric models
developed for prediction of RON, RVP, benzene contents of reformate and isomerate
products are presented and discussed.

A multi-period optimization model for optimization of gasoline blending is presented chapter
6. The optimization model assumes that the prediction models for the streams sent to gasoline
blending are available. A case study is considered as a scenario in production planning and
scheduling and the optimum solution for this case is discussed.

The conclusions and suggestion for future work for process chemometric modeling and
optimization are presented in chapter 7. 
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Chapter 2  

Plant Description

2.1 Introduction

2.1.1 Purpose

The purpose of this chapter is to provide a general knowledge about the mainstream flow and
operation of different production units in the refinery. This description focuses only on the
main objective, and function of each production unit. The level of detail in this chapter is based
on confidential consideration. Besides the aim is merely to provide the reader with a process
knowledge enough to understand the optimization and quality prediction models discussed in
the following chapters. Hence, the detail in control loop, flow diagram, and operation in some
units are omitted.

2.1.2 Overview

The first major step in refining crude oil is a distillation process to separate the crude oil into
3-4 major products. This is a very important process and normally considered as the heart of a
refinery. The crude oil distillation column products are, starting from the top of the column,

Chapter 2 Plant Description

9



naphtha, kerosene, Light Gas Oil (LGO), Heavy Gas Oil (HGO), and finally the bottom
product; fuel oil. 
The gasoline processing area of the refinery receives three naphtha feed streams and produces
the gasoline products into the final product tanks. The three naphtha feed streams are naphtha
products of crude oil distillation column, condensate fractionator, and main fractionator in
visbreaking/thermal cracking sections. The main production units in this area are three sets of
naphtha stabilizer/splitter, two catalytic reformer, and one isomerization unit. Light and heavy
naphtha, after splitters, are sent through desulfurization and hydro treating processes for
removing sulfur and mercaptanes before sending to the isomerization and two catalytic
reformer units. The desulfurization and hydro treating processes are beyond the scope of this
work, and it is assumed the yield of production is close to 100% in these units.
Naphtha consists basically of hydrocarbon molecules from C4 to C10 . Besides, depending on
type of crude oil, a few percent of naphtha contents will be light gas, i.e. butane, propane,
ethane, and methane, and also H2S, and mercaptanes; i.e. RSH.  (Gary et al, 1994). 
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Figure 2.1 : A simplified flow diagram of gasoline processing area.

A set of stabilizer/splitter system split the naphtha into a Heavy Virgin Naphtha (HVN) and a
Light Virgin Naphtha (LVN). The HVN streams are sent to two catalytic reformers after a
desulfurization process, and then the reformate products are sent to tank. LVN is sent first to
a deisopentanizer to separate isopentane (IC5 ). The top product of the deisopentanizer is IC5

which is sent to tank to be used as a blend component for gasoline blending. The bottom
product of the deisopentanizer is partly sent to an inventory tank and used as a blend
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component and the other part is sent to the isomerization unit, in which the isomerate product
from this is also accumulated in tank and used as a blend component in gasoline blending.
As shown in figure 2.1, the products from isomerization unit; isomerate, catalytic reformer
units; reformate, LVN, and IC5 products, along with butane, purchased oxygenate, purchased
blend stock, are sent to intermediate storage tanks which are later sent through the gasoline
blending system, in which the final gasoline product is produced. The LVBN product shown in
figure 2.1 is Light Virgin visBroken Naphtha, which is LVN from a visbreaker process.

2.2 Stabilizer/Splitter 

As mentioned before, the three naphtha feed streams to the gasoline processing area are sent
from crude oil distillation column section 200, condensate fractionator section 4200, and main
fractionator in visbreaking/thermal cracking section 600. Condensate is a product from gas
refinery and contain lighter hydrocarbons than crude oil. The visbroken naphtha contains
normally more olefins than the other two. 

Overhead Drum

Stabilizer

Overhead Drum

Splitter

LVN

HVN

Off Gas

Liquid Gas

Off Gas

Naphtha

Figure 2.2: Stabilizer/Splitter; Principal sketch.

The general overview of operation in the three stabilizer/splitters are as follows. Figure 2.2
shows a principal sketch of this process. The first step is to separate the light gas from naphtha
by distillation. The process is called stabilization. Exceeding concentration of light gas, i.e.
methane, ethane, and propane in naphtha will cause formation of emulsion in naphtha and
gasoline inventory tanks. The aim of stabilization is to remove the light gases and prevent
formation of emulsion. The top product of the naphtha stabilizer consists mostly of butane and
other hydrocarbons lighter than C4. The bottom product of the stabilizer is stabilized naphtha,
which consists of a small amount of C4, C5 and mostly higher hydrocarbons up to C10 .
Stabilized naphtha is then sent to naphtha splitter distillation column. Hence, the second step is
to split the stabilized naphtha into a Heavy Virgin Naphtha (HVN) and a Light Virgin Naphtha
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(LVN). LVN is the top product of the splitter and contains mostly of hydrocarbon molecules
between C5 to C7 . HVN is the bottom product and consists mostly of C7 to C10. The True
Boiling Point (TBP) of LVN and HVN from a typical crude oil are in the range of 32-88 0C
and 88-194 0C respectively (Gary and Glenn 1994). 
The stabilizer can be one single column as shown in figure 2.2 or a series of distillation
columns for removing ethane, propane, and butane which are normally called deethanizer,
depropanizer, and debutanizer respectively.
The liquid top product of the splitter in crude oil distillation, i.e. LVN from section 200 in
figure 2.1, is mixed with naphtha from condensate fractionator and sent first to a
desulfurization process, i.e. hydro treating process, for removing H2S and to convert the
mercaptanes, RSH, to disulfides; RS-SR. Disulfides are insoluble in water and caustic solution.
Then, LVN is sent further to the stabilizer/splitter system in section 4700 as shown in figure
2.1. 
The bottom product of the naphtha splitter, HVN, in section 200 is sent partially to tank and
later mixed with HVBN and sent to a naphtha hydro treating process. The sulfur and
mercaptanes are removed and olefins are converted to paraffin by this hydro treating. The
desulfurized naphtha is sent further to catalytic reformer in section 400.
The products from the stabilizer/splitter system in visbreaking/thermal cracking; section 600,
are LVBN and HVBN, both referring to light and heavy visbroken naphtha respectively.
LVBN is sent directly to tank and used as a blend component. HVBN is mixed with HVN
from section 200, and sent through naphtha hydro treating process  to the catalytic reformer in
section 400 as mentioned above.
The HVN from splitter in section 4700 is sent directly to catalytic reformer in section 4400,
respectively. The LVN is then sent to deisopentanizer in section 250 and further to
isomerization unit. 

2.2.1 Deisopentanizer

In this section isopentan, i.e.  IC5 , is separated from LVN. The feed to this section is LVN
supplied by splitter in section 4700. The liquid top product is IC5 and sent to tank as a blend
stock for gasoline blending, which contains the maximum possible IC5 and has an octane
number of approximately 89.  
A part of the bottom product of deisopentanizer is sent to LVN tank, and the other part is sent
to isomerization unit.

2.3 Catalytic Reformers

The purpose of operation in catalytic reformer is to produce high octane number reformate
from low octane desulfurized HVN and HVBN in order to provide the blend stock for
gasoline blending. Hydrogen is produced in this process and later used in hydro treating
processes and isomerization unit.
Dehydrogenization, cyclization and isomerization are the desired reactions in which the octane
number will be improved and hydrogen will be produced. However hydrocracking and
condensation reactions are not desired in this process in which the first one will produce light
hydrocarbons and the second will cause coke formation. The catalytic reactions are mainly
endothermic. More detail canbe found in Gary et al, 1994.
Generally, the process consists of a heater, a sequence of fixed bed reactors, a gas-liquid
separator and finally a stabilizer distillation column. 
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There are two catalytic reformers in gasoline processing area. We just call them by I and II, or
section 400 and section 4400 respectively. The strucure of the two reformers are principally
the same, and minor details are out of scope of this work. The reformers are described in the
following sections.

2.3.1 Catalytic Reformer I

Figure 2.3 shows a schematic diagram of this production unit. The desulfurized HVN feed
stream is mixed with a recycle H2 gas stream. Mixing H2 with HVN is mainly for preventing
undesired hydrocracking and condensation reactions. The combined gas and liquid stream is
sent through a heat exchanger system before entering heater. 
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H-402
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Offgas 

Liquid Gas 

Reformate to tank

Figure 2.3: A simplified flow diagram of catalytic reformer I.

The feed stream enters in coil A of the heater and continue to the first reactor; R-401. Because
of the endothermic reactions, the outlet stream of the R-401 is sent back to the heater through
coil B and further to reactor number 2; R-402. Again the output of the R-402 is warmed up in
the heater by coil C and continue to the third reactor R-403. The outlet stream of the R-403 is
then sent to reactor R-404. The product stream of the R-404 is passed through a set of heat
exchanger where the heat from the product stream is transferred to the feed stream to the coil
A of the heater, and reboiler E-406 of reformate stabilizer distillation column.
The product stream is then cooled in cooler and then sent to product separator drum D-401
where the gas is separated from the liquid. The gas consists mostly of hydrogen. The liquid
from the separator drum is sent to reformate stabilizer.   
The stabilizer column C-401 produces a liquid bottom product, which is reformate, a gas top
product and a liquid top product. Reformate product is sent to reformate tank. 
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2.3.2 Catalytic Reformer II

Desulfurized naphtha is sent to this section and mixed with  recycle H2 and then sent through a
series of heat exchangers before entering the heater H-4401, as shown in figure 2.4. 
In H-4401, HVN is warmed up first in convection zone and then in coil A from which it is sent
to the first reactor R-4401. The outlet of the R-4401 is sent back to the heater through coil B
and further to second reactor R-4402, and again product of this sent to heater and then to
third reactor R-4403. This extensive heating is mainly due to the endothermic catalytic
reactions and the necessity for heating the streams before entering each reactor.
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Naphtha from C-4703
E-4401
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H-4401
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To E-4401
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E-4404 BE-4407
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E-4303
E-4406
E-4705

Sour water

Figure 2.4: A simplified flow diagram of catalytic reformer II.

The product from the last reactor is sent through a series of heat exchangers for heat recovery
and then to gas-liquid separator drum D-4401. The gas from separator drum is sent to a dryer
where water and H2S is removed from the gas. A part of gas from the dryer is recycled and
mixed with the feed. The liquid from the separator D-4401 is sent to reformate stabilizer
C-4401. 
The gas top product of the stabilizer is sent to gas plant and the bottom product, which is
reformate product, is sent to tank as a gasoline blend stock. 
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2.4 Isomerization Unit

The purpose of operation in this section is to convert low octane number LVN to high octane
number by catalytic isomerization process. The reactions in this process are mainly
exothermic. 
The feed to the isomerization unit is LVN from deisopentanizer. The isomerization unit is
made up of three parts, namely Penex unit where conversion of LVN takes place, Molex unit
where separation of isomers takes place, and Hot oil system which is responsible for the
necessary energy supply of the whole unit. 

2.4.1 Penex Unit

Figure 2.5 shows a simplified schematic diagram of the Penex unit. LVN feed to the
isomerization unit is mixed with extract from the Molex unit, described in section 2.4.2, and
hydrogen from catalytic reformer II, section 4400. Then the feed is sent for preheating to
E-4608 A/B, E-4609 and E-4610 where the feed is warmed up by the reactor product of
R-4601 A, R-4601 B, and the hot oil system respectively.

LVN from 
Deisopentanizer

Extract from 
Molex unitHydrogen from Reformers Hot oil from 

H-4681

Oil to D-4681

E-4610

R-4601 A R-4601 B

E-4609 E-4608 A/B

C-4601

Stabilizer

E-4612

D-4604

E-4611

E-4605

 Caustic Wash

To Molex Unit

Hot Oil
 System

Figure 2.5 : A simplified flow diagram of Penex unit.

The feed is then sent to reactors R-4601 A/B. The chemical reactions of isomerization process
take place in R-4601 A/B. The reactor product is sent for exchanging the heat with the feed in
E-4609 and then back to R-4601 B. The product of the R-4601B is then sent for cooling in
E-4608 A/B and further to stabilizer C-4601. 
In stabilizer C-4601 the light hydrocarbons are removed from LVN as off gas in the top. The
stabilizer overhead gas is cooled in E-4612 and accumulated in drum D-4604. The liquid from
D-4604 is sent back to C-4601 as reflux. LVN is sent to Molex unit from the bottom of the
stabilizer.
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2.4.2 Molex Unit

In this section the branched; i.e. isomers, hydrocarbon molecules are separated  from the
other. Figure 2.6 shows Molex part of the isomerization unit.
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Figure 2.6 : A simplified flow diagram of Molex unit.

The bottom product of stabilizer C-4601 in the Penex unit is sent to absorbtion column
C-4651. In this column the separation of isomeric compound takes place by an absorbent
material, and butane as a desorbent liquid. 
The non-chained hydrocarbon molecules is sent from C-4651 to extraction column C-4653
where the desorbent is separated. Desorbent is sent from top of the extraction column to
desorbent drum D-4654. The bottom product of the extraction column C-4653 is cooled in
E-4656 and sent back to Penex unit for isomerization. 
The isomeric compounds is sent as the bottom product of C-4651 to isomerate column
C-4652. Butane is mixed with the bottom product before entering to C-4652. The top product
of  C-4652 is sent to overhead drum D-4653 via cooler E-4652. A part of liquid from D-4653
is sent back to C-4652 as reflux and the rest is sent to C3/C4 splitter C-4705 in section 4700. A
side stream of C-4652 is sent to desorbent drum D-4654. The desorbent from D-4654 is
recirculated to the absorption column C-4651 via heat exchanger E-4653. 
The bottom product of C-4652, which is isomerate, is cooled in E-4653 by desorbent from
D-4654 and cooler E-4606. Isomerate is then sent to tank.
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2.5 Gasoline Blending

The purpose of this operation is simply to produce final gasoline products by mixing the blend
components. These blend components are mainly produced in the previous sections of
refinery. Figure 2.1 includes also the gasoline blending unit.

Blend Component Tank no.

Oxygenate TK-20

Butane TK-28+29

Import Naphtha TK-06

LVN TK-09

IC5 TK-30+31

Isomerate TK-23 + 42

Reformate 4400 TK-81

Reformate 400 TK-35

LVBN TK-22

Table 2.1 : Gasoline Blending Components

Tank no. Final Gasoline Product 

TK-04 Danish unleaded octane 92 (BF 92)

TK-34 Danish unleaded octane 95 (BF 95)

TK-05 Danish unleaded octane 98 (BF 98)

TK-82 Swedish unleaded octane 95 (SV 95)

TK-33 Swedish unleaded octane 98 (SV 98)

TK-83 German unleaded octane 91 (TYSK 91) 

TK-75 German unleaded octane 95 (TYSK 95)

Table 2.2 : Final Gasoline Products 

The blending components are listed in table 2.1. The oxygenate is an additive used for
increasing the octane number, it can be  MTBE, i.e. Methyl Tertiary Buthyl Ether, ETBE,  i.e.
Ethyl Tertiary Buthyl Ether, or ethanol. Import naphtha is also used if the produced blend
components do not fulfill the desired specifications. The purpose is to minimize the
consumption of oxygenate and import naphtha, since the price of these two components are
high..  
Table 2.2 shows the final gasoline products. The product qualities are well specified. Although
there are several important properties of gasoline, the three significant qualities that have the
greatest effects on engine performance are Reid Vapor Pressure (RVP), boiling range,  and
antiknock characteristic. Antiknock characteristic is measured and represented by octane
number. There are two type of octane number; Research Octane Number (RON) and Motor
Octane Number (MON) which are described in chapter 1.   
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2.6 Summary

In this chapter a general process knowledge about the mainstream flow and operation in
gasoline processing area is presented. The level of detail in process description is chosen based
on confidential agreement. 
Among the production units in this area, we have focused on the following major units: three
sets of naphtha stabilizer/spilltters, two catalytic reformers, one isomerization unit, and finally
gasoline blending system. Three naphtha streams are sent to the gasoline processing area.
These three naphtha feeds are sent from crude oil distillation, condensate fractionator, and
main fractionator column in visbreaking/thermal cracking section. The naphtha feeds are first
separated into a  Heavy Virgin Naphtha (HVN) and a Light Virgin Naphtha (LVN). The HVN
streams are sent to two catalytic reformers after a desulfurization process. The reformate
products from catalytic reforming processes are sent to storage tank. LVN is sent first to
deisopentanizer to separate isopentane (IC5) and then to isomerization unit. The isomerate
product is then sent to storage tank. The two reformate, isomerate, LVN, and IC5 products
mention above along with oxygenate, butane, import naphtha, and LVBN make totally nine
blend components. The blend components are kept in intermediate storage tanks and used for
producing final gasoline products in gasoline blending section. It is desired to minimize the
consumption of oxygenate and import naphtha and reduce the give-away in final products, i.e.
minimize the cost of operation, and meet the demand specifications for final gasoline products.
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Chapter 3

Methods in Process
Chemometrics

3.1 Introduction

3.1.1 Purpose

The purpose of this chapter is to present a review of methods used in process chemometrics.
This review include the essence of process chemometrics in order to be able to discus the
multivariate modeling techniques applied for development of process models in this thesis. 

3.1.2 Background

The background, and basis principles in this research come from many areas. As far as the
scope of this work is allowed, it is attempted to include the theory of multivariate modeling
techniques so that the reader does not need to go to many other references in order to
understand the development of the models in this work. 
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There are different approaches for development of models depending upon the purpose of the
model. This purpose may be prediction of a process or quality variable, description of a
phenomenon, or assessment of data obtained from chemical processes for process monitoring
purposes. In this work we focus mostly on predictive modeling. This means that we take
advantage of available historical data to develop models based on information and knowledge
obtained from the data. This is data-based modeling and  the purpose here is to predict
process or quality variables which are expensive or difficult to measure as frequently as it is
desired for control and optimization applications. 
It is hardly possible to obtain a complete first principles model covering the reformation and
isomerization reactions in the respective units, since there are numerous hydrocarbon
components in the feed stream to these units and also because of high number of reactions
occurring in the reactors. However, as a general discipline we consider the first principle
model as a basis for selecting the relevant inputs for prediction models. It is crucial to select
suitable input variables which contain major variables affecting the variation of the model
output. 
When suitable input variables are chosen, the next step is to estimate the model parameters,
and in this sense estimation of model parameters can be defined as an approximation to
input-output functional relationship, in which the best linear or nonlinear relation between
input and output variables are found.
The choice of different approaches depends on the modeling objective and degree of non
linearity. The complex refinery processes we are dealing with in this work are indeed highly
nonlinear. However, it is possible to predict a single process or quality variable by making a
linear approximation. 

The general principle selected for knowledge based predictive modeling in this work is the
methods in Process Chemometrics. A definition of Chemometrics is given by Wise et al. 1996
as follows: "Chemometrics is the science of relating measurements made on a chemical system
to the state of system via application of mathematical or statistical methods". 
Hence, the methods are based on data obtained from the system, and the purpose is to develop
an empirical model for estimation of one or more properties of the system. 
Process chemometrics includes both linear and nonlinear approaches. Moreover, it is
important to consider the dynamic characteristics of the system. If the variables change with
time, or their current value depends on the earlier values, then an appropriate dynamic model
should bed used. Here, the time-series type of model is a good candidate.
Based on this consideration, the methods in process chemometrics are divided in four general
categories according to the linear, nonlinear, static, and dynamic characteristics of the system
under study.  

3.1.3 Outline

In the class of static linear methods Principal Component Analysis (PCA), Principal
Component Regression (PCR), and Partial Least Squares Regression (PLS) are discussed in
this chapter. PCA is used in data assessment, dimensional reduction through extracting the
latent variables and applied mostly for process monitoring.. PLS and PCR are used for
developing input-output regression models. These are all presented and discussed in section
3.2.
In the class of static nonlinear approaches Artificial Neural Networks (ANNs) exhibit a strong
ability to nonlinear functional approximation. Nonlinear PLS regression in which nonlinear
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function is defined for the inner relationship of the PLS is another approach in this class of
chemometrics methods. A discussion of ANN modeling  and nonlinear PLS is presented in
section 3.3. Furthermore, in section 3.3 a description of Nonlinear Principal Component
Analysis (NLPCA) is presented. A NLPCA model is developed based on Input Training
Neural Networks (ITNN) which is used for data rectification.
Section 3.4 deals with the method in the class of dynamic linear methods. In this section the
methods used in System Identification are described System Identification deals with
knowledge based predictive modeling using linear time series regression. The linear methods
include ARX and ARMAX (Auto Regressive Moving Average with Exogenous input), which
are linear models based on parametric input output representations
In section 3.5 a short description for the dynamic nonlinear class of methods is presented, in
which the time-series type of model can be integrated in a nonlinear PLS model. 
A discussion about different criteria in model validation is presented in section 3.6. Two
different reference models as average-model and zero-model are presented in order to assess
the predictability of the developed chemometric model.
In section 3.7 the concept of informative data set and persistence of excitation is presented.
A summary of the methods discussed in this chapter is given in section 3.8.
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3.2 Static Linear Methods 

3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a method used for dimensionality reduction of data in
which the data is decomposed to detect the underlying multivariate correlation structure which
is also called hidden phenomena. PCA is a linear approach for decomposition of the original
data into structure and noise parts, as it is expressed in equation (3.1). 
The original data is usually made up of a set of several observations of variables. Each
observation is called an object and consists of  measurement of all variables at the same time.
An object has the dimension of the number of the variables, which makes the superficial
dimensionality of the data. Discovering the significant variation in the data is the first and
important step in approaching an understanding of the process. The intrinsic dimensionality is
the number of independent variables underlying the significant nonrandom variation in the
data. These independent variables, also called Principal Components (PCs) or Latent
Variables (LV), describe the properties of the original data by discovering the underlying
correlation structure.
By using PCA an optimal transformation of the data from the original variable space to a
principal component space, also called factor space, is made in which the essential information
in the data is preserved. There will be a minimum sum of squares difference between the
original data and the reconstructed data in PCA.
This method is basically a linear method for reduction of data dimensionality with minimum
loss of information. Let X represent a (n x m) data matrix, in which n is the number of the
observations and m is the number of variables. A PCA model is an approximation to the data
matrix X, and can be described by the following model:

X = TPT + E = Structure + Noise (3.1)

where T(n x f) and P(m x f) are Score and Loading matrices respectively, E(n x m) is residual
or noise, and f is number of principal components . It is useful to formulate the PC model in
equation (3.1) as an outer product of individual PC contributions:

X = t1p1
T + t2p2

T + .... + t ip i
T + .... + t fp f

T + E (3.2)

where ti is the score vector for PCi , pi is the corresponding loading vector, and f is the number
of PCs, which must be less than or equal to the smallest dimension of X, i.e. .f ≤ min {n, m}
The loading matrix is a transformation matrix between the original variable space and the PC
space spanned by the principal components. The columns in P are called loading vectors and
are orthonormal in which:

p i
Tp j = 0 for i ≠ j , pi

Tp j = 1 for i = j

Loading vectors give us information about the relationship between the original variables and
the PCs. The columns in T are called the score vectors for each component and are orthogonal
in which:

t i
Tt j = 0 for i ≠ j
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The scores are the effect of observations on each PC.
The concept of principal components is related to eigenvectors of covariance or correlation
matrix of X. The covariance matrix is defined by the following equation:

cov(X) = XTX
n − 1

(3.3)

The loading vectors are eigenvectors of cov(X), in which for each pi  

cov(X) p i = λi p i (3.4)

where  is the eigenvalue associated with the eigenvectors pi . Thus, in PCA the eigenvectorλi

is called principal component, and the associated eigenvalue is a measure of the captured
variance for each pair of score and loading vector. 
In equation 3.3, it is assumed that the data X is adjusted to have a zero mean by subtracting
off the original mean, and hence the data is mean centered. This type of data scaling is used in
order to remove the effect of different dimensions in the data. If the mean centered data is
additionally adjusted to unit variance by dividing each column in data matrix by its standard
deviation, then the data is called Autoscaled. Applying autoscaled data in equation 3.3 will
give the correlation matrix of the original data.

PCA model is based on projection of the original data matrix X on to a number of principal
components along the direction of the maximum variance or minimum squared projection
distance. That means that the first principal component (PC1) lies along the direction of the
maximum variance, the second principal component (PC2) lies along the direction of the next
maximum variance orthogonal to the first PC, and so on. 

The maximum number of principal components can be either number of variables or number
observations; i.e. number of objects, depending on which is the smallest, . The effective full
dimension of the PC space is given by the rank of the X matrix. A full model is the case when
number of PCs is the maximum, i.e. f = min(m,n). In this case the residual E is equal to zero
and the decomposition of X only change the original coordinate system, i.e. the variable space,
to the new coordinate system, i.e. the PC space, which is not optimal for separating process
structure from noise since no separation between the structure and noise part of the data is
accomplished. Thus, number of PC must be chosen for an optimum fit so that TPT contains the
relevant structure and then noise is collected in E. By this choice we obtain a principal
component model as a transformation in which many original dimensions are transformed into
another coordinate system with fewer dimensions. The transformation is achieved through
projection or eigenvector decomposition. 
PCA model involves only with one set of data. Methods relating two sets of data, input and
output, i. e. X and Y, are generally called multivariate calibration, multivariate regression, or
simply multivariate modeling. 

3.2.2 Multivariate Modeling

Multivariate modeling is to establish or find a model for the connection between input and
output; X and Y. The output (Y) matrix consists of dependent variables and the input (X)
matrix contains the independent variables. The multivariate model is simply the regression
relationship between the empirical input and output. Development of a model implies
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establishment or in fact estimating the relationship between X and Y. This process is called
calibration, training, or model parameter estimation, and the X-Y data used for this purpose is
called calibration or training data set. Statistically, it means that we estimate the parameters in
a regression model. The model is then used on a new set of X data in order for prediction of
unknown Y. 

3.2.3 Multi Linear Regression, MLR

Let start with a classical example; Multi Linear Regression MLR. The model is expressed
mathematically in equation 3.5. This method combines a set of X or input variables in a linear
combination that correlate closely to the corresponding output or Y values.    

y = a1x1 + a2x2 + ....... + anxn + E (3.5)

where a0 , a1 , ......, an are constants, and called model parameters. Y and  X are output and
input variables, respectively, and E is the residual or error.
Equation 3.3 can be reformulated by defining the vectors Y and X representing the outputs
and inputs, and vector B for the model parameters.

Y = X B + E (3.6)

It is now desired to determine the model parameters B so that error E is minimized. A
common procedure is to use the least squares criteria for minimization of ETE in order to find
the optimum model parameters B. An estimate for B parameters can be found by the following
equation (Esbensen et al. 1994):

B = ( XT X )−1 XT Y (3.7)

As it can be seen estimation of B involves a matrix inversion, ( XTX )-1 . If  the X variables are
inter correlated; i.e. approximately linearly dependent, matrix inversion in equation (3.7)
becomes increasingly difficult and in worst case MLR will not work due to the linear
dependency. To avoid this unfortunate numerical instability matrix X must have full rank, and
this means some of the variables which correlate with each other must be omitted, which may
result in loosing information.  
Another problem that may cause failure of MLR method is error or existence of high level of
noise in the X data. The MLR solution is represented by a least square plane optimally fitted
to all data and implicitly assumed that the X variable are noisfree. It is assumed that only Y
variables is affected by error and not the X variables.
To avoid these two problems Principal Component Regression (PCR) model is a good
candidate in which bilinear projection methods are employed. 

3.2.4 Principal Component Regression

A PCA model relies on the projection of the original data matrix X on to a number of principal
components along the direction of the maximum variance in the X matrix. This concept is used
in Principal Component Regression (PCR) in order to remove the effect of linear dependency
and high level of noise in the X data.
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PCR performs first a principal component decomposition exactly as PCA and then Y variable
is regressed onto the decomposed X matrix. The score matrix T is used in PCR model instead
of original X data, which is mathematically expressed as follows:

Y = T B + E .(3.8)

in which number of columns in T is equal to the number of PCs retained by the PCA model.
By this choice we will obtain a model which is stable and robust against collinear X data, and
if the data are defective or noisy. Furthermore, the concept of score and loading matrices can
be used in order to interpret the result.
The resulting vector of regression coefficient B, which relate the scores in X to the output Y,
is expressed as the following:

B = ( TT T )−1 TT Y (3.9)

The regression vector can be obtained by multiplying the coefficient B by the loading matrix P.

r = P B (3.10)

The estimate of the Y dependent variables can be obtained by multiplying the X matrix by the
regression vector.

Y = X r (3.11)

In calculation of regression coefficient B the inverse of the scores covariance  is( TT T )−1

used which is perfectly conditioned since the scores are orthogonal. 
Despite the positive advantages mentioned above, PCR model is still not an optimal solution
for multivariate calibration. The reason is that all the variation in X data will not necessarily
create an optimal model to predict Y. In another word, there may easily be structured
information in X that have nothing to do with Y. This problem can be avoided by applying
Partial Least Squares (PLS) model in which the regression is performed in order to relate the
variation of the independent variable directly to the variation of the dependent variables.

3.2.5 Partial Least Squares Regression

In PLS regression the variation and the data structure in the dependent variables Y is directly
used in PCA decomposition of the independent variables X. We may think of PLS as a
simultaneous decomposition of X and Y are performed using PCA. 
By this an optimal regression is achieved with less principal components and more prediction
ability, that also can handle noise, error, and collinearity in X data. 
In order to explain how PLS works, it is easier to make a simplification and look at PLS as
simply two simultaneous PCA analyses. T and P are score and loading matrices related to X
and U and Q are score and loading matrices related to Y as it is shown in equation 3.12, and
3.13. Furthermore, one more loading matrix is calculated for X. This extra loading is called W
loadings or PLS-weights. 

X = T PT + E (3.12)
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Y = U QT + F (3.13)

PLS does not really perform two independently PCA analyses but in reality connect the scores
in PCAX and PCAY models and by this let the structure in output data Y, directly affect the
decomposition procedure in input X. Besides, principal components are not the same as in
PCA, and they represent only the correlation between Y and X, and thus reduce the influence
of large X variation which in fact does not correlate with Y. Therefore, they are called PLS
components rather than PCA components.
The relationship between the scores U for to the dependent variables Y and the scores T for
the independent variables X is expressed in equation 3.14, in which  h denotes residuals.

U = f(T) + h (3.14)

In linear PLS, it is assumed that the function f is defined by a simple linear equation as follows:

u = b t + h (3.15)

The coefficient b is called the inner relationship, or internal regression coefficient.
The PLS algorithm can be sketched briefly in a simplified summary as follows. First a PCA
analysis is performed on Y data, and the score for the first PLS-component U1 is used as the
starting value for T1 in PCAX. So T1 is replaced by U1 in PLS algorithm, and decomposition
of X data is then performed. By this the PCA model for X data is affected by the structure in
Y data. After performing PCA on X data, the calculated loading matrix, P, is saved as W
loading weights, and the score for the first PLS-component T1 in X-space is immediately used
as the starting value for the U1 vector. By this we let the structure in X data also affect the
PCA analysis on Y data. This procedure of calculation and substitution of U and T continues,
also for other PLS-components, in an iterative manner until the convergence is reached. A set
of T, W, U, Q matrices are calculated.
The PLS regression results in two loading matrices for X data. They are called loadings P and
loading weights W or effective loading. The P loadings are the same as obtained in ordinary
PCA and express the relationships between X data and the scores T. The W loadings express
the relationship between X and Y data, and the columns in W matrix are in fact
PLS-components. Both P and W matrices are important and may be used for interpretation of
the PLS model or inspection of the model ability. 
In practical application, it is preferable to apply a MLR type of model. In PLS regression, the
matrices W, Q, and P are used for calculation of a set parameters which correspond to
parameters B in equation 3.6. The estimation of the B parameters is performed by using the
following equation.

B = W ( PT W )−1 QT ( 3.16)

PLS can also handle several covarying output variables. Its ability to extract the useful
information from collinear, noisy, input data which is relevant for modeling the prediction of
the output variables makes the PLS a powerful tool for linear regression modeling. 
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3.3 Static Nonlinear Methods

3.3.1 Nonlinear PLS Model

As it is described earlier, in linear PLS the relationship between the scores U for to the
dependent variables Y and the scores T for the independent variables X is defined by a simple
linear function. In many application of multivariate calibration the relationship between X and
Y variables are indeed nonlinear. One method to capture the nonlinear correlation is to define
a nonlinear function in equation 3.14 for the relationship between the scores U and T. This
function can be defined as a polynomial of arbitrary order as it expressed in equation 3.17.  

U = C0 + C1T + C2T2 + C3T3 + .. + h (3.17)

The other method is to describe this functionality by using Artificial Neural Networks (ANNs)
in order to approximate the nonlinear relationship between the scores in X and Y. 

3.3.2 Artificial Neural Networks

The excellent ability of Artificial Neural Networks (ANN) to consider nonlinearity in
functional approximation problems makes it to a powerful tool for application in process
industry. This ability of ANNs is due their inherent nonlinearity, as it will be described in the
following. A multilayer feedforward neural network can approximate any continuos function
with arbitrary accuracy (Hornik, et al., 1989, Cybenko, 1989).

3.3.2.1 Model Structure and Algorithm

The internal structure of a feed forward network consists of three major parts, each made up
of layer(s) of neurons. Figure 3.1 shows a schematic diagram of internal structure of a typical
neural network. The inputs to ANNs are provided in input layer; i.e. layer number one, which
has the number of neurons equal to the number of input variables. The same is for the last
layer; output layer, which also has the same number of neurons as the number of output
variables. Between these two layers, there is one (or more) layer(s) called hidden layer(s), and
contains the most important part of the model parameters which are developed during the
calibration also called the training of the model. The question is now how many neurons
should be chosen for the hidden layer in order to obtain a robust model with an acceptable
model performance.
The ability of the neural networks to fit arbitrary nonlinear functions depends on the presence
of a hidden layer with nonlinear nodes (Kramer, 1991). A suitable nonlinear function is the
sigmoid, which is a continuous , smooth, and monotonically increasing function of the form:

φ(x) = 1
1 + e−x (3.18)

φ(x) → 1 for x → + ∞
φ(x) → 0 for x → − ∞

(3.19)
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In the example suggested in figure 3.1, we have an input vector with p variables for p inputs, a
hidden layer with s1 neurons, and an output layer consisting of q neurons for q output
variables. Each input is weighted with an appropriate weight W. The elements in weight
matrix W1 (s1 x p)  are the corresponding weight for s1 neurons in the hidden layer and p
input variables. Furthermore B1(s1) is a bias vector for the neurons in the hidden layer, which
has s1 element for the neurons in the hidden layer. In the same manner, a weight matrix W2 of
size (q x s1) and a bias vector B2(q) is defined for the output layer. 
The internal activity level of a neuron is defined by an Activity Function as a dot product of
the weight matrix and input to each layer. For instance the activity of each neuron in the
hidden layer is defined as the following:

v j = Σ
i=1

m

Wjix i (3.20)

This activity function forms the input to the j'th Sigmoid Transfer Function defined in
equation (3.18) to calculate the output of the neuron. The output matrix of hidden layer in this
example can be expressed as follows:

y1 = φ(W1 • X + B1) (3.21)

In the same manner, the output of the last layer of the network is calculated. The network's
output is often called the predicted value, which is compared with the measured value and an
error is calculated. The network error is calculated as the difference between predicted and
measured output.
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Figure 3.1 : A typical Structure of Neural Network.

In this example, for simplicity, we assumed that the input X in figure 3.1 is a vector of only
one measurement for each input variable and also the output Y contains one corresponding
output measurement, i.e. only one object. Normally, in a supervised learning using Back
Propagation learning algorithm (Simon Haykin, 1994) , the network is trained on a batch of
samples. Thus, the input, output and error E of the network are matrices of n number of
samples. 
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The Root Mean Sum Square of the Error (RMSSE) is another representation for the error and
defined as the following:

RMSSE =
Σ
i=1

n

Σ
j=1

q

(y ij − −
y ij)2

nq (3.22)

where  is the average value for the output. 
−
y

Back Propagation is a learning method in which the internal weights and biases in neural
network is adjusted by minimizing the RMSSE. The error is propagated backward through the
network to adjust the weights and biases in order to make the actual response of the network
closer to desired or the target response.
In this work the Levenberg-Marquardt (LM) method is used for minimizing the RMSSE  and
updating the internal parameter of the network. This method is an approximation to Newton's
method based on the following :

∆W = (JTJ + αI)−1JTE (3.23)

where J is the Jacobean matrix of derivatives of each error with respect to each weight, E is
the error matrix, and α is a scalar. For larger α equation (3.23) approximates a gradient
descent approach and for smaller α it approaches the Gauss-Newton  method.

3.3.2.2 Calibration and Validation

Training an ANN model is actually updating the internal weights and biases by presenting the
training input-output data set (i.e. calibration set) to the network, and minimizing the error in
the output. The training set consists of a number of input-output batches, which is introduced
to the network repeatedly.
Generally, the total number of model parameters, i.e. number of weights and biases, should not
exceed the number of input-output data batches. If the number of internal parameters exceed
the number of batches, there will be a possibility of obtaining an over-fitted model in which the
model will show poor prediction ability and the model performance will not be satisfactory. 
The number of neurons in both input and output layer are fixed upon the number of input and
output variables respectively. Hence, there is only number of neurons in the hidden layers
which will eventually determine the total number of model parameters. 
If there are few input-output data set; i.e. few batches, available, there will be a maximum limit
for the number of neurons which can be chosen for the hidden layer. This will naturally make
the upper limit for the number of neurons in the hidden layer. The lower limit is of course only
one single neuron. The optimum number of neurons in the hidden layer is determined by using
the prediction ability of neural model through a validation procedure in which the number of
neurons is determined by minimum prediction error in the validation. 
Cross validation is used for the test of model performance. A separate set of test (i.e.
validation) data is chosen and introduced to the network. The model is simulated by freezing
the last internal parameters and calculation of predicted output and also the prediction
variance is performed.
A recursive method can be used in order to determine the number of hidden nodes (i.e.
neurons). We start with only one neuron in the hidden layer, train the network by using the
training data set until the calibration variance ( i.e. RMSSEC) is minimum or as low as
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possible. Then we simulate the ANN model and perform the validation and calculate the
prediction variance (i.e. RMSSEP). This will be continued by choosing 2, 3, and more neurons
and plot RMSSEP versus number of nodes. We expect that RMSSEP decrease as the number
of the neurons increase until a certain optimum number is found. This is displayed
schematically in figure 3.2.
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S
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E

Number of the Neurons in Hidden Layer 

Figure 3.2 : RMSSEP versus number of neurons
 
An example of ANN modeling will be presented in the next subsection. This model is a quality
prediction of final gasoline product after gasoline blending. 

3.3.2.3 Example, Prediction of RON for Final Gasoline Product

A series of ANN models are developed for prediction of qualities of final gasoline products.
These are prediction of RON, MON, RVP, benzene contents of the gasoline product, and
prediction of D100 and D70 distillation points. D100 and D70 are percent gasoline evaporated
at 100 and 70 degree Celsius respectively.
In this section we will present only one of them as an example which is prediction of RON for
final gasoline product. 
The process in gasoline blending unit is described in chapter two. The general principal in
quality calculation of the gasoline product in this unit is a simple linear model based on the
quality of the blend component. It is expressed mathematically as the following

Q = Σ
i=1

n

v i q i (3.24)

where:
Q is the quality of the product

n is number of blend components

vi is the volume fraction of each blend component

qi is the corresponding quality of the blend component

With the exception of RON and MON all other qualities are directly calculated using equation
(3.24). For  calculation of RON and MON a nonlinear model is used since the octane quality
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of the final product is a nonlinear function of qualities of blend components. Description of
this nonlinear model is out of the scope of this thesis. 
The objective of developing a model is to predict RON by applying ANNs techniques to cover
the nonlineararity in the octane blending. 

3.3.2.4 Model Structure and performance

The training data set contains data for 245 blends, which covers almost a year. The inputs to
the model are 22 measurements of the flow rate and RON quality for 11 streams of blend
components from the inventory tanks. The output is only one which the measured RON for
the final gasoline product. Thus, the structure of ANN model is 1 neuron and 22 neurons in
output and input layers respectively. The hidden layer consists of only two neurons.
It is interesting to compare the obtained ANN model with the calculated output using equation
3.24 which is a linear model. 
Cross validation of the ANN model is performed. Figure 3.3 shows the result for comparison
of measured RON, calculated by equation 3.24, and ANN predicted RON. Table 3.1 shows
also the calculated average, and standard deviation for measured, calculated and, ANN
predicted RON respectively. Furthermore, the prediction error, calculated as the difference
between the measured and ANN predicted output, is shown in table 3.1. 
This result shows that the ANN model is able to capture the nonlinear relation in RON
prediction, since the variance of the prediction error from the developed ANN model is lower
than the variance for both measurement and calculated linear model.
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Figure 3.3 : Comparison of measured, calculated and ANN predicted RON

It is noteworthy to mention that the training data set cover production of all types of gasoline
qualities from octane number 92 to 98 for the official Danish gasoline products. Hence, the
standard deviation reported in table 3.1 is related to these three gasoline products. Standard
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deviation for RON measurement at laboratory is 0.6, in which RON is measured by applying
NIR techniques.

Validation

Measured Calculated ANN Predicted Prediction Error

Average 95.15 95.35 95.34 -0.0019

STD 2.06 2.17 1.90 0.0053

Max. 99.10 100.59 98.80 0.0144

Min. 91.10 90.43 91.80 -0.0155

Table 3.1 :  Statistical data for measured, calculated and ANN predicted RON

3.3.2.5 Discussion

The described ANN model exhibit a good performance for prediction ability. In this case the
system is static, in which there are direct, instantaneous, links between input output variables
(Ljung, et al, 1994). The data used for the training of the models are not time series
representation of the process. There is no dynamic behavior; i.e. change in state variables over
the time, in the process . The time lag is a few seconds. These characteristics are important for
a successful development of ANNs model as a static nonlinear model. 

However, when the variables change with time, the system is dynamic and the described static
ANN model will not work. The solution is to use a dynamic time-series model which is the
subject of discussion in the following sections of this chapter.
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3.3.3 Nonlinear Principal Component Analysis

3.3.3.1 Introduction

A Nonlinear Principal Component Analysis (NLPCA) model is proposed for reconciliation of
data from a refinery naphtha splitter process. The NLPCA model is based on the well known
method of Principal Component Analysis (PCA) used for dimensionality reduction in order to
discover the significant variation in the data.
The proposed NLPCA model uses the inherent nonlinearity of Artificial Neural Networks
(ANNs). The model is based on Input Training Neural Network (ITNN), in which the inputs is
trained and adjusted along with the weight and biases of the network. Only one hidden layer is
used in the internal structure of the neural network. When the ITNN model is properly trained,
the trained input provides the nonlinear factors, which correspond to the principal components
in the linear PCA model.
Input training network is based on Autoassociative Network, which consists of three hidden
layers, i.e. a mapping layer, a bottleneck layer, and a demapping layer. Only the demapping
part of the network is used in ITNN  model
To achieve a better performance, the nonlinear PCA model starts from a linear PCA approach
for initialization of the inputs to ITNN. The inputs, weights and biases of the network are then
trained to reproduce the corresponding output pattern, which is the rectified data. 

3.3.3.2 NLPCA

Nonlinear Principal Component Analysis (NLPCA) is used to uncover both linear and
nonlinear significance variation in the data matrix, when  nonlinear correlation exist among the
variables. NLPCA has the same criterion of optimality as PCA, in which the sum of squared
errors between the original variables and the NLPCA prediction is minimized.
The NLPCA method uses Artificial Neural Networks (ANNs). The nonlinear feature
extraction can be performed by Autoassociative neural networks (Kramer, 1991).
Autoassociative neural net is a feed forward network made up of three hidden layers; a
mapping layer, a bottleneck layer and a demapping layer respectively. The dimensionality
reduction is achieved in the hidden layer number two which has a small number of nodes. This
method uses back propagation learning algorithm for training the network to perform identity
mapping between the input and the output of the network. 
Another method of NLPCA is an Input Training Neural Network (ITNN) proposed by Tan
and Mavrovouniotis, 1995, in which only the demapping layer of Autoassociative neural
network is used and the inputs are trained along with the network parameters. In a properly
trained ITNN, the input layer provides the nonlinear factors or latent variables obtained from
nonlinear dimensional reduction of the data. 

3.3.3.3 Data Reconciliation

Data obtained from measurement of process variables are often noisy. In order to apply
process measurements in modeling, control and optimization of the process, it is often
necessary to rectify the data by performing a data reconciliation.
Traditional data reconciliation involved with minimization of the errors between the measured
and the predicted variables from a rigorous mathematical model. This is in fact a nonlinear
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optimization problem. Application of rigorous mathematical model is difficult for some
chemical processes, especially for refinery processes in which the components and their
compositions in the feed streams are unknown. 
This is a strong motivation for using a statistical approach or neural network modeling for
poorly unknown and highly nonlinear chemical processes.

3.3.3.4 Combining PCA and NLPCA

The purpose of this work is to use the concept of the NLPCA in order to perform data
reconciliation of a refinery naphtha splitter process. A PCA model provides a first linear
approach to determine the latent variables. The results from PCA is used as initialization for
ITNN as a NLPCA to capture nonlinearity in the data pattern. The ITNN reproduce the inputs
to the PCA in its output layer. Only one hidden layer is used in the ITNN model. 
Using the information from PCA model the optimum number of the latent variables, i.e.
number of inputs to ITNN, is determined. 
A total number of fourteen variables are measured for the naphtha splitter process which
implicitly represent the total mass and energy balance of the distillation column. 
An ITNN is trained by back propagation using Levenberg-Marquardt learning method, which
is an approximation to Newton's method. 

3.3.3.5 Autoassociative Network

This method is used for identity mapping in which the network's inputs are produced at the
output layer. The architecture of the neural network is made up of three hidden layers, as
shown in figure 3.4. The first hidden layer is called mapping layer. The original data matrix is
projected into the feature space, in which the output of the mapping layer represent the
nonlinear principal components and therefore has f sigmoid nodes as the number of nonlinear
PC's. These f nodes, containing sigmodal transfer functions, make the hidden layer number
two which is called the bottleneck layer. Note that the number of nodes in the bottleneck is
less than nodes in the mapping layer as a result of dimension reduction of the data. The third
hidden layer is the demapping layer which represent the inverse mapping function and produce
the reconstructed data in the output layer.  

Input Layer Mapping Layer Bottleneck Layer Demapping Layer Output Layer

Autoassociative Network

Figure 3.4 : An Autoassociative Neural Network.

Chapter 3 Methods in Process Chemometrics

34



The basic principal of the autoassociative neural network is analogous to the PCA. Based on
equation (3.1) and (3.8) and using PTP = I, the following equation can be written for the score
matrix without loss of generality:

T = X P (3.25)

In the nonlinear case, we are looking for score matrix T as a nonlinear function of the X as the
following form:

T = G(X) (3.26)

Cybenko (1989) has shown that a feed forward neural network with one hidden layer
containing sigmodal transfer function can approximate any function with arbitrary accuracy.
Hence, the first layer in autoassociative neural network, i. e. the mapping layer, is used for
approximate the G function in equation (3.26).

In analogy to the linear PCA, for the demapping of the data from the factor space, i. e.
bottleneck layer, to the variable space the demapping layer of the network is used for
approximation of the following H function:

X = H(T) (3.27)

n which the predicted X, i.e. the reconstructed data is produced in the output layer.

3.3.3.6 Input Training Neural Network

In input training neutral network only the demapping part of the autoassociative network is
used. The input to the ITNN is trained by extending the back propagation algorithm to update
the input as well as the network parameters, i. e. weights and biases. An example of ITNN
architecture is shown in figure (3.5). 
Tan and Mavrovouniotis (1995) have shown that training an ITNN with one input node and
no hidden layer is equivalent to the linear PCA with one PC. Adding a hidden layer of sigmoid
transfer function can basically capture both the linear and nonlinear variation in the data matrix
and store the nonlinear PC's in the input layer.
Updating the input matrix is based on the extension of the back propagation learning
algorithm. The steepest descent direction is derived as expressed in the equation (3.28) for
minimizing the errors between the network's output and the desired output. Let use the same
nomenclature as we used in section 3.3.2, and figure (3.1) for ANN modeling. Furthermore,
let the desired output be data matrix Y of n samples and m variables, and the output of the
network be Y2. The sum squared of errors is calculated by:

E = Σ
n

Σ
m

(Y2 − Y)2 (3.28)

The steepest direction for updating the new inputs X matrix is:

∆X = −∂E
∂X = − 2 Σ

m
(Y2 − Y) ∂Y2

∂X (3.29)
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In this model, which we have linear nodes in the input and output layers and sigmodal nodes in
the hidden layer, the output of the network Y2 is calculated as the following:

Y2 = φ(W1 ⋅ X + B1) ⋅ W2 + B2 (3.30)

where φ is sigmodal transfer function as defined in equation (3.18). The output from the
hidden layer A1 is calculated as follows:

A1 = φ(W1 ⋅ X + B1) (3.31)

The first derivative of a sigmoid function of the form φ [ f(x) ] can be calculated by the
following equation :

∂φ[ F(X)]
∂X = ∂F(X)

∂X φ[F(X)] {1 − φ[F(X)]} (3.32)

Combining equations (3.29) through (3.32) yields:

∆X = − 2 [W1T ⋅ A1 ⋅ ∗ (1 − A1) ⋅ ∗ (W2T ⋅ e)] (3.33)

where the error e is equal to (Y2 - Y).
ITNN shows good ability of data rectification and converges much faster than autoassociative
networks. 
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Figure 3.5: A typical Structure of Input Training Neural Network.

3.3.3.7 Combination of Linear PCA and ITNN

To obtain better and faster result, linear PCA and NLPCA is combined  in one model.  
The data matrix is first mean centered, i.e. the columns in the original data matrix are
subtracted from their mean values, and then variance scaled, i.e. the columns are divided by
their standard deviation. The data matrix which is mean centered and scaled to unit variance is
also called autoscaled data. 
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The autoscaled data is then used for a PCA model. The number of PCs used in the model is
based on the percentage captured variance by each PC. 
The score matrix T from the PCA model is used for initialization of the input matrix X to the
ITNN, as is shown in figure 3.6. Then the network is trained by adjusting the input, weights,
and biases of the network.
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Principal Component
Analysis
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Figure 3.6: Combining PCA and ITNN.

Initialize Input, X0 
by

T, Scores from PCA 

Train ITNN keeping
X0 = T

Constant

Train Input, X0 
Weights, W

Biases, B

Figure 3.7: The Three steps in combining PCA and ITNN.

Training an ITNN by applying PCA initialization is  carried out in three steps. First; the initial
inputs is set equal to the score matrix from a PCA model. Second; the ITNN network is
trained by freezing the inputs and updating weights and biases. Third; the network is trained
by updating inputs, weights, and biases. This procedure is summarized in figure 3.7.

3.3.3.8 Example; Rectification of Splitter Data

ITNN model is used as a NLPCA method for rectifying data obtained from naphtha splitter
distillation column. The process diagram is shown in figure 3.18. A total number of fourteen
variables are measured around the column. These are listed in Table 3.2. The flow rate of the
feed stream, distillate, and bottom product can be used for a total mass balance. A small
amount of gas will be produced at the top of the column if the light gases are not completely
removed by stabilizer distillation column before the splitter. 
There is no measurement for the flow rate of the gas at the top. However, the total mass
balance of the column can be approximately estimated by using feed, top product and bottom
product flow rates. 
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Liquid Gas
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Naphtha

Figure 3.8: A schematic diagram of stabilizer/spiltter system.

No. Description Tag Unit

1 Top Temperature TT 0C

2 Tray 23 Temperature T23 0C

3 Tray 18 Temperature T18 0C

4 Tray 9 Temperature T9 0C

5 Tray 3 Temperature T3 0C

6 Reflux Temperature RT 0C

7 Reflux Flow Rate RF m3/hr

8 Feed Temperature FT 0C

9 Feed Flow Rate FF m3/hr

10 Top Pressure P Bar

11 Top Product Flow Rate LVN m3/hr

12 Bottom Product Flow Rate HVN m3/hr

13 Reboiler Duty QR MW

14 Naphtha Cut Point CP 0C

Table 3.2: Description of the variables.
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There are five measurements of temperature profile inside the column. Besides, temperature of
the reflux and the feed streams are measured. These variables along with a calculated reboiler
duty, i.e. QR, can represent the energy balance of the column.
Hydrocarbon components and the composition of the components in the feed stream are
unknown. Generally, naphtha is a hydrocarbon mixture with a true boiling point range of
between 30-40 0C to around 150-180 0C. A calculated naphtha cut point variable, which is a
pressure corrected temperature of the naphtha product inside the atmospheric crude
distillation column, can be used for a rough characterization of the naphtha stream produced in
the column.
A set of data containing total number of 573 samples each with 14 measurements, with a
sampling interval of one hour, is chosen for the NLPCA model of the naphtha splitter process.
The data correspond to almost 24 days of operation. Figure 3.9 shows the variables value vs.
sample number. It is obvious from the figure that the column was operating under different
operation conditions during that period of  sampling. 

3.3.3.8.1 PCA model

Using the information from scores for PC1 and PC2, as shown in figure 3.10,  we can detect
three major clusters of data that represent three operation regions. These regions can be
explained by two pseudo steady states, and one transient state, which is the transient from
pseudo steady state region number one to the number two.
We define a pseudo steady state to be the state of the operation in which the changes in state
variables are in relatively lower frequency. We can recognize two clearly pseudo steady state
regions in the data matrix shown in figure 3.7.
We can roughly assume that the data from sample number 50 to 280 cover the pseudo steady
state number one and the data from sample number 360 to 573 cover the pseudo steady state
number two and the rest belong to the transient region. Hence, we split the data in three parts
and focus on pseudo steady states. 
The first step in NLPCA modeling is initialization of the inputs by a linear PCA, as it is shown
in figure 3.7. Choosing the number of factors, or number of PCs is an important issue. Table
3.3 shows the percent variance captured by each PC. 
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Figure 3.9: The Original Data
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Figure 3.10: Scores for PC1 vs. PC2.

        Percent Variance Captured by PCA Model
  

Principal     Eigenvalue     % Variance     % Variance
Component         of          Captured       Captured
 Number         Cov(X)        This  PC        Total

---------     ----------     ----------     ----------
     1         7.36e+000         52.59          52.59
     2         3.19e+000         22.76          75.35
     3         1.72e+000         12.29          87.64
     4         9.01e-001          6.44          94.07
     5         5.99e-001          4.28          98.35
     6         9.68e-002          0.69          99.04
     7         5.26e-002          0.38          99.42
     8         3.91e-002          0.28          99.70
     9         1.44e-002          0.10          99.80
    10         1.10e-002          0.08          99.88
    11         8.46e-003          0.06          99.94
    12         5.31e-003          0.04          99.98
    13         1.95e-003          0.01          99.99
    14         9.92e-004          0.01         100.00

Table 3.3: Percent Variance Captured by PCs.

If we choose too many factors we achieve a model close to full model in which the noise and
the structure part are not separated and we have still a significant amount of noise in data.
However, if we choose too few factors we lose a part of information, probably both the linear
and nonlinear information, left in the noise part.

Chapter 3 Methods in Process Chemometrics

40



Since we are going to use the scores for initialization of the inputs to the NLPCA model, we
choose five PCs in order to include nonlinear information.

3.3.3.8.2 ITNN Model

One of the important issue in ANN modeling is the internal architecture of the network, i. e.
choosing the number of nodes in the hidden layer. The original data set is used to check the
performance of the network for different inputs, i.e. number of factors, which is indeed
number of the nodes in the hidden layer in ITNN. The experiences, so far, has shown that, for
this application, choosing more nodes in the hidden layer will not improve the performance.
However, increasing the number of factors can significantly reduce the network error.
It is important to remember that the number of the internal parameters of the network, i.e.
weights and biases, should be less than number of the samples. Number of the internal
parameters NE is defined as follows:

NE = f*S1 + S1*S2 + S1 + S2 = Number of Internal Parameters

where f, S1, S2 are number of nodes in the input, hidden, and output layers respectively.
When NE is larger than the number of samples, ANN model may results in an "over-fitted", or
"over-parametrized" network, which is poor in generalization characteristic. By using Root
Mean  Sum Squared Error (RMSSE) as defined in equation (3.22), we can compare the
performance of the network for different factors (f) and number of nodes in the hidden layer
(S1) as shown in table 3.4. As we expect, the RMSSE decreases, both in linear and nonlinear
models, for increasing the number of nodes in input and hidden layers. 

3.3.3.8.3 Results

As it is shown in table 3.4, a number of 5 principal component is the optimum choice in this
example. 
The transient region is omitted from the data, and we focus on the pseudo steady states. Just
for the matter of curiosity we develop model for each pseudo steady states separately, and
then combine these two in one model. Hence, two models are developed for the two pseudo
steady states. These are called model no. 1 and model no. 2 respectively. Additionally a third
model is developed by training an ITNN using a training data set which is a combination of the
training data for model no. 1 and 2. This third model is just called model no. 3. 

PCA NLPCA No. of PC
f

S1 NE

Training Test Training Test

1.890 0.378 0.378 0.135 2 2 48

0.881 0.330 0.236 0.126 3 3 68

0.776 0.258 0.191 0.094 4 4 90

0.627 0.221 0.167 0.086 5 5 114

0.448 0.185 0.160 0.129 6 6 140

Table 3.4: Comparison of the RMSSE for different number of nodes in hidden layer.
 
The results of the obtained RMSSE for the three models is summarized in table 3.5.
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Model
N0.

PCA NLPCA f S1 NE n

Training Test Training Test

1 0.336 0.109 0.202 0.060 5 5 114 125

2 0.252 0.112 0.130 0.110 5 5 114 141

3 0.420 0.196 0.115 0.083 5 5 114 255

Table 3.5: Comparison of the RMSSE for the pseudo steady state regions.

As shown, RMSSE for model number 3, i.e. the model valid for both pseudo steady state
regions, is less than the others. 
The results for comparison of the NLPCA and the measured data for all 14 variables are
shown in appendix M.  

3.3.3.9 Discussion

The essential objective of applying nonlinear PCA is to rectify the data obtained from the
process which is used in process models and quality prediction models. 
A linear PCA  is used for assessment of the number of nodes in the input layer which is the
number of factors used in the NLPCA model. Besides, the scores from PCA are used for
initialization of the inputs to NLPCA. The NLPCA model is first trained by keeping the inputs
constant equal to the scores from linear PCA, and then trained further by updating both the
inputs and the network's parameters.
As it can be seen from the results shown in the appendix, the NLPCA model is able to
reconstruct the original data. For individual variables, such as for the top product flow rate
LVN, the models show some deviation for the original measured data. Model no. 3 shows
generally better results, since the training data set cover a larger area and contains different
steady state operation regions.
What is interesting for the future work in this field is to apply NLPCA method to trace the
transient state from the data matrix. For optimization and control objectives, it is important to
be able to automatically detect the transient state operation of the column.
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3.4 Dynamic, Linear Methods 

3.4.1 Time-series Model 

System identification deals with the problem of building mathematical models of dynamical
system based on observed data from the system. The characteristic of the a dynamic system is
that the variables change with time, or current output value depends not only on the current
external stimuli but also on their earlier values. Output of dynamical systems whose external
stimuli are not observed are often called time series (Ljung, 1987, and 1994). 
In this section a description of ARX (Auto Regressive with Exogenous input) method in
system identification. This is basically a linear, time series regression model.   
The prediction models developed in this work apply ARX model extensively. These models
are described in chapter in the following chapter of this thesis.

3.4.2 Model Structure

The main concept of the modeling work is to use different methods to develop models based
on input-output mapping of data by fitting the model parameters. Following the terminology
and mathematical formulation presented by Ljung (Ljung, 1987), we are seeking the mapping
from the data set :

ZN = [u(1), y(1), ....., u(N), y(N)] (3.34)

to the parameter estimate as the following:  θN

ZN → θN ∈ DM (3.35)

in which N is a finite number denoting the dimension of data set, and DM is a set of values over
which θ ranges in a model structure M. A model structure is a parametrized set of models
defined in equation 5.9.
In a general formulation linear time-invariant models are defined as the following:

y(t) = G(q, θ)u(t) + H(q, θ)e(t) (3.36)

in which the G and H are functions of θ and q is the backward shift operator. Moreover,
{e(t)} is a sequence of independent random variables with zero mean values and variance λ.
The extent of parameter vector θ ranges over a subset of Rd in which d is the dimension of θ.
Hence, the model presented in 3.36 is no longer a model, but a set of models obtained from
different values of θ.
Specification of the functions G and H will lead to a particular model. A suitable method is to
choose a structure that permits the specification of G and H in terms of finite number of
numerical values, for instance rational transfer functions or finite dimensional state-space
descriptions.
Parametrization of G and H functions in terms of linear difference equations will lead to model
structure like ARX and ARMAX. 
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A linear difference equation is a simple description of input-output relationship. The model
expressed mathematically as the following equations. 

y(t) + a1y(t − 1) + .... + anay(t − na) =
b1u(t − 1) + .... + bnbu(t − nb) + e(t) + c1e(t − 1) + ... + cnc(t − nc) + D

(3.37)

in which:
Y(t) is output measurement at time t,
U(t) is input measurement at time t,
e(t) vector of white noise sequences,
na is number of A parameters,
nb is number of B parameters,
nc is the number of C parameters,
D is constant vector.

The model formulation in 3.37 includes the moving average of white noise. This type of model
is also called equation error model, since the white noise term is directly added in the
difference equation.
The adjustable model parameter are :

θ = [a1 a2 ... ana b1 b2 ... bnb c1 c2 ... cnc ] (3.38)

The backward operators are defined as the following:

A(q) = 1 + a1q−1 + ... + anaq−na

B(q) = b1q−1 + ... + bnbq−nb

C(q) = 1 + c1q−1 + ... + cncq−nc

(3.39)

Introducing the backward operator in the model defined in 3.37 will lead to the following
formulation of the model as in 3.40 :

A(q)y(t) = B(q)u(t) + C(q)e(t) (3.40)

Notice that the model in 3.37 correspond to the model defined in 3.36 by the following: 

G(q, θ) = B(q)
A(q) H(q, θ) = 1

A(q) (3.41)

The ARX model is a special case of ARMAX model in which , when nc = 0. C(q) ≡ 1
It can be shown that the predictor for the ARX  model can be defined as equation 3.41 (L.
Ljung, 1987).

y(t θ) = B(q)u(t) + [1 − A(q)] y(t) (3.42)

Introducing the regression vector as the following :

ϕ(t) = [−y(t − 1) ..... − y(t − na) u(t − 1) ..... u(t − nb)]T (3.43)

Then equation 3.42 can be expressed as a linear regression model:
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y(t θ) = θT ϕ(t) = ϕT(t) θ (3.44)

At time t we can evaluate how good this prediction is by calculating the prediction error:

ε(t, θ) = y(t) − y(t θ) (3.45)

The model parameters are estimated by solving the following optimization problem:

θN = arg min
θ

1
N Σ

T=1

N

ε2(t, θ) (3.46)

This optimization problem is then solved by using a Least Squares approach. Hence, a set of
optimal parameters is determined.

3.4.3 ARX model with PLS Regression

The normal procedure in estimation of parameters in ARX model is based on the least squares
(LS) method minimizing the prediction error defined in equation 3.46. Another approach is to
apply a PLS in parameter estimation of ARX model in order to take advantage of PLS ability
to extract the useful information from collinear, noisy, input data which is relevant for
modeling the output prediction.
An approach is to construct the regression vector defined in 3.43 considering number of na,
and nb parameters in order to define the problem as a linear regression problem as described in
equation 3.44. The regression problem can be then solved by using linear PLS regression. 
The advantage of this method is that a linear time-series model can be developed by a PLS
regression in which the variation and the data structure in the Y variables is directly used in
PCA decomposition of the X variables. 
Furthermore, in practical application in process industry there may be a lot of variables which
may theoretically related to the output variable but the collected data shows no correlation due
to corrupting influence of noise or effect of feed-back control. Applying PLS will use the
strength of PCA in dimensional reduction of the data set and hence an effective modeling of
output.
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3.5 Dynamic, Nonlinear Methods

An approach for modeling a dynamic nonlinear system is based on applying nonlinear methods
in time-series type of models.
As described earlier, the concept of ARX type of model can be used to define a linear
regression problem as described in equation 3.44 by constructing the regression vector defined
in 3.43.
A nonlinear PLS model, as described in section 3.3.1, can then be applied in order to estimate
the regression parameters in the nonlinear case. 
This approach is basically the same as in the case of linear ARXPLS described in section 3.4.3
in which the inner relationship in PLS is defined by a nonlinear function.
The nonlinear function can a polynomial of arbitrary order as it is expressed in equation 3.17,
or alternatively using a neural network model.

3.6 Model Validation Criteria

The purpose of model validation is to test the performance of a developed model in order to
assess the level of predictability of the model in the operation region of interest.
A common and natural method of validation is to simulate the model, which is developed in
calibration, by using a separate data set, and compare the model predicted with the measured
output. 
The sperate data set called test set or validation set. It is very important that the validation
data set is closely comparable to the calibration data set, with respect to sampling time,
sampling condition. It is important that the validation data set is representative for the target
population. The only difference between the calibration and validation should be the sampling
variance. This sampling variance will comprise those differences between the two data sets
that can only be explained by the two different samplings of n objects, made under identical
conditions. The idea behind the model validation is to evaluate the prediction strength of the
model on data with different noise than the calibration set.
There are certain criteria in the validation to be satisfied. The first criterion is the level of
prediction error in validation data set, as described in the following.

3.6.1 Definition of Reference Model in Validation

One way to evaluate the performance of the model is to compare the model RMSSE defined
in equation 3.22 with a reference or a pre-defined criterion. 
A suitable reference which is normally used in assessment of model validation is the variance
of measured output in validation data set. Comparison of the calculated standard deviation for
the measured output and the RMSSE defined in 3.22 will give a measure of predictability of
the obtained model. We shall illuminate the concept of this comparison further in the
following.
If we use the average value of the measured output and draw an average line through all the
output values, then we will have a model described by 3.47.

y(t) = yAVG + e(t) (3.47)

We shall call this model as the average-model. It is obvious that the purpose of the modeling
is to predict the output much better than the described average model, otherwise the average
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value can be used as an estimate for the future value of the output and development of a
prediction model is not necessary.
This average reference model is computed by first calculating the average of all N measured
output values, and then subtract the average from the output itself to calculate EAVG , as the
following: 

(EAVG) i = y(t i) − yAVG (3.48)

Then, we compute a RMSS of this error by using equation (3.22), and denote it as
RMSEAVG for the average-model described in 3.47. It is clear that the RMSEAVG has the
same property as the standard deviation of the measured output.
We expect that the developed prediction model should predict a set of output values for a
period of time which are closer to the measured output than the average value. In this sense
we say that the developed model should be at least better than the average-model in order to
accepted.

A second reference model can be defined as the following. Let consider a model structure of
3.44 in which the number of A-parameter is 1, i.e. na=1. Furthermore, consider that the
developed prediction model find a set of B-parameters which are close to zero, and an
A-parameter value close to one This is shown in the following equation:

y(t) = y(t − 1) + 0 (3.49)

This means that the new prediction of y is equal to the previous y. In this case we have no
effect of input variables. We shall call this as zero-model.
Based on this consideration, we compute a EZERO as the following in a general form:

(EZERO) i = y(t i) − y(t i+1) (3.50)

Hence, a RMSS of EZERO , which is denoted by RMSEZRO will give os a reference in
assessment of predictability of the obtained prediction model. Thus, the expectation is that a
model with good performance characteristic should be better than the zero-model, meaning
that the developed model has captured the effect of input variables.
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3.7 Persistence of Excitation

One of the important issue in dynamic modeling of a physical system concern with the
characteristics of the observed process data. The choice of input has a very substantial
influence on how much the obtain data is representative and informative for the task of
dynamic modeling. The input signal contains valuable information about the operating point
and determine which part and mode of the system is excited during the period of model
calibration. In the following more specific definition of informative data set and concept of
persistence of excitation is presented. 

3.7.1 Definition of Informative Data Set

As described in section 3.4.2, a set of linear time-invariant models can be defined, as expressed
in equation 3.51, in order for input-output mapping of a set of data ZN by fitting the model
parameters , in which N is a finite number denoting the dimension of data set.θN

y(t) = G(q, θ)u(t) + H(q, θ)e(t) (3.51)

The functions G and H can be specified by rational transfer functions or finite dimensional
state-space descriptions. By using linear difference equations, in order to perform a
parametrization of the functions G and H, a set of model structure of ARX and ARMAX, as it
is discussed earlier in section 3.4.2. Hence, the general formulation defined in 3.51 will lead to
a set of model structure M obtained from different values of parameter vector θ. Number of
the models that can be obtained is thus a subset of N.
The purpose of  model fitting is thus to find the optimal solution of the optimization problem
defined in 3.46. 
If the data set Z is capable of distinguishing between these different models in the model set
M, then we call the data set to be informative enough with respect to the model set. The
assumptions here are that the data set Z is quasi-stationary and the models are linear
time-invariant.
A more mathematical definition of informative data set is given by Ljung (Ljung 1987). A
quasi-stationary data set is informative if the spectrum matrix :

Z(t) = [ u(t)  y(t) ]T 

is strictly positive definite for all ω. The spectrum matrix is defined as:

Φz(ω) =





Φu(ω) Φuy(ω)
Φyu(ω) Φy(ω)




 (3.52)

The concept of informative data is closely related to the concept of persistently exiting inputs,
described in the following. 

Chapter 3 Methods in Process Chemometrics

48



3.7.2 Concept Persistence of Excitation

One of the important aspect of choosing input variables is the second-order property of u,
such as Φu(ω), i.e. the spectrum of the input, and the cross spectrum Φue(ω) between input and
the driving noise.
Let assume that the data Z is collected in an open loop experiment. Consider a
quasi-stationary input signal u(t), with spectrum Φu(ω), and the following filter:

Mn(q) = m1q−1 + ... + mnq−n (3.53)

The definition of persistence of excitation is based on the following result obtained by Ljung.

Mn(e iω) 2 Φu(ω) ≡ 0 (3.54)

The definition is that the input signal u is said to be persistently exiting of order n if for all
filter Mn(q) the relation 3.54 implies that .Mn(e iω) ≡ 0
The direct result of this definition is that if Φu(ω) is different from zero at least n points in the
interval of -π>ω>π, then the input signal u is persistency exciting of order n.
Moreover, is the spectrum of the signal :Mn(e iω) 2 Φu(ω)

v(t) = Mn(q)u(t)

Hence, the input u that is persistency exiting of order n can not be filtered to zero by a moving
average filter. Consequently, there must exist a set of θ parameters that give a set of different
and distinguish models due to informative characteristic of input signal. On this basis we say
the data collected under open-loop control is informative if the input is persistency exciting. 
It is useful to consider a more general definition as the following:
A quasi-stationary input signa u(t), with spectrum Φu(ω) is said to be persistently exciting if :

Φu(ω) 〉0 for all ω

In the result and the definition above, it is assumed that input signal is collected from an
open-loop experiment. However, closed-loop control is applied widely in the process industry.
The impact of closed-loop control on persistence of excitation of input is discussed in the
following.    

3.7.3 Effect of Closed-loop Control

In practical application of input-output modeling in process industry, the input data is normally
collected under output feedback. The reason for the feedback control configuration is mostly
for production economy and plant safety. Most often, it is not simply allowed to manipulate
the system in process industry in order to perform a set of experiments to insure an
informative and excited input signal. 
The information obtain from a process in a closed control can be defective for modeling the
output even if the input is persistency excited. In order to illuminate this, consider the
following example.
Let us consider a close-loop control configuration as the example shown in figure 3.11.
Assume that we have the following first-order model structure:
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+++ ProcessController yu

Noise v
Extra input w1

Noise w2 or 
set point w3

Figure 3.11: A typical closed-loop control.

y(t) = ay(t − 1) + bu(t − 1) + e(t) (3.55)

and assume that the controller is a proportional regulator :

u(t) = fy(t) (3.56)

Inserting 3.56 into 3.55 will give:

y(t) = (a + bf) y(t − 1) + e(t) (3.57)

which is the model obtained under feedback.
Now, consider the following set of  parameters, in which α is an arbitrary scalar:(a, b)

a = a + αf

b = b + α
(3.58)

It can be seen that all models that can be obtained by parameters in 3.58 will give the same
description of the system as the models by parameters (a, b) in the closed-loop control. This
will lead us to the conclusion that no matter the value of proportional control f, there is no
way to obtain two distinguishable models from these sets of model parameters. The
information obtained from this system by applying 3.55 is thus not informative enough.
Notice that this result i a valid even for an excited input u, and hence the persistency exciting
of input is not a sufficient condition in closed-loop data.
Moreover, if we restrict the model 3.55 by letting parameter b to be equal to one, then the
information generated by 3.55 with b=1 will be informative enough to distinguish different
value of a-parameters.

However, there is chance to get informative information from a closed-loop system, if the
regulator is noisy, nonlinear, time-varying or complex high-order. If it is allowed, a certain
complexity can be added to a closed-loop system by adding an extra input as it is shown in
figure 3.11. The input is now a sum of the output feedback plus the extra input, as equation
3.59.

u(t) = Fi(q)y(t) + Ki(q)w(t), i = 1, 2, ....., r (3.59)
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where Fi(q) and Ki(q) are linear filters. 
The impact of these linear filters and the extra input is that any high frequency contribution to
the signal spectrum, that is produced by changing filters F and K, can be neglected. 
This can be realized as an extra input w1, noise w2 to the regulator, or set point changes w3,
as it is shown in figure 3.11.
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3.8 Summary

In this chapter a review of methods used in process chemometrics is presented. It is attempted
to present the essence of process chemometrics in order to provide the theoretical back
ground for the multivariate modeling techniques applied to develop process models in this
thesis
Based on the definition of process chemometrics, the methods in model development are
based on data obtained from the system, and the purpose is to develop an empirical model for
estimation of one or more properties of the system. 
Process chemometrics includes both linear and nonlinear approaches, and consider the static
and dynamic characteristics of the system. Based on this consideration, the methods in process
chemometrics are divided in four general categories according to the linear, nonlinear, static,
and dynamic characteristics of the system under study.  
In the class of static linear methods Principal Component Analysis (PCA), Principal
Component Regression (PCR), and Partial Least Squares Regression (PLS) are discussed.
PCA is used in data assessment, dimensional reduction through extracting the latent variables
and applied mostly for process monitoring. PLS and PCR are used for developing
input-output regression models. 
In the class of static nonlinear approaches Artificial Neural Networks (ANNs) exhibit a strong
ability to nonlinear functional approximation. Nonlinear PLS regression in which nonlinear
function is defined for the inner relationship of the PLS is another approach in this class of
chemometrics methods. Furthermore, a description of Nonlinear Principal Component
Analysis (NLPCA) is presented. A NLPCA model is developed based on Input Training
Neural Networks (ITNN) which is used for data rectification
The methods in the class of dynamic linear methods include knowledge based predictive
modeling using linear time series regression. The linear methods include ARX and ARMAX
(Auto Regressive Moving Average with Exogenous input), which are linear models based on
parametric input output representations
The dynamic nonlinear, in which the time-series type of model can be integrated in a nonlinear
PLS model, is discussed. Furthermore, ANNs model can be applied for estimation of inner
relationship of an ARXPLS model.
A discussion about different criteria in model validation is presented in this chapter, in which
two different reference model, i.e. average-model and zero-model, are presented in order to
assess the predictability of the developed chemometric model
The concept of informative data set and persistence of excitation are discussed along with the
issue concerning the impact of closed-loop control on persistence of excitation of input.
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Chapter 4 

Introduction to Model
Development

4.1 Introduction

4.1.1 Purpose

The purpose of this chapter is to describe the preliminary steps in the model development
work in this thesis. This introduction concerns mainly with definition of the system limit,
description of the output and selected input variables, assessment of data, data scaling and
sampling, and description of data treatment. 
Furthermore, it is attempted to present a general scope of model development and to describe
the general procedure and different steps in the chemometric approach of modeling. The
described procedure in this chapter can be used as guidelines to model development.

4.1.2 Outline

In section 4.2 a general description of model development phases is presented. The review of
the steps in the development procedure presented in section 4.2 can be used as guidelines for
chemometric modeling. A more detailed process description and definition of system
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delimitation is presented in section 4.3. This will introduce a clear view of the influence of
variables in different production units on the interesting quality variables and allow the reader
of this thesis to follow the description of input output variables in the following sections. In
section 4.4 and 4.5 description of output and input variables are presented respectively. The
name and description of the variables will be unique in this thesis. These variables are used in
the developed model described in chapter 5. Section 4.6 deals with selection of suitable sample
interval in which the problem concerning sample frequency is discussed. In section 4.7 a PCA
analysis is presented for data obtained from catalytic reformer I, catalytic reformer II, and
isomerization unit. The conclusion for this chapter is presented in section 4.8
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4.2 Description of Different Steps in Model Development

Development of multivariate process model applying chemometric approach contains some
essential steps that have decisive influence on the general characteristic, reliability, and
performance of the obtained model.
In the following it is attempted to introduce the different stages that should be considered
carefully during the model development.

4.2.1 Model Objective

The first step is to define the objective of modeling. This question is often related to which
variable or quality need to be predicted and where this prediction is going to be implemented.
Prediction modeling is needed when a variable, often a quality variable, is difficult, expensive,
or time consuming to measure. It can also be the situation that first principles mathematical
model for a complex chemical process is hardly available and hence the historical process data
is used in order to develop a model to predict the future value of a variable which is used in a
control or an optimization application. 
Determination of the objective of modeling is important because it will determine the demands
for characteristics and accuracy of the model. For example if the model is going to be applied
in an optimization routine, the linear or nonlinear characteristics of the model will become
important in choosing the optimization algorithm. If the model is going to be applied in a
control application, the objective is to estimate the transfer function of the system and hence
the stability characteristic of the obtained model will be an important issue.

4.2.2 Selection of Input Variables

In this step, it is desired to explore and determine the suitable input variables for prediction of
one or several output variables. This is an essential step, because the data is the main source of
information and a reasonable model performance can be expected only when necessary and
sufficient information is provided. Selection of appropriate input variables is then important in
order to obtain a set of data which is informative enough with respect to a model set that can
be determined from the data using appropriate chemometric methods. The concept of
informative data is related to persistence of excitation which is described in chapter 3.
Selection of a set of suitable input variables is in fact identifying which variable combination
affect the variation of model output. This selection is naturally related to a good knowledge
about the process, based on, if available, a first principles mathematical model describing the
functional dependency of the model output to the input variables. 
A first principles mathematical model is unfortunately not available in the complex refinery
processes. However, using the basic knowledge in chemical engineering, it is possible to
perform a qualitative analysis of the system in order to identify which variables are expected to
affect the variation of the desired output. 
Furthermore, it is possible that the collected data from a system does not reflect the expected
correlation between output signal and one or several input variables. This can be often for the
reasons such that data is collected under the effect of feed-back control, the choice of
sampling interval is wrong, the collected input and output data are from different operation
points, or the data is simply corrupted as a result of sensor fault.
A correlation analysis can be helpful to explore the functional dependency of output to input
signal. Notice that the correlation analysis technique is based on the assumptions that the
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system is linear time-invariant, the error or noise part of the data is normal distributed, and
data is obtained from an open-loop control. 
Furthermore, one should be cautious about the multivariable effect on the output signal.
Applying a quick linear regression analysis, like MLR, or PCR, can give insight to the
functional dependency of the variables if the relationship is linear. A possible procedure can be
to start with simply all possible measured variables and then gradually exclude those variables
which shows no correlation to the output.
When the appropriate calibration method is selected and the model is calibrated, then the
physical meaning of the sign and magnitude of the obtained model parameters should be in
agreement with the expectation and knowledge based on a first principles model or practical
experiences. The predicted output will be sensitive to an input variable if a small variance is
obtained in that particular. Hence, the correct choice of input variables should results in small
variance for the corresponding parameters in the resulting model.

4.2.3 Data Collection and Sampling

When the input and output variables of the model is determined, the next step is to select a
suitable sampling rate. Special attention should be paid in collection of data in order to detect
errors, and measurement fault. It is necessary to know the level of noise and the method used
for measurement of quality variables in laboratory. 
Sampling rate is a significant factor which is related to the dynamic characteristic of the system
defined by its bandwidth. The purpose of selecting a suitable sampling frequency is to insure
that the collected data is informative enough to develop a set of models. 
In many industrial application the sample time for temperature, pressure, and flow rate are
around a few minutes, or even seconds. However, those variables which are measured in
laboratory, often quality variables, can have a sample time of several hours due to the applied
analysis methods. 
Besides, if the input variables are from different production units, and eventually with different
kind of chemical processes, the sample time could be different. For the modeling objective the
selected sampling frequency is normally determined by a process with a faster dynamic
characteristics. 
It is also important to determine the time delay of the system and especially when the variables
are chosen from different unit operations. An impulse or a step response of the system can
provide information about time delay and time constant of the system, provided an estimate of
the transfer function of the system available. 
The data should be representative for the process and cover all the operation regions of
interest, and thus it is important to carefully select periods of operation in order to include the
desired operation modes and area. 

4.2.4 Data Treatment  

One of the objectives in this step is to identify the outlier, faulty, and missing data. Existence
of outlier and error in measurement can completely mislead the development of the model.
Missing data and error can even stop the training and development procedure in some
modeling algorithm. 
Most of the outliers can normally be detected just by visualizing the data in appropriate plots
of respective variables. One effective way to detect error, outlier, or any abnormality in data is
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scaling of the data to have zero mean and unit variance. If there is an abnormality in data it
will be obvious after scaling, and can be visualized in a plot of scaled data. 
Data scaling is a common procedure in chemometric modeling prior to any analysis. There are
two type of scaling the data. If the data is adjusted to have a zero mean by subtracting off the
original mean, then the data is called to be mean centered. This technique is useful in order to
remove the effect of different dimensions in data. Autoscaling is called to the second type of
data scaling and that is when the mean centered data is additionally adjusted to unit variance.
In calculation of the covariance matrix of the data in different chemometric method it is
assumed that the data is mean centered. If an autoscaled data is applied then the calculated
covariance matrix will give the correlation matrix of the data. 
Unless other mentioned, the autoscaled data is used in the modeling work in this thesis

A PCA model can also be applied in order to uncover the abnormality in data. PCA is an
effective tool used for assessment of representability of data, existence of clustering and
outliers.  
Another problem in data is related to the missing data and when there are periodically lack of
measurement in the data set. The missing process data can be due to operation shutdown or
problem in data acquisition system. Regarding the quality variables measured at laboratory, it
is simply not possible to have measurement value as quick as the process variables and hence
there will be lack of data for quality variables.

4.2.5 Suitable Modeling Method

The selection of suitable method is highly dependent on nonlinear and dynamic characteristic
of the system under study. If there is no time dependency in relationship between output and
input a static model can be a relevant choice, and further if the relationship is linear a MLR or
PLS model can be applied for model development. For the case of nonlinear static relationship
a ANNs model can be used to cover the nonlinearity of the system, since neural networks
show great ability of nonlinear functional approximation. 
The characteristic of the a dynamical system is that the variables change with time, or current
output value depends not only on the current external stimuli but also on their earlier values.
In this case an ARX type of model in System Identification can be applied which is basically a
linear, time-series regression method. The input-output relationship in ARX model is
described by a simple linear difference equation. Estimation of parameters in ARX model is
based on the least squares (LS) method minimizing the prediction error. Another approach is
to apply a PLS in parameter estimation of ARX model in order to take advantage of PLS
ability to extract the useful information from collinear, noisy, input data which is relevant for
modeling the output prediction.
When a dynamic system is also nonlinear, a nonlinear time-series method should be chosen. In
a linear PLS it is assumed that the scores in output block is a linear function of the scores in
inputs. A nonlinear PLS approach is based on describing the relationship between scores in
input and output blocks by nonlinear functions like higher order polynomial or neural
networks. Hence, for dynamic nonlinear input-output mapping a time-series ARX model
structure can be applied in which nonlinear PLS approaches is chosen for its parameter
estimation.

Most of the complex refinery processes are in fact nonlinear system. However, the purpose of
this work is not to develop dynamic simulation models. It is desired to model the relationship
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between the output quality variable and a set of input process variables in a MISO model for
steady state operation. When a steady state operation is considered and the transient regions
which may exist in shutdown and start-up situations are avoided, a linear time-series model
can be chosen in order to obtain a linear approximation of the relationship between output
quality and input process variables. 
Regarding the choice of nonlinear models, special attention may be paid to the fact that
selection of nonlinear approaches in quality modeling may result in a more complex
optimization problem, which may cause complications in solving the problem. We may start
with a linear approach, like ARX or PLS, and analysis the performance of the model and result
of the validation, and then decide whether it is necessary to continue with nonlinear
approaches.  

4.2.6 Calibration; Estimation of Model parameter  

The calibration, also called training, of the model is the main part of model development and
the purpose is to estimate the model parameters, in which certain a criterion is satisfied. This
criterion is basically the level of prediction error in training data set. In most of the process
chemometrics methods estimation of the model parameters are based on an optimum solution
for an optimization problem in which sum of squared prediction errors is minimized. The result
is a set of optimum value for the model parameters. The obtained model is then applied in
validation in order to assess the predictability and general characteristic of the model. In this
sense, although the calibration and validation are two separate procedure, but it is often the
results in validation will decide that a calibration has been performed satisfactory.

4.2.7 Model Validation

Model validation is one of the most important issues in multivariate analysis and development
of process model. The purpose of model validation is to test the performance of a developed
model in order to avoid overfitting or underfitting by finding the optimal number and values of
model parameters. Here, we need a second data set which is called test or validation data set.
It is important that the validation set is closely comparable to the calibration data set with
respect to sampling frequency and condition. The validation set, similar to calibration set, must
contain a set of representative data for the target population. The only difference between
validation and calibration sets should be the sampling variance. The idea behind the model
validation is to evaluate the prediction strength of the model on data with different noise than
the calibration set. 
Cross validation is a technique  used in chemometric modeling, in which all the available
objects are used subsequently making models on parts of the data and testing on the other
parts. If we continue and make as many models as there are objects, in such a way that each
time we leave one of  the objects out and use that in validation, we obtain a full cross
validation. 
In dynamic time-series modeling, it is not appropriate to apply a full cross validation in that
sense that the data are mixed over the time. It is important to secure a calibration and
validation set containing time sequence of subsequent data. Hence, the calibration and
validation data sets must be two different distinct sets of data. 
There are several indicators and criterion that can be used in order to assess validation of the
model. Naturally, the ability of prediction is the first criterion to consider. A comparison
between model output and measurement indicates how well the model can predict the future
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output. Another indicator is to compare the sum of square errors in prediction with two
reference values. These reference values are a zero-model and an average-model as it is
described in chapter 3. 
The prediction error should consist the error or noise part of the output signal, and hence
should be principally close to a normally distributed noise with a variance smaller than the
variance of output signal itself meaning that the model is better than an average model. A
histogram plot of error can be used to check the normal distribution of prediction error.
Residual Analysis is also another effective method of validation. In this method we analysis the
residual, i.e. prediction error, of the model in order to determine whether there is correlation
between the prediction error and the inputs. If there are such correlation, it will be an
indication of there are still more system dynamics to describe than the model has already
picked up. One important remark is that in residual analysis it is assumed that the input is
uncorrelated with the disturbances. This means that this analysis will not work for data
collected during feedback.
This is an important issue and we have to consider that the data used for calibration of the
quality models in this work is collected from a real process during feedback control. Another
issue to consider is that some variables used in the modes are controlled variables and hence
the variation amplitude is low. This is indeed an indication of the fact that the first assumption
in statistical analysis; i.e. assumption of normal distribution, is more and less violated. 
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4.3 System Delimitation

As it is described in chapter 2, the gasoline processing area consists of different production
units. In this work, the focus will mainly be on three essential units; catalytic reformer I,
catalytic reformer II, and isomerization unit.  A simplified flow diagram of this part of gasoline
processing area is shown in figure 4.1
The product streams of all these production units are sent to intermediate product tanks which
are later used as blend components for gasoline blending, as it is shown in more detail in figure
2.1 in chapter 2. 
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Figure 4.1 : A simplified flow diagram of gasoline processing area.

Basically, in order to be able to optimize the quality of final gasoline products, it is crucial to
know the quality variables of all streams sent to the gasoline blender. Figure 2.1 in chapter 2
shows a schematic diagram of all units in gasoline processing area including the gasoline
blending components.
For some blend components, it is assumed that their qualities do not change over the time and
they can easily be calculated or estimated. For instance, three of the total nine blend
components can be considered as almost pure components. These are oxygenate, butane and
isopentane. Thus, their qualities can be reasonably estimated based on pure component
property. The qualities of two other blend components LVN and LVBN; i.e. light virgin
naphtha and light virgin visbroken naphtha, can also be calculated or estimated since they
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contain light hydrocarbon components, mostly between C5 to C7 molecules, which can be
identified by chromatographic analysis. 
However, for the reformate products from catalytic reformer units it is not possible to
calculate the qualities easily. It is mainly because these intermediate products contain
numerous hydrocarbon components with different molecules structure. The isomerate product
from isomerization unit contains light hydrocarbon components since the feed to this unit is
LVN. Hence, the qualities of isomerate product can be calculated based on identification of
the hydrocarbon components. 
Besides, the variation of the qualities, especially the Research Octane Number (RON) quality,
in the product streams of the catalytic reformers and isomerization units will particularly
provide the possibility of producing different gasoline products with more definite octane
number specification, and thus more optimization potentiality. It is essentially important to
have accurate information of RON quality variable for reformate and isomerate products, since
these are the high octane number products of the refinery. Furthermore, it is expensive to have
on-line quality measurements for these three intermediate products in order to have the same
sampling frequency as the other process variables. The only existing measurement is
laboratory analyses which are available only one per day, i.e. a sample rate of 24 hours, for
each quality.
As it will be discussed later, the selection of input variables for the quality prediction models
includes some temperature variables in the crude oil distillation, condensate fractionator, and
the main fractionator in the visbreaking units, and also flow rate variables in the respective
naphtha stabilizer and splitters systems. This will extend the system limit to the beginning of
the gasoline processing area, as it is shown in figure 4.1.
Consequently, the prediction of some the qualities will be affected by input variables spread
over the whole processing area and special care should be paid for finding the suitable delay
parameters in the obtained model.
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4.4 Description of Output Variables

In this section a description of desired quality output variables is presented for the models in
catalytic reformers and isomerization unit. 
Among the numerous qualities of gasoline which are officially determined as specifications for
the final gasoline products, we are interested in prediction of the following qualities:  

1 Research Octane Number (RON) 
2 Motor Octane Number (MON) 
3 Reid Vapor Pressure (RVP) 
4 Benzene contents of the products (BENZENE)

In the case of MON, there is an extensive lack of measurement which cause a serious
complication for prediction modeling of this quality. There is not simply enough measurement
for MON, neither on-line nor laboratory. However, it is possible to take advantage of strong
correlation between RON and MON, which are basically both measurement of the same
quality, i.e. octane number. MON can be predicted by a simple linear regression provided
accurate model for RON available. For this reason, we focus on prediction of RON in this
work.
It is also desired to estimate or predict the yield of reformates and isomerate products for each
reformer and isomerization unit. The desired reactions in these units are dehydrogenization,
cyclization and isomerization. However, hydrocracking and condensation reactions may also
take place in which the first one will produce light hydrocarbons and the second will cause
formation of coke. As a results, light hydrocarbon components like methane, ethane, propane,
and butane will be produced which is later removed in stabilizer column. Consequently, the
yield of reformate will be reduced. The change in the yield is thus correlated with RVP, and
yield of reformate can be calculated as the following:

Yield = Reformate flow rate

Reformer feed flow rate
⋅ 100 ⋅ CORR (4.1)

where:
CORR = C1 − C2 RVPC3 (4.2)

in which C1 ,  C2 , and  C3 are constants. Reformate flow rate product and the feed flow rate to
catalytic reformer are both measured. CORR in equation 4.2 is a correction factor used in
equation 4.1 to compensate for RVP changes. Figure 4.2 shows the correction factor for a
period of seven months operation in catalytic reformer I. The calculation of CORR is
performed by using an on-line RVP analyzer in this unit. In table 4.1, the average, standard
deviation, maximum, and minimum of CORR is shown. 
As it can be seen the correlation factor has an average of 0.954 in this period with a standard
deviation of 0.005. As a result, the correlation factor is a weak function of RVP. This
characteristic is also observed in catalytic reformer II. 
It is desired to develop a model for RVP in which the model can be used in calculation of
yield. Consequently, there will be no need for a separate model for yield of production since it
can be calculated using the existing measurement for feed flow rate and reformate flow rate,
and then apply the predicted value of RVP model for calculation of the correction factor.  
As described in chapter 2, the feed to isomerization unit is LVN, containing light hydrocarbon
molecule. The benzene contents of LVN is low, and cyclization reactions is expected to take
place only in a small extend in this unit. Thus, the contents of benzene in isomerate product is
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expected to be small and mainly unchanged. Laboratory analyses for a period of 14 months
operation has shown that the benzene content has been zero for a large period of time. There
are only 54 non-zero measurements reported with an average of 0.17 wt.%. and standard
deviation of 0.13. Hence, there will be no need for prediction model for benzene contents of
isomerate product and i will be assumed to be constant less than 0.2 wt%.
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Figure 4.2: Correction factor used in equation 4.1 for calculation of yield of reformate product
in catalytic reformer I.

CORR Factor

Average 0.954

Standard Deviation 0.005

Maximum 0.973

Minimum 0.938

Table 4.1: Statistic value for correction factor.

Hence, in this work there will be focused on development of chemometric model for
prediction of RON, RVP, and benzene contents for the reformate products and RON and RVP
for the isomerate product..
The output variables for catalytic reformer I,  II, and isomerization unit is shown in table 4.2
4.3, and 4.4 along with the calculated average, standard deviation, maximum, and minimum
values. These values are for calibration and validation data sets after removal the outliers. The
maximum and the minimum values for each quality can be compared with the interval of
[avg.-3*std, avg+3*std] in order to assess the outliers. Equation 4.3 indicates that for a
normally distributed variable the probability that a value can be out of the range  is lessµ ± 3σ
than 1%. Here, the mean value and standard deviation are denoted by µ and σ. Equation 4.3 is
a  results of Camp-Meidels theorem (L. Broendum and J.D. Monrad, 1987).

P( X − µ ≥ 3σ) = 0.27% ⇔ P( X − µ < 3σ) = 99.73% (4.3)
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Hence, it is expected that only one percent of data will fall out of the ranges as shownµ ± 3σ
in the tables 4.1, 4.2, and 4.3. 
Furthermore, it can be seen that the deference between maximum and minimum values of
RON is 2 for all the two reformer units and three for isomerization unit. This is in fact an
indication of effective feed-back control of RON. The effect of closed-loop control is
discussed in chapter 3.

Catalytic Reformer I

Calibration Validation

RVP RON BENZENE RVP RON BENZENE
AVG. 49.67 99.97 3.53 50.85 99.97 3.74

STD 3.02 0.37 0.43 3.74 0.45 0.36

MAX. 56.00 101.60 4.91 61.00 101.50 4.37

MIN. 39.00 98.60 2.12 44.00 98.30 2.95

AVG. + 3STD 58.72 101.09 4.82 62.05 101.33 4.83

AVG. - 3STD 40.61 98.85 2.24 39.65 98.61 2.66

Table 4.2: Output variables in Catalytic Reformer I.

Catalytic Reformer II

Calibration Validation

RVP RON BENZENE RVP RON BENZENE
AVG. 37.06 101.00 1.79 37.90 101.00 1.76

STD 3.73 0.25 0.45 3.46 0.20 0.43

MAX. 50.00 101.80 2.80 47.00 101.60 2.42

MIN. 23.00 100.00 0.60 32.00 100.40 1.16

AVG. + 3*STD 48.26 101.76 3.14 48.28 101.58 3.05

AVG. - 3*STD 25.86 100.25 0.44 27.51 100.41 0.47

Table 4.3: Output variables in Catalytic Reformer II.

Isomerization Unit 

Calibration Validation

RVP RON RVP RON
AVG. 70.04 87.29 70.20 87.24

STD 3.54 0.47 2.98 0.32

MAX. 76.30 88.60 81.00 88.40
MIN. 58.70 85.70 65.50 86.50

AVG. + 3STD 80.65 88.70 79.13 88.21

AVG. - 3STD 59.43 85.88 61.28 86.27

Table 4.4: Output variables in isomerization unit.
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4.5 Description of Input Variables

The described procedure in section 4.2.2 for selection of the appropriate input variables is
followed in order to obtain a set of data which is informative enough with respect to a model
set that can be determined from the data using appropriate chemometric methods. 
In the following subsections the variables selected for the models will be described. These
variables are going to be used for the RON, RVP, and benzene models described in chapter 5.

4.5.1 Input Variables for Catalytic Reformer I

As it is described in chapter 2, the feed to catalytic reformer I is a mix stream of heavy virgin
naphtha (HVN) from splitter in crude oil distillation section and heavy virgin visbroken
naphtha (HVBN) from the splitter in visbreaking section. Figure 4.3 shows a  simplified flow
diagram of catalytic reformer I along with the stabilizer/splitter system in crud oil distillation
and in after the mail fractionator in the visbreaking section. Table 4.5, 4.6 show a list all
variables that are used in developing the chemometric models described in chapter 5 for
prediction of RON, RVP and benzene contents of the reformate product. The values of
calculated average, standard deviation, maximum, and minimum along with the values of

 are shown in tables 4.5 and 4.6 for respectively calibration and validation data sets.µ ± 3σ
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Figure 4.3 : A simplified flow diagram of catalytic reformer I in gasoline processing area.
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Calibration

No. Description Unit AVG. STD MAX. MIN. AVG. +
3STD

AVG. -
3STD

1  H /  C mol/mol 3.86 0.42 6.86 3.00 5.12 2.61

2 % H2 Gas % 73.22 1.82 80.70 59.23 78.68 67.75

3 R1 Outlet Temp 0C 430.92 4.21 442.45 421.67 443.54 418.31

4 R2 Outlet Temp 0C 471.10 4.62 482.62 460.40 484.95 457.25

5 R3 Outlet Temp 0C 500.33 3.54 507.32 489.89 510.95 489.71

6 Reformer Feed
Flow Rate

m3/hr 51.38 7.27 63.06 29.87 73.17 29.58

7 Reformate Flow
Rate

m3/hr 38.09 5.85 48.45 21.09 55.64 20.53

8 C401 Liquid Gas
Flow Rate

m3/hr 5.37 0.96 8.08 1.47 8.25 2.50

9 C401 Reflux Flow
Rate

m3/hr 23.06 1.05 25.33 20.99 26.22 19.90

10 C401 Feed Temp 0C 165.45 2.86 174.05 158.34 174.03 156.87

11 C401 Reboiler
Temp

0C 254.59 2.11 261.57 239.98 260.94 248.25

12 C203 Reflux Flow
Rate

m3/hr 27.72 6.21 39.02 13.04 46.35 9.10

13 HVN Flow Rate m3/hr 52.79 8.28 76.57 23.69 77.63 27.94

14 LVN Flow Rate m3/hr 36.97 6.85 66.55 17.84 57.52 16.42

15 HVBN Flow Rate m3/hr 10.74 2.96 18.36 2.34 19.63 1.85

16 CP201 0C. 102.33 5.43 113.72 83.23 118.63 86.04

17 CP601 0C. 112.86 8.38 134.80 91.63 138.00 87.72

18 CP203B 0C 105.52 2.59 114.62 91.65 113.30 97.74

19 CP652B 0C 101.76 4.12 130.76 71.42 114.11 89.40

Table 4.5: Input variables used for calibration of the models in catalytic reformer I.

The first 5 variables listed in table 4.5 are expected to have a large effect on RON quality. H/C
is the ratio of mole hydrogen in the recycle gas per mole hydrocarbon in the feed. Variable
number 2 %H2 is the H2 purity in %mole or %volume in the recycle gas from the product
separator to the feed stream of the reformer. These two variables indicate the developed H2

during the reactions. It is expected that a change in the feed composition will be reflected in
the H/C mole ratio.
Variables number 3, 4, and 5 are the outlet temperature of the reactor number 1, 2, and 3
respectively. These temperatures indicates the type of the reactions take place in the reactors,
since the hydrocracking and condensation reactions will occur at higher temperature.
Variables number 6 and 7 are the feed flow rate to the reformer and the reformate product
flow rate. 
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Variation in RVP is dependent on the light hydrocarbon contents of reformate product, and
thus, it is sensitive to the operation of the stabilizer C401. Hence, variables 8, 9, 10, and 11
are chosen from stabilizer C401. The description of these variables in the table 4.5 and 4.6 are
self explanatory. Variable number 12 is the reflux flow rate in the splitter column C203, which
affects the changes in the boiling range of the LVN top product in C203 and hence, the split of
the naphtha feed to LVN and HVN. Variables number 13, 14, 15, are flow rate of LVN,
HVN, and HVBN. 

Validation

No. Description Unit AVG. STD MAX. MIN. AVG. +
3STD

AVG. -
 3STD

1  H /  C mole/mole 3.96 0.47 6.17 3.26 5.36 2.56

2 % H2 Gas %mole 72.52 1.79 79.31 63.07 77.90 67.14

3 R1 Outlet Temp 0C 436.45 3.58 444.30 426.58 447.20 425.69

4 R2 Outlet Temp 0C 480.89 4.24 490.08 469.46 493.61 468.17

5 R3 Outlet Temp 0C 506.61 4.94 517.99 496.46 521.44 491.79

6 Reformer Feed
Flow Rate

m3/hr 51.44 6.03 62.66 36.76 69.54 33.34

7 Reformate Flow
Rate

m3/hr 39.02 4.18 47.62 27.62 51.55 26.48

8 C401 Liquid Gas
Flow Rate

m3/hr 4.57 0.92 7.09 1.04 7.32 1.82

9 C401 Reflux Flow
Rate

m3/hr 21.66 1.25 28.92 16.81 25.43 17.90

10 C401 Feed Temp 0C 165.15 3.59 173.50 156.76 175.93 154.37

11 C401 Reboiler
Temp

0C 254.51 1.97 258.02 246.49 260.42 248.60

12 C203 Reflux Flow
Rate

m3/hr 31.05 4.66 38.89 17.90 45.04 17.06

13 HVN Flow Rate m3/hr 54.80 5.57 69.51 35.81 71.50 38.10

14 LVN Flow Rate m3/hr 32.09 7.28 53.02 14.00 53.92 10.27

15 HVBN Flow Rate m3/hr 55.43 6.32 67.57 43.00 74.38 36.48

16 CP201 0C. 11.47 2.72 17.85 3.29 19.63 3.30

17 CP601 0C. 105.24 4.81 114.15 91.93 119.66 90.82

18 CP203B 0C 111.27 7.91 131.48 91.70 135.00 87.53

19 CP652B 0C 106.47 2.31 115.89 100.84 113.42 99.53

Table 4.6: Input variables used for validation of the models in catalytic reformer I.

A change in the composition of the crude oil can affect the fraction of HVN and LVN in the
splitter. This change is reflected by the temperature on the naphtha side stream in crude oil
distillation. Variable number 16, CP201, which is also called as cut point temperature, is a
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pressure corrected temperature of naphtha side stream tray in crude oil distillation, which is
calculated as in equation 4.4. 

Tcut = (T i ) C1 − C2Ln(Pi)
C1 − (Ti )(Ln(Pi))

(4.4)

where C1, and C2 are constants, Ti  is the measured temperature in Kelvin, and Pi is top
pressure in bar absolute.
Variables number 17, 18, and 19 are calculated by using equation 4.4 for the temperature of
naphtha from main fractionator in visbreaking section, bottom temperature of splitter in crude
distillation, and bottom temperature of splitter in visbreaking section respectively.

4.5.2 Input Variables for Catalytic Reformer II

There are a lot of similarity between the process in catalytic reformer I and II. Unless other
mentioned, the description of the variables are the same as for the reformer I.
The feed to catalytic reformer II is HVN from splitter C-4703 as shown in figure 4.4, which
shows a simplified flow diagram of catalytic reformer II along with the stabilizer/splitter
system after condensate fractionator. Table 4.7, 4.8 show a list all variables that are used in
developing the chemometric models for prediction of RON, RVP and benzene contents of the
reformate product. Table 4.7, 4.8 shows average, standard deviation, maximum, and minimum
along with the values of  as well for calibration and validation data sets respectively.µ ± 3σ
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Figure 4.4 : A simplified flow diagram of catalytic reformer II in gasoline processing area.

Chapter 4 Introduction to Model Development

68



The first 5 variables listed in table 4.7 are chosen from the reactors and the recycle gas from
the reformer which are  expected to have a large effect on RON quality as it is explained in
reformer I. 
Variation in RVP is dependent on the operation of stabilizer C4401. Hence, variables 7, 8, 9,
10, and 11 are chosen from stabilizer C4401. Variable number 12, 13 , and 14 are chosen from
the splitter C4703  which affect the split of naphtha feed to LVN and HVN. Variables 15, 16,
17, are calculated by using equation 4.4. The description of these variables in the table 4.7 and
4.8 are self explanatory.

Calibration

No. Description Unit AVG STD MAX MIN AVG +
3STD

AVG -
 3STD

1 R1 Outlet Temp 0C. 391.80 3.28 398.77 380.81 401.65 381.95

2 R2 Outlet Temp 0C. 446.91 5.36 458.23 432.86 462.99 430.84

3 R3 Outlet Temp 0C. 472.33 4.98 482.95 459.88 487.26 457.40

4  H/C mole/mole 4.42 0.73 6.61 3.51 6.60 2.23

5 H2 Purity %mole 82.47 1.54 87.36 72.82 87.10 77.85

6 Reformer  Feed
Flow Rate

m3/hr 92.41 10.66 107.98 64.99 124.38 60.44

7 C4401 Feed Temp 0C. 187.47 3.42 194.63 158.52 197.73 177.20

8 C4401 Reboiler
Temp 

0C. 248.82 1.52 252.85 203.60 253.39 244.26

9 Reformate Product
Flow Rate

m3/hr 76.29 8.85 89.21 54.16 102.85 49.73

10 C4401 Reflux Flow
Rate

m3/hr 4.98 1.76 11.53 0.61 10.26 -0.29

11 C-4401 Feed Flow
Rate

m3/hr 77.81 9.18 91.36 54.00 105.36 50.27

12 C4703 Reflux Flow
Rate

m3/hr 119.33 9.26 146.00 68.03 147.10 91.56

13 C4703 LVN Flow
Rate

m3/hr 76.77 3.29 89.10 21.41 86.64 66.91

14 C4703 Reboiler
Steam Flow Rate

ton/hr 17.68 1.19 20.00 12.48 21.26 14.11

15 CP201 0C. 103.62 5.45 113.90 83.23 119.98 87.26

16 CP4201 0C. 101.26 3.80 123.64 71.64 112.65 89.88

17 CP4703B 0C. 110.10 1.31 113.48 78.29 114.02 106.18

Table 4.7: Input variables used for calibration of the models in catalytic reformer II.
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Validation

No. Description Unit AVG STD MAX MIN AVG +
3STD

AVG -
 3STD

1 R1 Outlet Temp 0C. 397.61 2.71 403.82 391.92 405.74 389.49

2 R2 Outlet Temp 0C. 456.99 4.62 465.29 448.60 470.84 443.14

3 R3 Outlet Temp 0C. 482.32 6.25 493.09 471.82 501.09 463.56

4  H/C mole/mole 4.48 0.43 5.66 3.73 5.77 3.20

5 H2 Purity %mole 80.53 1.55 84.46 69.82 85.19 75.88

6 Reformer  Feed
Flow Rate

m3/hr 90.86 9.76 103.16 75.45 120.15 61.58

7 C4401 Feed Temp 0C. 182.97 4.05 188.64 171.90 195.11 170.82

8 C4401 Reboiler
Temp 

0C. 247.93 1.54 250.41 243.58 252.54 243.33

9 Reformate Product
Flow Rate

m3/hr 74.89 7.50 87.46 63.10 97.37 52.40

10 C4401 Reflux Flow
Rate

m3/hr 5.91 2.33 11.25 1.86 12.91 -1.09

11 C-4401 Feed Flow
Rate

m3/hr 76.50 8.07 87.61 63.91 100.71 52.29

12 C4703 Reflux Flow
Rate

m3/hr 117.74 4.12 127.91 89.99 130.11 105.38

13 C4703 LVN Flow
Rate

m3/hr 76.55 3.03 86.46 60.76 85.65 67.44

14 C4703 Reboiler
Steam Flow Rate

ton/hr 17.90 0.73 19.28 13.17 20.08 15.72

15 CP201 0C. 103.50 5.21 114.15 91.93 119.14 87.85

16 CP4201 0C. 100.61 1.94 106.21 95.84 106.44 94.78

17 CP4703B 0C. 110.75 0.94 113.56 108.13 113.57 107.93

Table 4.8: Input variables used for validation of the models in catalytic reformer II.
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4.5.3 Input Variables for Isomerization Unit

The feed to isomerization unit is light virgin naphtha (LVN) after removal of isopentane (IC5)
in deisopentanizer (DIP) as it is described in chapter 2. LVN is the top product of the splitter
C4703 which is sent to DIP, as it is shown figure 4.5. A typical LVN contains mostly of
hydrocarbon molecules between C5 to C7 with a True Boiling Point (TBP) range of 32-88 0C.
Hence, it would be possible to identify the hydrocarbon components in the feed to this unit by
chromatographic analysis. 
The low octane LVN is converted to high octane number isomerate product by catalytic
isomerization process. The reactions in this process are mainly exothermic. 
Table 4.9, and 4.10 show a list all variables used for model development in this unit. These
model are developed for prediction of RON, and RVP. The benzene contents of the isomerate
product is assumed to be contestant. The values of calculated average, standard deviation,
maximum, and minimum along with the values of  are shown in tables 4.9 and 4.10 forµ ± 3σ
respectively calibration and validation data sets.
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Stabilizer

Stabilized Naphtha

HVN

C-4703
Splitter

LVN

Reflux

DIP

IC5
Reflux

Figure 4.5 : A simplified flow diagram of isomerization unit in gasoline processing area.

Variable number one is the inlet temperature of the feed to the reactor A. The outlet stream of
the reactor A is cooled down to about the same temperature as the feed to the first reactor and
sent to reactor B. Variables 2, and 3 are outlet temperatures of the reactors. Variable number
4 is Liquid Hourly Space Velocity (LHSV) which is calculated as the total inlet flow rate of
the feed to the reactors divided by the catalyst volume. Variable number 5 is the hydrogen
consumption in this unit, since the isomerization reactions consume H2. Variables 6. 7. 8. and
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9 contain information about the operation in DIP in which the IC5 is removed, and thus these
variables will reflect de degree of efficiency in DIP.

Calibration

No. Description Unit AVG STD MAX MIN AVG +
3STD

AVG -  
3STD

1  Reactor Inlet
Temp

0C 142.96 2.21 147.30 100.27 149.60 136.32

2  Reactor A Outlet
Temp

0C 189.10 2.28 193.81 132.52 195.95 182.25

3  Reactor B Outlet
Temp

0C 159.80 2.52 164.20 112.18 167.35 152.26

4 LHSV 1/hr 2.15 0.14 2.29 1.50 2.58 1.72

5 H2 Consumption Sm3/hr 2553.09 245.48 3136.48 1563.97 3289.53 1816.65

6 DIP Tray 8 Temp 0C 84.88 1.28 92.53 81.59 88.72 81.03

7 DIP Bottom
Flow Rate

m3/hr 55.63 3.40 60.59 41.03 65.83 45.44

8 DIP Feed Flow
Rate

m3/hr 75.54 2.91 83.05 60.44 84.27 66.81

9 DIP Reflux Flow
Rate

m3/hr 98.18 8.50 152.48 65.96 123.68 72.68

10 CP4703T 0C 52.46 1.79 57.56 37.68 57.83 47.09

11 C-4703 Reflux
Flow rate 

m3/hr 124.24 3.38 146.00 87.57 134.39 114.09

12 C-4703 Feed
Flow Rate 

m3/hr 172.69 12.09 193.77 112.81 208.97 136.42

Table 4.9: Input variables used for calibration of the models in isomerization unit.

Variables number 10 is the LVN cut point in the splitter C4703 calculated by using equation
4.4. 
Variables 10, 11, and 12 together with variable number 7 which is in fact the flow rate of LVN
contain information about the mass balance and split efficiency in the splitter C4703.
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Validation

No. Description Unit AVG. STD MAX. MIN. AVG. +
3STD

AVG. -  
3STD

1  Reactor Inlet
Temp

0C 143.40 1.09 147.72 131.12 146.67 140.13

2  Reactor A
Outlet Temp

0C 189.35 1.54 193.11 175.91 193.98 184.72

3  Reactor B
Outlet Temp

0C 159.74 1.04 162.50 147.22 162.86 156.62

4 LHSV 1/hr 2.18 0.07 2.27 1.44 2.40 1.95

5 H2 Consumption Sm3/hr 2787.02 176.93 3183.27 1706.59 3317.79 2256.24

6 DIP Tray 8
Temp

0C 85.33 1.49 89.30 76.55 89.79 80.87

7 DIP Bottom
Flow Rate

m3/hr 55.81 3.33 59.20 10.89 65.81 45.82

8 DIP Feed Flow
Rate

m3/hr 75.39 2.82 84.19 53.58 83.85 66.93

9 DIP Reflux Flow
Rate

m3/hr 96.98 14.73 144.71 24.63 141.18 52.78

10 CP4703T 0C 53.94 1.33 57.66 50.96 57.93 49.95

11 C-4703 Reflux
Flow rate 

m3/hr 112.28 7.60 127.91 89.99 135.08 89.47

12 C-4703 Feed
Flow Rate 

m3/hr 172.75 11.04 189.34 129.98 205.87 139.64

Table 4.10: Input variables used for validation of the models in isomerization unit.
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4.6 Selection the Sample  Interval

In most of the modern industry process control system today, one or another type of
commercial Distributed Control System (DCS) is used in which the conventional process
variables such as temperature, pressure and flow rate are measured in a sample rate of a few
seconds. This high frequency sampling rate is due to important consideration of process
control applications, and occur at the lowest level of conventional control instrumentation
which is then connected normally to the Control Processor of the respective control loop. The
data acquisition system will then collect the data and possibly perform a kind of suitable data
treatment later. This data treatment can be such as a moderate filtering in order to prevent
aliasing in process control, or eliminate obvious sensor fault.

Right from the beginning of every input/output modeling work or any process control
application the question about sampling frequency will arise. How fast should a sampling rate
be in order to data would then be informative enough to meet the demands for a robust
prediction model?. 
This question is closely related to the dynamic characteristic of the system under study.
Furthermore, it is not always possible to measure the desired quality variable considering the
possibility and limitation of measurement devices and what existing hardware and software
system may offer in the data sampling field. Hence, the question above is effectively related to
a second question about the possibility of whether we can actually get a set of measurements
in a suitable sample frequency which we desire. 
It is attempted to answer these questions in the following subsections.

4.6.1 Suitable Sample Frequency

An appropriate sampling rate should be relative to the time constants of the system. A good
choice can be a sample frequency of ten times of the bandwidth of the system (Ljung, L.
1987). In the frequency domain, the dynamic behavior of a system is characterized by its
bandwidth. There is a reciprocal relationship between bandwidth and dynamic response time.
For a first order dynamic system the bandwidth is equal to natural frequency of the system,
this means that the product of bandwidth and dynamic response time is exactly one. Friedland
(Friedland, B. 1987) has shown that this product is approximately one for a properly damped
second order system. The same relation is also valid for higher system order as well. 
On the other hand, very fast sampling is undesirable since the developed model fits in high
frequency bands, and hence produce bias in model prediction. Besides, fast sampling leads to
numerical difficulties in model parameter estimation.

4.6.2 Sample Frequency for Input Variables

The input signals are mostly temperature, pressure and flow rate and also some calculated
variables based on these measurements, as it is described in chapter 4. 
The data acquisition system of the refinery offer 4 sampling rates which are average of 3 and 6
minutes data, average of one hour, and average of one day data. 
As it is described in chapter 4, we are seeking the relevant effect of some process variables on
the qualities of intermediate gasoline products after reforming and isomerization units. Thus,
our system-limit covers the whole gasoline processing area from the naphtha side-stream of
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crude oil distillation column in the beginning of this processing area to the intermediate
storage tank in gasoline blending at the end.
The question is, what is a good estimate for bandwidth and dynamic response time of this
system? or more practically which of those existing 4 sample frequencies should be selected in
order to be around 4-10 times higher than the bandwidth of this system? 
Notice that, for example, in catalytic reformer I, there are 4 reactors, 1 distillation column, 1
heater, and 1 gas-liquid separator. Consequently, we may think of several hours of response
times. 
Based on the above considerations, the sample rate of average of one hour is chosen for the
input variables in order to satisfy the demand for a sampling rate of 4-10 times faster than the
response of the system. This choice rely on some previous practical experience in modeling in
this project, and also in previous control application at the refinery. These experiences suggest
that day-average sampling rate is too slow and six-minutes sampling rate is too fast.

4.6.3 Sample Frequency for Output Variable

The qualities of reformates and isomerate products, which make the output signal of the
models, are measured at laboratory once every 24 hours. This low sampling frequency for
model output has given rise to a challenging problem in this work. It may appear, at the first
place, that in some modeling cases, it would not simply be possible to obtain a reliable and
robust model by this low sampling frequency. 
The proposed solution for output low sample frequency is that we simply consider the
sampling rate of the system to be one hour,  in which we have a lot of missing data in output
measurement. And then, depending on the variation in output signal from one day to another,
we can choose one of the following way to overcome this issue.
If the output variation is slow moving over one day to the next day, this is as the case of RON,
we can perform an interpolation in output and perform model calibration but avoid
interpolation in model validation. 
In the opposite case, in which there is a considerable variation in the output signal, indicating a
possible faster dynamic response, such as the case of RVP, it would not be a good idea to
replace the missing output by interpolation. The proposed solution here is we choose a
suitable structure for ARX model in which we take hourly sampled input together with the last
existing output signal in order to model the prediction of output at time t. Since this solution is
inherently integrated in the ARX structure, it will be described in the following section. 
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4.7 PCA Analysis

PCA model is developed in order for assessment of representability of data used for the
developed models. It is important to analysis the data to discover any abnormality in the data
which can for instance be a departure from the normal operation point. It is assumed that
outliers are already removed and thus the abnormality can be due to an operation point which
is not normal or is shutdown or startup period. Another aspect of a PCA model is to examine
the existence of distinct clusters of data which suggest totally different operation of the plant.
In this case it should be considered to develop prediction models for each area separately. A
third aspect is to discover any collinearity in the selected input.
The PCA analysis is performed for the input data which is used for the development of the
chemometric models for catalytic reformer I. In the next subsection a description of the PCA
model is presented. 

4.7.1 PCA Model for Catalytic Reformer I

The input to the PCA model is called X matrix. Number of selected input variables for the
prediction models for this unit are 19 as it is described in section 4.5. Hence, the data X
contains 19 columns. Furthermore, the data X contains both the calibration and the validation
sets used in the prediction model development, and hence number of rows in X matrix, which
is denoted by n in equation 4.5, corresponds to the total number of data after removing the
faulty, and outliers. Number of n is 10012 samples. The input X data is then autoscaled. The
covariance matrix of X is calculated by equation 4.5, since the data is autoscaled this equation
will give the correlation matrix.

cov(X) = XTX
n − 1

(4.5)

As it is described in chapter 3, PCA model relies on an eigenvector decomposition of the
correlation matrix of the data X. The eigenvectors are called Principal Components (PC), and
the associated eigenvalues of the correlation matrix are a measure of the captured variance for
each pair of score and loading vector. Principal Components are also called Latent Variables
(LV).
In table 4.11, the percent variance captured by each PC is shown for the PCA analysis. Figure
4.6 shows the eigenvalues of  the correlation matrix versus principal component number.
These information is used in order to decide how many PCs should be included to the model.
It appears that a number of 10 PCs can be a suitable choice. This choice rely on an assessment
of the level of the noise in the data, and it is expected that most of the samples in input data
reflect the interesting operation points, as shown in the tables 4.5 and 4.6.

A graphical approach is the best way to represent the results of a principal component analysis
which makes the interpretation of the results much easier. By examining scores and loading
plots, we can explore the quality of substantial information in the data. We can examine the
scores and loadings plot one by one or plot the score or loading vectors for PC number 1
versus PC number 2. 
Figure 4.7 shows the scores on PC number 1 along with 95 % limit of confidence interval. The
scores are the effect of observations on the PC. Figure 4.8 shows a scatter plot of the scores
for PC number 1 versus the scores for PC number 2 along with the 95% and 99% confidence
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interval limits. These two figures shows no significant outliers, and the major part of the data
is indeed inside the 95% limit.

Percent Variance Captured by PCA Model

Principal
Component Number

Eigenvalue of
Correlation (X)

%Variance Captured
by this PC

%Variance
Captured Total

1 4.84E+00 25.49 25.49

2 3.41E+00 17.96 43.44

3 2.73E+00 14.35 57.79

4 2.21E+00 11.65 69.44

5 1.28E+00 6.73 76.18

6 1.07E+00 5.61 81.79

7 7.51E-01 3.95 85.74

8 6.33E-01 3.33 89.07

9 4.79E-01 2.52 91.59

10 3.60E-01 1.90 93.49

11 3.22E-01 1.70 95.18

12 2.93E-01 1.54 96.73

13 2.37E-01 1.25 97.97

14 1.32E-01 0.70 98.67

15 9.26E-02 0.49 99.15

16 8.51E-02 0.45 99.60

17 5.61E-02 0.30 99.90

18 1.42E-02 0.07 99.97

19 5.20E-03 0.03 100.00

Table 4.11 : Percent Variance Captured by PCA Model
. 
What we observe in the figures is that there is apparently a systematic variation in data, and
there are at least two major areas of operation. It is an indication of two different operation
modes. It is important for the task of the modeling that it is necessary separate these two
operation modes and develop model for each mode alone.
The interesting observation is that the periods of these two operation modes are not the same,
meaning that the operation points are independent of season changes. This indication suggests
that the operation modes are mainly related to the desired quality of RON and benzene
contents rather than RVP. The specification for RVP quality is different for summer and
winter periods, but there is no season change for specification of neither RON nor benzene
content. There are two major type of reformate products regarding the level of benzene
content characterized by low and high aromatic; i. e. mostly benzene, contents. Examining the
figures shows that the change from one to another variant is around a few weeks. 
Consequently, it is not necessary to distinguish between these two regions and it should be
investigated that one model for both operation modes will be appropriate.
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Figure 4.6 : Percent variance Captured by PCA model .
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Figure 4.7 : Scores on PC number 1.
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Figure 4.9 shows the loadings for PC number 1 versus number 2. The loading plot exhibit the
effect of variables on the PC. Examining the loading plot is interesting to discover which
variables have the most effect on the PC. It can be seen that for example variables 6 and 7,
which are flow rate of the feed to the reformer and the reformate product, have the same
effect on both PCs, meaning that they are correlated, and thus one of them is enough to be
included in a model to represent the corresponding information.
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Figure 4.8 : Scatter plot of PC # 1 vs. PC # 2 showing the 95% and 99% limits .
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Figure 4.9 : Loading for PC number 1 and 2.

4.7.2 PCA Model for Catalytic Reformer II

The input to the PCA model is X matrix containing 17 columns, representing 17 variables used
in models for reformer II, and 9703 rows for the total number of existing objects. The input X
data is autoscaled, and contains both the calibration and the validation sets used in the
prediction model development. 

Table 4.12 shows the percent variance captured by each PC in the PCA analysis. Figure 4.10
shows the eigenvalues of  the correlation matrix versus principal component number. It this
case, it can be seen that the choice of PC is in the region of the 4-8. To avoid loss of
significant information 7 PCs is chosen to be included in the model.
Figure 4.7 shows the scores on PC number 1 along with 95 % limit of confidence interval. The
scatter plot of the scores for PC number 1 versus the scores for PC number 2 along with the
95% and 99% confidence interval limits is shown in figure 4.8. These two figures shows no
significant outliers, and the major part of the data is indeed inside the 95% limit
Examining these figures shows a systematic variation in data, indicating two different
operation modes. The period of these two operation modes are much less than the period in
catalytic reformer I and is around 10 days. This suggests again that the operation modes are
related mainly to the desired quality of RON and benzene contents rather than RVP. The
conclusion is again that it is not appropriate to separate this two regions. 
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Percent Variance Captured by PCA Model

Principal
Component Number

Eigenvalue of
Correlation (X)

%Variance
Captured by this PC

%Variance
Captured Total

1 7.21E+00 44.02 44.02

2 3.02E+00 18.42 62.44

3 2.50E+00 15.28 77.72

4 9.22E-01 5.63 83.35

5 7.62E-01 4.65 88.01

6 5.99E-01 3.66 91.66

7 3.53E-01 2.16 93.82

8 2.70E-01 1.65 95.47

9 2.22E-01 1.36 96.83

10 1.86E-01 1.13 97.96

11 1.19E-01 0.73 98.69

12 1.04E-01 0.63 99.32

13 6.16E-02 0.38 99.70

14 4.12E-02 0.25 99.95

15 5.63E-03 0.03 99.98

16 2.13E-03 0.01 100.00

17 6.73E-04 0.00 100.00

Table 4.12 : Percent Variance Captured by PCA Model

0 5 10 15 20
0

1

2

3

4

5

6

7

8
Eigenvalue vs. PC Number

PC Number

E
ig

en
va

lu
e

Figure 4.10 : Eigenvalue versus PC number.
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Figure 4.11 : Scores on PC number 1.

The loadings for PC number 1 versus number 2 is shown in figure 4.13, indicating the effect of
variables on the two PCs. It can be seen that for example variables 6 , 9 and 11, which are
flow rate of the feed to the reformer, feed to the stabilizer, and the reformate product, have
the same effect on both PCs. The correlation means that one of them is enough to be included
in this PCA model. 
Notice that these variables are used in different prediction models, which can have different
representation of the dynamic information. 
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Figure 4.12 : Scatter plot of PC # 1 vs. PC # 2 showing the 95% and 99% limits .
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Figure 4.13 : Loading for PC number 1 and 2.
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4.7.3 PCA Model for Isomerization Unit

The input to the PCA model is X matrix containing 12 columns for the 12 variables used in
prediction models for isomerization unit, and 9467 rows for the total number of objects. The
input X data is autoscaled.

Percent Variance Captured by PCA Model

Principal
Component Number

Eigenvalue of
Correlation (X)

%Variance
Captured by this PC

%Variance
Captured Total

1 5.36E+00 44.65 44.65

2 2.20E+00 18.32 62.97

3 1.50E+00 12.47 75.44

4 9.93E-01 8.27 83.71

5 6.77E-01 5.64 89.35

6 4.00E-01 3.34 92.69

7 3.14E-01 2.62 95.31

8 2.06E-01 1.71 97.02

9 1.50E-01 1.25 98.27

10 1.09E-01 0.91 99.18

11 7.29E-02 0.61 99.79

12 2.56E-02 0.21 100

Table 4.13 : Percent Variance Captured by PCA Model

Figure 4.14 and table 4.13 show the eigenvalues of the correlation matrix versus principal
component number and percent variance captures by each PC. Based on these information. a
choice of 6 PCs is suitable for the PCA model in this case. 
The plot of scores on PC number one, which is shown in figure 4.15, indicate that there are
some objects that are out of the range of 95% limit of confidence interval. These objects are
not outlier and identified to be from an operation point in which the temperature of the inlet
stream to the first reactor and the temperature of both outlet streams are lower than the rest of
the objects. The amount of data in this region is 12% of total number of data including both
calibration and validation which consist of 9467 hours operation (about 13 months). This
abnormality has obviously occurred in several periods mostly in calibration data as it can be
seen in figure 4.15. It is more clear in figure 4.17 which shows the scatter plot of the scores
for PC number 1 versus the scores for PC number 2 along with the 95% and 99% confidence
interval limits. 
Figures 4.16, and 4.18 shows the corresponding plot for scores on PC number 2, and a scatter
plot scores on PC number 2 versus PC number 3 respectively. A comparison between figure
4.15 and figure 4.16 indicate that the abnormality is captured mostly by the first PC. However,
figure 4.16 suggest that there is clear systematic variation in data indicating existence of
different operation modes as in the reformer units.
Whatever reason for this abnormality may be, it will not affect the development of the
prediction models since that portion of data should be excluded from the calibration set and
hence the obtained model will be valid only for the normal operation point.  
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Figure 4.14 : Eigenvalue versus PC number.
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Figure 4.15 : Scores on PC number 1.
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Figure 4.16 : Scores on PC number 2.
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Figure 4.17 : Scatter plot of PC # 1 vs. PC # 2 showing the 95% and 99% limits .

The loadings for PC number 1 versus number 2 is shown in figure 4.19 indicating the effect of
variables on the two PCs. It can be seen that variables 1, 2, 3, 4, 5, 7, 8, and 12 have the
strongest effect on PC number one, and it is thus expected that these variables have the largest
effect on the abnormality described before and observed in figures 4.17 and 4.15. A
description of these variables can be seen in table 4.9.
Variables 1 through 5 represent the operation in the reactors. It is interesting to discover that
variables 7, 8, and 12 which are the flow rate of DIP bottom, DIP feed, and splitter feed, has
also an effect on the abnormality. Examination of the data in the period of abnormality reveal
that the average of these flow rate were also lower than the average of the rest in the data set.
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Hence, a possible explanation for this abnormality is problem with low LVN product
indicating a possible cooling capacity limitation in the splitter distillation column.
This PCA analysis is in fact an example of uncovering the source of hidden information in the
data, which can be use as guide for discovering the source of a potential problem in the
process of a large plant.
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Figure 4.18 : Scatter plot of PC # 2 vs. PC # 3 showing the 95% and 99% limits .
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Figure 4.19 : Loading for PC number 1 versus 2.
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4.8 Conclusion

In this chapter, the essential steps in development of multivariate process model applying
chemometric approach is presented. The purpose is to describe how every single step is
performed in this work in order to provide a strong background for description of the models
presented in chapter 5.

A general scope for chemometric model development and a procedure with its different steps
is presented and discussed in section 4.2. This procedure includes discussions of the objective
of modeling, selection of variables, data collection and sampling, data treatment and scaling,
selection of suitable method, calibration and validation of the obtained chemometric model. 
A more specific system definition and description of the process with different production
units is presented in order to clarify the background and the motivation for the selected input
variables to be used for the prediction models.
In section 4.4, and 4.5 the description of output and input variables are presented. The
calibration and validation data sets along with sample mean, variance, maximum and minimum
values are presented for each variable in order to assess the data. 
The problem regarding sampling frequency is discussed in section 4.6. This discussion will
serve as a background for the proposed solution discussed in chapter 5.
A PCA model is developed for each catalytic reformer and isomerization unit. The PCA
analysis is performed in order to assess and classify the type of behaviours represented in the
data used for the developed models. The PCA analysis shows that there is a systematic
variation in data, indicating the existence of at least two different operation modes. The period
of operation in each mode is around a few days up to a few weeks. The results of PCA
suggests that the operation modes are related mainly to the desired quality of RON and
benzene contents rather than RVP. It is concluded that it is not appropriate to separate these
two regions, and a common model should be developed for the whole calibration data set
containing 10 months operation data. 
The PCA analysis has also shown an abnormality in isomerization unit, indicating that a
portion of the obtained data corresponding to 12% of total 13 months operation lies outside
the 95% confidence interval. The analysis has shown that the operating temperatures in the
reactors, along with the feed flow rate to isomerization and deisopentanizer unit were low in
those period of abnormality, suggesting a possible obstacle in operation of the splitter. The
data for the period of abnormality is excluded from the calibration set and hence the obtained
model will be valid only for the normal operation.
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Chapter 5 

Models for Reformate
and Isomerate Products

5.1 Introduction

5.1.1 Purpose

The purpose of this chapter is to describe structure, calibration, validation, and performance of
the chemometric models developed for quality prediction of reformate and isomerate products
in gasoline processing area. The objective is to describe the basic principles in model
development, and to demonstrate how the problems are solved. In this chapter the developed
models for prediction of RON, RVP, and aromate (benzene) contents of the product in
catalytic reformer I are presented and discussed. The corresponding models for catalytic
reformer II and isomerization unit can be found in appendix A and B since the basic steps and
the results of these model identifications are quite similar to those described in this chapter.
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5.1.2 Background

As it is described in chapter 2 and discussed further in chapter 4, there are a total of 9 different
blend components used in the gasoline blending unit. It is important to know the quality
variables of all streams sent to the gasoline blender in order to optimize the quality of final
gasoline products. For some blend components, it is easy to estimate or calculate the qualities.
For instance, three of the total nine blend components can be considered as almost pure
components. These are oxygenate, butane and isopentane. Their qualities can be estimated
based on pure component property. Regarding LVN and LVBN; i.e. light virgin naphtha and
light virgin visbroken naphtha, the qualities can be calculated or estimated since they contain
light hydrocarbon components which can be identified by chromatographic analysis. 
However, for the reformate and isomerate products from catalytic reformers and the
isomerization unit it is not possible to estimate or calculate the qualities easily due to the
complex process of reforming and isomerization, and predictive models are needed.
Furthermore, it is expensive to have on-line quality measurements for these three intermediate
products in order to have the same sampling frequency as the other process variables. The
only existing quality measurement for the reformate and isomerate streams are laboratory
analyses, which are available only once per day, i.e. a sample interval of 24 hours, for each
quality.  Input variables in these units are measured on-line, and a sample interval of one hour
is chosen for these variables in order to satisfy the demand for a sampling rate 4-10 times
faster than the response of the system, as described in chapter 4.
The output from the models are Research Octane Number (RON), Reid Vapor Pressure
(RVP), and aromatic contents of the products (Benzene). The inputs are a set of selected
process variables. In order to fulfill the assumption of an informative input set as described in
chapter 3, a set of inputs is selected based on general chemical engineering principles  and
knowledge of the process, in which the selected inputs are expected to have significant 
influence on the output variable. The inputs and output variables were presented and discussed
in chapter 4.

The reformate and isomerate products from catalytic reformers and the isomerization unit are
especially interesting since they have high octane number and low aromatic characteristics.
The gasoline blending process can be considered as a batch process in which the blend
components are used in order to produce the final gasoline products. The quality and volume
of the final products are fixed by the refinery production schedule. If there is no feed
introduced to the blendstock tanks during the period of blending, i.e. so called standing tanks,
then the measured or predicted qualities of the blend components remain constant during the
blending, and hence a Linear Programming (LP) approach in optimization of blending process
would be successful (Singh et al. 2000). 
The normal practice for the gasoline blending process in the refinery is that the qualitiy of the
material in the blendstock tanks are measured once a day and used to estimate the first recipe
for the blending process by using a LP optimization approach. The process is controlled by
performing feed-back control using on-line measurements of the qualities in the outlet stream
of the gasoline blending.
The blendstock tanks are supplied by continuous feed streams during the blending process, i.e.
so called running tank. In this situation the assumption of constant quality of the blend
components is no longer valid and applying the LP formulation will not handle such
time-varying feedstock qualities adequately. A solution for the blending problem is obtained
since feed-back control is used based on on-line quality measurements of the product stream.
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However, this solution will not be an optimal solution due the time-varying qualities of the
blend stocks.
The RON quality of the reformate streams is predicted using a multivariate regression methods
and then applying bias updating. The bias updating is based on the daily measurements of
RON reported by the laboratory and involves comparing the measured RON with those
predicted by the model and then the difference is added as a constant in order to update the
model with the new measurement. In this approach it is assumed that the RON quality remain
unchanged during the period of bias updating, which is not an appropriate assumption.
The solution strategy proposed in this thesis is based on applying a moving horizon
optimization for the blending problem in which the quality variables are predicted based on the
variation of the upstream process and then provide the blending optimization problem with the
predicted previous, present and future qualities of blendstocks (Nikalou 1998, and Singh et al.
2000).

In this chapter, the prediction models for the qualities of reformate and isomerate products
sent to the blendstock tanks are presented and discussed.

5.1.3 Outline

In section 5.2 a discussion about selection of the methods applied for model development is
presented. In this section the proposed technique for handling the missing values of output
variables are described.
The models for prediction of the quality of the reformate product stream of catalytic reformer
I, along with model development procedure, are presented and discussed in section 5.3. 
The conclusions for the quality prediction models  are summarized in section 5.4
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5.2 Selection of the Method

In chapter 3, the different methods in process chemometrics are discussed. These are static
and dynamic modeling methods in which both of them may use linear or nonlinear approaches
in parameter estimation. All these type of modeling methods has been examined for prediction
of the quality of reformate products. A great del of time has been spent on developing neural
network models as a static nonlinear method, PLS as a static linear, and ARX as a time-series
linear method.
It has been found that the output signal exhibit correlation to the past values of input and
output signals. As it is motivated by the discussion in chapter 4 regarding sample rate of
output signal, the best result has been found using the ARX identification method.  
Parameter estimation in an ARX model is conventionally performed by a Least Squares (LS)
regression method, as it is suggested by Ljung (Ljung, 1987). Better result in this work is
obtained by ARX model in which the parameters θ are estimated by a PLS model in analogy
with the described relationship between a PCA and ARX model by Wise and Gallagher 1996.
Applying a PLS method in parameter estimation of ARX model has increased the strength of
the predictability by taking advantage of the ability of PLS method to extract the useful
information from collinear, noisy, input data which is relevant for modeling the output .
The low sampling frequency for model output has given rise to a challenging problem in this
work. A solution to this problem is proposed which is related to one of the following two
situations. 
If the output variation is slow moving from one day to the next day, as the case of RON, a
linear interpolation of the output is performed in order to estimate the missing output values in
calibration data set. However, applying interpolation is avoided in validation data set. During
the validation the model predicted output at time t is used  to compute the output at time t+1.
If there is a considerable variation in the output signal, indicating a possible faster dynamic
during a day, such as the case of prediction of RVP and aromatic contents, interpolation is not
an appropriate approach in order to estimate the missing output. The solution here is that the
information of the pervious outputs is imposed in the suitable structure of the ARX model.
The structure of the ARX model is based on a form of regression vector in which the hourly
sampled input variables are used together with the previous existing output measurement,
normally measured at time t-24 hour, in order to model the output at time t. This solution is
integrated in the regression matrix of the ARX structure, in which the delay time for output is
inherently 24 hours. In the following a review of the ARX model structure is presented:

A(q)y(t) = B(q)u(t) + e(t) (5.1)

A(q) = 1 + a1q−1 + ... + anaq−na

B(q) = b1q−1 + ... + bnbq−nb (5.2)

θ = [a1 a2 ... ana b1 b2 ... bnb ] (5.3)

ϕ(t) = [y(t − 1)....y(t − na) u(t − 1).... u(t − nb)]T (5.4)

y(t θ) = ϕT(t) θ (5.5)
where: 
y(t) is output measurement at time t,
u(t) is input measurement at time t,
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e(t) vector of white noise sequences,
q is the backward shift operator q-1 in which  q-1 u(t) = u(t-1) 
na is number of A parameters,
nb is number of B parameters,
θ is the model parameters which include a and b parameters,
φ(t) is the regression vector,

 is prediction of new y at time t as a function of model parameters.y(t θ)

Following the terminology in ARX model, na and nb are defined as the number of A and B
parameters for previous output y and inputs u, respectively. The order of the ARX model is
defined to be the number of past input and output variables considered in the model. 
Furthermore, there may well be a delay from output to each of the input variables. These
delays are defined as a vector K of scalar value ki corresponding to delay for each input and
output. Thus, nk would be the number of k delay parameters which is equal to number of
input variables. 
Thus the standard ARX model may be written as equation 5.1, where inputs and outputs are
sampled with the same sample interval. However for many quality variables the standard
sampling procedure involves a nq =24-hours sampling interval, whereas the input variables are
assumed known every hour. In order to use the available data for model development a
suitable model representation must be developed. This is here accomplished based upon the
ARX model in equation 5.1. Since however the outputs between ....t-nq, t, t+nq.... are
unknown, a model predict these values would be convenient for developing a predictor for the
quality variables at their sampling times. The development of this predictor is here based on a
simple first order predictor based upon the sampling interval for the input vector u(t):

y(t + 1) = ay(t) + bU(t − k) (5.6)

where k is the vector of input delays.
The above model is used to predict the quality variable y(t+nq) as follows:

y(t + 2) = ay(t + 1) + bU(t − k + 1) = a2y(t) + abU(t − k) + bU(t − k + 1)
y(t + 3) = ay(t + 2) + bU(t − k + 2) = a3y(t) + a2bU(t − k) + abU(t − k + 1) + bU(t − k + 2)

.

..

y(t + nq ) = anq y(t) + Σ
i=1

nq

a i−1 bU(t − k + nq − i)

Thus defining new parameters as follows:
a1 = anq

and
b i = a i−1b for i = 1, ..., nq (5.7)

the predictor may be written as:

y(t + nq ) = a1 y(t) + Σ
i=1

nq

b iU(t − k + nq − i)

= a1 y(t) + b1U(t − k + nq − 1) + b2U(t − k + nq − 2) + ... + bnq U(t − k) (5.8)
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In this predictor the parameter values may be determined from plant data. It must be noted
however that according to equation 5.7 there are only nu+1 unknown parameters, where nu is
the number of inputs in U(t-k). Since however the parameters in equation 5.8 are nonlinearly
interdependent, it will be attempted to estimate all nu* nq+1 parameters in equation 5.8 using a
linear parameter estimation method. 
To summarize, the above predictor is based upon a first order model in the input sample time.
In the following presentation and discussion, the model order will be labeled one with respect
to the output and the number of inputs included in the predictor should be nq according to
equation 5.8. When applying equation 5.8 for modeling, it will be attempted to use nq number
of previous inputs. However if it becomes difficult to estimate all nu* nq input parameters one
should apply a nonlinear parameter estimation method to determine the a and b parameters
directly. 
The derivation of the first order predictor in equation 5.8 was based on a first order model in
the input sample time. A higher order model might also be used, which would lead to usage of
older quality variable measurements, which means that y(t-24) and y(t) would be used to
predict . Such a model would lead to an even higher number of parameters to bey(t + 24)
estimated using a linear estimation method. For higher order models initialization also
becomes an issue.  

It is noteworthy to mention here that we start with a number of nb equal to 24 in order to
assure that all existing variation in input variables is included. It is important for the
predictability and quality of the model that the existing dynamic variation in input which is
most relevant for modeling of output is covered. Thus, the choice of nb=24 seems to be most
appropriated. However, choosing number of nb equal to 24 has a disadvantage that the
number of model parameters will become high. 
These issues will be discussed further in calibration and validation of the RVP model in section
5.3.2. Hence, the parameter nb, i.e. the number of input vector, is assumed unknown for the
time being and must be determined during the model development. In this work when we talk
about the number of input vector, we actually mean only the number of past input variables to
consider, i.e. number of nb, since we have a fixed number of na equal to one. 
The regression vector in equation 5.4 is used in the objective function in the LS method, in
which it is minimized with respect to θ, in order to find the best fit, as it is discussed in chapter
3. The regression vector can be expressed as follows:

 

ϕ(24) = [y0 U23 U22 U21 ..........U24−nb]
ϕ(48) = [y24 U47 U46 U45 ...........U48−nb]

...

...
ϕ(N) = [yN−24 UN−1 UN−2 UN−3 ...........UN−24−nb]

(5.9)

where N refer to number of existing output variable. 
It is assumed that the delay parameter k is equal to one in equation 5.9. All the regression
vectors in equation 5.9 are used to form a regression matrix, which is used in a PLS regression
model in order to estimate the model parameters θ defined in equation 5.3.  
An example of how the regression vector is built for this application is shown in table 5.1. The
three columns in table 5.1 represent respectively time in hours, output y and input U. Let
assume that the starting time is t0, and then y0 and U0 is the corresponding output and inputs
at time 0. The first predicted output in this formulation would be y24.
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Thus, the regression vector used for prediction of y24 contains the previous output, i.e. y0,
and also all the previous values of U inputs, from U23 and backward corresponding to the
determined model order, i.e. nb, and the delay k. The same procedure is used to form the
regression vector corresponding to prediction of y48.
Determination of the nb parameter will lead to the number of the previous inputs considered in
the model, which is shown by gray area in table 5.1. It is assumed that the delay parameter k is
equal to one in table 5.1.

T Y U

0 y0 U0

1 U1

2 U2

.. ..

.. ..

.. ..

21 U21

22 U22

23 U23

24 y24 U24

25 U25

26 U26

.. ..

.. ..

45 U45

46 U46

47 U47

48 y48 U48

49 U49

50 U50

.. ..

.. ..

Table 5.1 : The structure of regression vector with delay k=1.

The software used in this work is MATLAB for windows, The MathWorks, Inc., version
4.2c.1, 1994. For ARX and PLS model development the Identification Toolbox of Matlab,
and a university version of the PLS-Toolbox version 1.5.1, 1995 by B.M. Wise, as well as the
routine developed by the author of this thesis are used.
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5.3 Models for Catalytic Reformer I

5.3.1 Introduction

In this section the models for prediction of RON, RVP, and benzene contents of reformate
production from catalytic reformer I will be presented and discussed. 
The input variables used for the models are described in chapter 4, along with a detailed
Principal Component Analysis (PCA), and a description of data treatment.
In the following sub-sections, there will be more focus on model structure, calibration,
validation, and performance of the models.     

5.3.2 RVP Model

5.3.2.1 Inputs and Output

The selection of input variables relies basically on general knowledge of the process and an
assessment of which variable have the largest effect on the output. The principles in selection
of input variables in order to obtain a set of informative input data are discussed in chapter 3.
If a model is sensitive to one or more input variables meaning that those variables have a large
influence on the predicted output, then the corresponding parameter values will be large
compared to the other parameters. 
This concept is used in model development by using all candidate input variables in the
beginning and then after validation the non sensitive variables are excluded from the inputs.
The advantage of this procedure is to prevent exclusion of those variables that can be
influential on the output prediction due to a multivariable effect or existence of an unknown
phenomena. 
In this section an example of this procedure is presented. The following input variables are
used in the RVP model as the initial selected variables. 

1 Mole H2/ Mole C in recycle gas
2 % H2 purity in recycle gas   
3 Reactor 1 outlet temperature
4 Reactor 2 outlet temperature
5 Reactor 3 outlet temperature
6 Reformer Feed flow rate
7 C-401 Reformate flow rate
8 C-401 Liquid gas flow rate
9 C-401 Reflux flow rate
10 C-401 Feed temperature
11 C-401 Reboiler temperature
12 C-203 Reflux flow rate
13 C-201 Naphtha side stream temperature (Pressure Corrected)
14 C-601 Naphtha side stream temperature (Pressure Corrected)
15 C-203 Bottom temperature (Pressure Corrected)
16 C-652 Bottom temperature (Pressure Corrected)
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It will be shown that for the final model variables number 7 through 12 will have the largest
effect among all variables, as it is expected.
The output is RVP measured by laboratory. Thus, the mode will be a Multi Input Single
Output (MISO) case.

The calibration data set is chosen from a period of approximately 9 months operation starting
from October 1. 1996 to June 13. 1997. The validation data cover approximately the rest of
1997, i.e. June 13. 1997 to December 30. 1997. There are some days, both i calibration and
validation, where both input and output data are missing. These missing datas are mainly due
to operation shutdowns. Besides, there are also some missing data for a few hours because of
problems in data acquisition system or sensor faults.  

5.3.2.2 Model Structure

As mentioned earlier, the model structure is based on an ARX model in which the parameters
θ are estimated by a PLS model. Based on the discussion in section 5.2, we will take only the
effect of y(t-24) for output, as in equation 5.8, and hence we will have only one A parameter.
Regarding the B parameters we are seeking for as much effect from the inputs, and hence the
B parameters will be as many as necessary to get an acceptable low prediction error and a
satisfactory model performance, as it is discussed in the following. We are specially interested
to examin the case of nb=24, as it is discussed in the following section.
In parameter estimation we use a PLS model in which we need to determine a suitable number
of principal components PC. The number of PC is also called number of Latent Variables
(LV).
Thus, there are two parameters in model development, i.e. nb and the number of LV, which
have to be found. 
This task is handled by developing a recursive routine in Matlab, in which the Root Mean Sum
Squares Error in Validation (RMSSEV) is used as the criterion for optimization of nb and
number of PC. RMSSEV is defined as the following.

RMSSEV =
Σ
i=1

n

(y i − y i)2

n (5.10)

where  is the model predicted output and yi is the measurement for all data over time t.y i

Notice that we have only one output and n is the total number of y. The results for these
simulation are described in the next subsection.

5.3.2.3 Identification

As mentioned before, the purpose of calibration is to estimate the optimum values for the
model parameters θ, along with nb, and the delay parameter k for each input variables. Notice
that na is one in our case. The purpose of the validation is, however, to evaluate the model
obtained in the calibration. Since the model has time-series dynamic characteristic, it is
important to secure a calibration and validation set containing time sequence of subsequent
data. For that reason, it is not desirable to mix the data and select a random test set data for
validation. Furthermore, based on process knowledge it is known that the operation mode is
different in summer and winter seasons. Thus, the validation is performed applying a

Chapter 5                                                      Models for Reformate and Isomerate Products

97



completely distinct set of data, and it is attempted to cover both winter and summer operation
mode both in the validation and calibration data sets.    
Calibration and validation of the obtained models are inherently related, and the models are
evaluated based on some criteria concering both calibration and validation phases, as we shall
see in the following sections.  

5.3.2.3.1 ARX Model With All Inputs 

Referring to the developed model structure defined in equation 5.8, it is especially interesting
to study the case of nb=24, in which the effect of inputs is covered all the way back to y(t-24).
This case is discussed in this section. 
Nevertheless, as we shall see in the next section, it will be shown that special cases exist in
which the number of model parameters can be reduced with no significant loss of prediction
ability. 
Number of delay parameter in this case is k=1 for all input variables, since it is desired to take
the effect of all previous input values on the prediction of output, even if the effect is small.
One parameter remaines to be estimated, and that is number of latent variables LV. Figure 5.1
shows the result of a series of recursive simulations, in which RMSSEV is calculated as a
function of LV.
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Figure 5.1 : RVP Model, RMSSEV as a function of LV for nb =24, and delay K=1.

It can be seen in figure 5.1, there are three local minima around LV equal to 4, 7, and 15.
Choosing more LV will result in increasing total number of model parameter, which will cause
over fitting, as discussed in chapter 3. 
As we shall see in the next section, where we discuss the optimum number of LV, we will
choose a number of LV = 6. Notice that with LV=6 a RMSSEV=2.65 is obtained, which is
not far from the local minimum RMSSEV=2.5 at LV=15. 
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Another reason for choosing LV=6 is that the results of the case nb=24 presented in this
section, is desired to be comparable with the results that will be presented in the next section.  

Consequently, calibration of the model is performed, and the model parameters θ are
estimated by choosing LV=6, delay parameter for all inputs equal to one, na =1, and nb=24.
Notice that by having 16 inputs, we will get a total number of 385 parameters in the θ vector,
according to equation 5.3. 
Table 5.2 shows the percent variance captured by PLS model. As it can be seen, the captured
variance in X-block, i.e. inputs, and Y-block, i.e. output, are respectively 75.99% and 50.35%.
  

Percent Variance Captured by PLS Model

X-Block Y-Block

LV # This LV Total This LV Total

1 30.17 30.17 18.08 18.08

2 21.92 52.09 8.52 26.60

3 3.34 55.43 16.85 43.45

4 5.56 60.99 3.37 46.82

5 4.96 65.95 2.77 49.58

6 10.04 75.99 0.76 50.35

Table 5.2 : RVP model, percent variance captured by PLS model.

0 10 20 30 40 50 60 70
-8

-6

-4

-2

0

2

4

6

8
Error in Validation

Sample

P
re

di
ct

io
n 

E
rr

or

Figure 5.2 : RVP Model, prediction error in validation, nb=24, delay K=1.

Figure 5.2 shows the prediction error in validation. Notice that the error is the difference
between the model predicted and the measured RVP and it has the pressure unit. i.e. kPa.
Recal the measureed RVP data for catalytic reformer I in table 4.2 in chapter 4, in which the

Chapter 5                                                      Models for Reformate and Isomerate Products

99



average RVP is 49.67 kPa, and the standard deviation is 3.02 in calibration data. We shall later
compare these data with the results presented in table 5.3. The corresponding prediction error
in calibration is shown in figure 5.4.
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Figure 5.3 : RVP Model, histogram plot of prediction error in validation.
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Figure 5.4 : RVP model, prediction error in calibration, nb=24, delay K=1.
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Figure 5.3 shows a histogram plot of prediction error in validation. This plot will give us an
impression of how close the error signal is to a normal distributed zero mean noise. The
corresponding histogram polt for calibration is shown in figure 5.5.
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Figure 5.5 : RVP model, histogram plot of prediction error in calibration.

As it is described in chapter 3, in order to evaluate the performance of the model the RMSSE
is compared with a reference obtained from either a zero-model or an average-model. 
The average reference model is computed by first calculating the average of all N measured
output values, and then subtract the average from the output itself to calculate EAVG , as
follows:

(EAVG) i = y(t i) − yAVG (5.11)

Then, we compute a RMSS of this error by using equation 5.10, and denote it as RMSEAVG.
It is clear that the RMSEAVG has the same property as the standard deviation of the
measured output. We expect that the developed prediction model should predict a set of
output values for a period of time which is closer to the measured output than the average
value. In this sense we say that the developed model should be at least better than the average
value model in order to be accepted.
A second reference model is defined based on the following consideration. Consider a model
structure as given in equation 5.8 in which the number of A-parameter is 1, i.e. na=1.
Furthermore, consider that the developed prediction model find a set of B-parameters which is
close to zero, and an A-parameter value close to one This is shown in the following equation:

y(t) = y(t − 24) + 0 (5.12)

This means that the new prediction of y is equal to the previous measured y. In this case we
have no effect of input variables and the model just predicts the next output equal to the
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previous measured one. Based on this consideration, we compute a EZERO in a general form as
follows:

EZERO = y(t i) − y(t i+1) (5.13)

Hence, a RMSS of EZERO , which is denoted by RMSEZRO will give us a reference in
assessment of predictability of the obtained prediction model. Thus, the expectation is that a
model with good performance characteristics should be better than the zero-model, meaning
that the developed model has captured the effect of input variables.
Table 5.3 shows RMSSE in both calibration and validation along with the average-model and
zero-model in this RVP model.

Validation Calibration

RMSSEV 2.65 RMSSEC 2.05

RMSEAVGV 3.28 RMSEAVGC 2.91

RMSEZROV 4.10 RMSEZROC 3.05

Table 5.3 : RVP model, RMSSE, average-model, and zero-model in validation and calibration.

It can be seen that the RMSSEV is less than average- and zero-model, indicating that the
model has captured essential variation both in input and output. 

Another way to evaluate the model performance is a so called open-loop simulation of the
model. In this simulation the predicted output at time t is applied instead of measured output
in order to predict the next output value at time t+1. This model simulation is performed after
model calibration. We shall call this simulation as open-loop simulation in which the new
predicted value is used instead of the measured output for prediction of the next output value.
Open-loop simulation will show the predictability of the model during a period of operation
without having the actual output measurement. 
It is interesting to see the open-loop simulation in both calibration and validation for RVP
model. These are shown in figure 5.6 and 5.7 respectively

In Figure 5.8 a plot of predicted versus measured RVP in calibration is shown. These plot
shows how successful the calibration is performed. However, it is more interesting to study
this plot in the validation case. The corresponding plot for the validation can be seen in figure
5.9. As it can be seen the model has captured the essential variation of RVP with a RMSSEV
of 2.65. 

The results obtained in this section will be discussed later in the next section, where possibility
of reducing the number of model parameters will be discusssed.
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Figure 5.6 : RVP Model, Open Loop Simulation in calibration

0 10 20 30 40 50 60 70
44

46

48

50

52

54

56

58

60

62
RVP LAB, Validation, Open Loop Simulation

Sample

R
V

P
 S

im
ul

at
ed

(o
) a

nd
 R

V
P

 L
A

B
(*

)

Figure 5.7 : RVP Model, open loop simulation in validation
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Figure 5.8 : RVP model predicted versus RVP measured in calibration.
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Figure 5.9 : RVP model predicted versus RVP measured in validation
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5.3.2.3.2 Reducing the Number of Model Parameters

As it is mentioned in the previous section, a number of nb equal to 24 would be logical in
order to cover the variation of input, since the predictor in eqution 5.8 contains y(t-24). The
disadvantage of choosing nb=24 is the high number of model parameters, which may cause an
over fitting problem. However the validation results in table 5.3 and figue 5.9 do not indicate
problems with overfitting. 
In this section, it is attempted to reduce and find the optimum number of model parameters,
with no significant loss of predictability.
  
Apart from number of input vectors nb and number of LV, one more parameter has to be
determined, which is the delay for each variables as expressed in equation 5.8.
One way to find the number of delay parameters is to perform calculation of residence time in
tanks, vessels, units and pipeline. Moreover, if a first principles mathematical model was
available, the effect of variables in energy balance, such as reactor outlet temperature could be
investigated. 
Another way is to let the model find the delay parameters. This can be done by a series of
recursive simulations in which the best set of delay parameters are found giving the minimum
RMSSEV defined in 5.10. 
In this work, these two approaches are combined in which the search for delay parameters is
limited by some qualified estimate according to process knowledge and physical restrictions,
such as the length of the pipeline, the volume of tanks and etc, and then let the model find the
best delay parameters.

The search for the optimal ARX model order for input variables, i. e. nb, and number of LV is
carried out by a series of simulations, in which nb and LV are changed from 1 to 25 for nb,
and from 1 to 33 for the number of latent variables (LV). The choice for maximum number of
LV is based on the following considerations.
Number of LV is a function of number of variables, and ARX order, as shown in equation
5.14.

Max. LV = na ⋅ ny + nb ⋅ nu (5.14)

where ny is the number of output, and nu is the number inputs variables.

Since we have na = 1 and ny = 1,  the product of na and ny is equal to one. Notice that we
have 16 input variables, and hence the maximum number of LV will be 17 and 33 for
respectively nb = 1 and nb = 2:
 
Max. LV = 17 for nb = 1 
Max. LV = 33 for nb = 2 

Selecting more LV has two disadvantages. First, choosing more LV means adding more noise
to the structure part, and second, total number of model parameters will increase and it will
cause overfitting, as it is discussed in chapter 3.
For that reason, a maximum of 33 number of LV has been chosen in this investigation for
number of nb larger than 2.
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Figure 5.10 shows the calculated RMSSEV as a function of nb and LV, for nb from 2 to 25
and LV from 1 to 33. The plot for nb=1 is shown separately in figure 5.13 since maximum of
LV is 17 according to equation 5.14.
It can be seen that there is a region of nb less than 5-7 that RMSSE has its minimum.
Moreover, RMSSEV increases in the region of LV larger than 15-17 due to additional noise in
the structure part.
In table 5.4, the minimum RMSSEV is shown for each nb, along with number of LV at the
minimum. The percent variance captured by PLS model is also shown both for input
(X-Block) and for output (Y-block). As we can see in table 5.4, the minimum RMSSEV is
found for nb = 2 and LV = 23 at a value of 1.89. Besides, as it is shown in figure 5.10 another
local minimum appear to be around nb=7.
The next job is now to study the progress of RMSSEV for some nb parameters in more detail,
and eventually obtain a model with fewer parameters, with no significant loss of prediction
ability.
  

0 5 10 15 20 25 30 350

10

20

30
1

2

3

4

5

6

7
RVPLAB, RMSSEV VS nb and LV

LV

nb

R
M

S
S

E
V

Figure 5.10 : RVP Model, RMSSEV as a function of nb and LV.

Figure 5.11 shows the RMSSEV for nb=1, which we could not see in figure 5.10. Figure 5.12
shows the RMSSEV for nb=2. As it can be seen in these two diagrams a local minimum
appear at LV around 5-6 and then another minimum RMSSEV at 17 and 23 number of LV
respectively.
Furthermore, it can be seen that the value of RMSSEV is around 2.2 for nb=2 and LV=6,
which is actually the first local minimum. It seems that this case is more preferable rather than
the case with nb=2 and LV=23 since the total number of model parameters is smaller and the
difference between the two RMSSEV is not too large.  
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Figure 5.11 : RVP Model, RMSSEV as a function of LV for nb =1.
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Figure 5.12 : RVP Model, RMSSEV as a function of LV for nb =2.
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nb Min.
RMSSEV

X-Block Y-Block LV

1 1.96 99.99 43.86 17

2 1.89 99.94 47.69 23

3 2.02 97.88 48.39 15

4 2.16 83.57 44.00 7

5 2.13 93.60 48.41 11

6 2.13 98.55 55.05 21

7 2.03 97.56 55.84 19

8 2.13 97.25 57.05 19

9 2.18 94.13 53.46 13

10 2.22 94.45 55.08 14

11 2.18 94.23 55.91 14

12 2.27 93.98 57.24 14

13 2.26 96.35 63.40 19

14 2.41 96.08 66.05 19

15 2.41 95.91 66.13 19

16 2.46 94.91 64.64 17

17 2.49 62.18 44.55 4

18 2.51 61.92 44.52 4

19 2.54 95.16 70.38 20

20 2.54 95.21 72.66 21

21 2.51 94.44 72.03 20

22 2.47 94.44 71.92 20

23 2.46 93.52 69.27 18

24 2.44 93.78 70.68 19

25 2.43 93.54 70.92 19

Table 5.4 : RVP model, Minimum RMSSEV for different nb, and LV. 

As mentioned earlier, another local minimum appear to be around nb=7. Figure 5.13 shows
the RMSSEV for nb= 7. A comparison of between this diagram and figure 5.12 shows that the
obtained RMSSEV in the case of nb=2 and LV=6 is still preferable, since both the value of
RMSSEV and the model order is smaller in the latter case. 
Selecting the best nb and LV is of course based on performance of the obtained model in
validation. The important issue is to capture the maximum effect of input variables in
prediction of output, and obtain a model which has an acceptable general characteristic. As
mentioned previously, it is important to selcect one of the best models with fewer model
parameters among a set of model candidate .
In all phases of model development procedure from determination of optimal delay parameters
to calibration of the model along with determining optimum number of LV and nb, validation
is an essential part of the development work.
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In the following the result in calibration and validation of the selected model with nb=2 and
LV = 6 will be presented.

0 5 10 15 20 25 30 35
2

2.5

3

3.5

4

4.5
RMSSEV for as a function LV for nb = 7

Number of LV

R
M

S
S

E
V

Figure 5.13 : RVP Model, RMSSEV as a function of LV for nb =7.

The order of the ARX model is thus as follows:  na = 1, and  nb = 2.
The following delay parameters has been found for each input variables, using a series of
recursive simulation:

K =  [2     2     3     3     3     2     1     4     2     2     1     4    17    17     5    10]

It is interesting to see the progress of PLS regression. Table 5.5 shows the percent variance
captured by PLS model. As we can see the captured variance in X-block, i.e. inputs, and
Y-block, i.e. output, are respectively 77.34% and 43.63%.

Percent Variance Captured by PLS Model

X-Block Y-Block

LV # This LV Total This LV Total

1 26.02 26.02 24.58 24.58

2 27.98 54.01 6.09 30.67

3 4.34 58.34 9.00 39.67

4 4.65 62.99 2.17 41.84

5 8.35 71.34 0.97 42.81

6 6.00 77.34 0.82 43.63

Table 5.5 : RVP model, percent variance captured by PLS model.
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The first thing we are interested in to examine is the level of prediction error in both
calibration and validation. Figure 5.14 shows the prediction error for validation. Notice that
the error here is the difference between model output and RVP measured in the laboratory,
and the error value is not calculated based on autoscaled data, but it has the real unit, i.e. kPa.
If we could obtain a perfect model, then we would expect that the error signal would have
approximately the same characteristic as white noise. Thus, a histogram plot of the prediction
error will give an impression of how close the error signal is to a normal distributed zero mean
noise. The histogram plot of error signal in validation is shown in figure 5.15.

Examining the same plots in calibration, would give os an impression of how well the
calibration is performed. If the prediction error in calibration is very small and much closer to
zero than in the validation, it could be a sign of an overfitted model or perhaps the validation
and calibration data are different and possibly from two different regions of operation. Figure
5.16 and 5.17 show the respective plots of prediction error and histogram of error in
calibration.
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Figure 5.14 : RVP Model, prediction error in validation.
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Figure 5.15 : RVP model, histogram plot of prediction error in validation.
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Figure 5.16 : RVP model, prediction error in calibration.
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Figure 5.17 : RVP model, histogram plot of prediction error in calibration.

Table 5.6 shows RMSSE in both calibration and validation along with the average-model and
zero-model in RVP model. The development of zero-model and average-model are discussed
in the previous section.

Validation Calibration

RMSSEV 2.14 RMSSEC 2.19

RMSEAVGV 3.28 RMSEAVGC 2.91

RMSEZROV 4.10 RMSEZROC 3.05

Table 5.6 : RVP model, RMSSE, average-model, and zero-model in validation and calibration.

It can be seen that the RMSSEV is less than average- and zero-model, indicating that the
model has captured the essential variation both in input and output.

The open-loop simulation in both calibration and validation for RVP model are shown in
figure 5.18 and 5.19 respectively.
In open-loop simulation predicted output at time t is used instead of measured output in order
to predict the output value at time t+1. Open-loop simulation will show the predictability of
the model during a period of operation without having the actual output measurement. 
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Figure 5.18 : RVP model, open loop simulation in calibration
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Figure 5.19 : RVP model, open loop simulation in validation

As we can see the model has captured the essential variation and follow the variation of RVP
op and down, indicating a good performance.
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In the following the results the model simulation is presented when the measured output is
used in the model for prediction of the next output. This model simulation is performed using
both calibration and validation data set. Simulation of the model applying the same data set
which is used for calibration seems superfluous. However, it will give an impression of how
well the calibration is performed. The  expectation is that the model is capable  to reproduce
the calibration satisfactory.

Figure 5.20 shows the result of prediction of RVP in calibration in which the output
measurement is plotted versus model predicted RVP. It can be seen how well prediction
follows the measured output. Notice that RVPLAB is RVP measured at laboratory, and
RVPMODEL is the predicted output.
This result demonstrates that the model has captured the essential variation but there are some
points that the model has difficulty to fit, mostly low RVP measurements. 
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Figure 5.20 : RVP model predicted versus RVP measured in calibration

As we can see in figure 5.20, most of the points are lying around the diagonal line indicating
that there is virtually no bias in the model except for some points that are slightly away from
the diagonal line.

Figure 5.21  and presents the same simulation using validation data set. It shows RVP model
predicted versus RVP measured in validation. It can be seen clearly that the predicted values
follow the variation of the measured outputs and demonstrate a good predictability
characteristic. 
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Figure 5.21 : RVP predicted versus RVP measured in validation

As it is discussed in chapter 3, in linear PLS it is assumed that the scores in the output Y-block
is a linear function of scores in input X-block, as it is expressed in equation 5.15. 

u = b t + h (5.15)

b is called the inner relationship, or internal regression coefficients. 
A plot of score u versus score t can be useful in order to visualize and examine the
functionality of u=f(t).
For the RVP model this plot can be seen in figure 5.22 for the first u vs. the first t. As it can be
seen from figure 5.22, there is no obvious nonlinear relationship between t and u, and thus this
justify the use of linear PLS. 
In fact, nonlinear PLS has been investigate by the author. A number of simulations has been
carried out using both neural network and different degree of nonlinear polynomials. The
results show no significant improvement by using nonlinear PLS in the RVP model.

The last step in assessment of model validation is to examine the model parameters and
evaluate the sign and quantity of parameters in order to interpret the physical sense of the
parameters.
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Figure 5.22 : RVP model, scores u1 as a function of scores t1.

As it is mentioned in the beginning of this section, the objective is to give an example of the
general procedure in model development, in which the performance of the developed model is
evaluated and the model is accepted if the results indicate satisfactory prediction ability. 
Examining the model parameters at this point has shown that the developed model is not
sensitive to some variables in which the respective parameter values are small.
These variables are excluded from the inputs, and hence the whole procedure is repeated. It
has been found that the following input variables have the largest effect on RVP output.

1 Reformer Feed flow rate
2 C-401 Reformate flow rate
3 C-401 Liquid gas flow rate
4 C-401 Reflux flow rate
5 C-401 Feed temperature
6 C-401 Reboiler temperature
7 C-203 Reflux flow rate

 
The obtained B-parameters are shown in table 5.7. There is only one A-parameter which is: 
a =    0.160.

The largest effect stem from variables number 2, 3,  and 6, which are the variables chosen
from the stabilizer column in catalytic reformer I shown in figure 4.3 in chapter 4.

The negative effect of variables 3 and 6 are correct since an increment in both reboiler
temperature and liquid gas flow rate, which is the top distillate flow rate, will decrease RVP as
a result of removing more light hydrocarbon components from the reformate product. 
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Variable number 2 is the feed flow rate of reformate product itself. It has positive effect
because more bottom product in the stabilizer means less top distillate, and hence more light
component in the reformate.
Variable number 4 is reflux flow rate in the stabilizer column. An increment in reflux flow rate
means less distillate product and more liquid down-stream at the top of the column. It has
positive effect, meaning more light hydrocarbon components will be sent down through the
stabilizer column, to prevent flooding at the top, which eventually end in the reformate
product. 

Variables Coef.for
u(t-1)

Coef. for
u(t-2)

Sign Description

1  0.101  0.103 + Reformer Feed flow rate

2  0.234  0.230 + C-401 Reformate flow rate

3 -0.233 -0.216 - C-401 Liquid gas flow rate

4  0.101  0.084 + C-401 Reflux flow rate

5 -0.055 -0.141 - C-401 Feed temperature

6 -0.261 -0.276 - C-401 Reboiler temp.

7 -0.030 -0.053 - C-203 Reflux flow rate

Table 5.7 : RVP model, B- parameters in ARX model.

Variable number 5 is the temperature of the feed to the stabilizer column. This temperature
represent the magnitude of the enthalpy introduced to the column, and hence has the same
effect as reboiler temperature, i.e. sending more light hydrocarbon components upward and
thus decreasing RVP. 
Variable number 1 is feed flow rate to catalytic reformer. In the first place, it is expected that
the sign of parameter relating to this variable should be negative for the reason that the higher
flow rate will increase the heavy components, since the feed to the catalytic reformer is Heavy
Virgin Naphtha (HVN). It is difficult to say anything in more detail about the sign of this
parameter because of the complex reactions take place in the reactors. The positive sign can
be just an indication of promotion of cracking reactions and formation of more light
hydrocarbon components.  
Variable number 7, which has the smallest effect, is the reflux flow rate in the naphtha splitter.
The main objective of the splitter is to split naphtha into LVN and HVN. Increment in this
reflux flow rate means more light components toward LVN and more heavy component to
HVN, and thereby that a negative effect on RVP.
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5.3.2.4 Discussion of Full ARX Model versus Reduced Parameters

In the previous two sections the results of two RVP models are presented. One model with
nb=24 and delay parameters K=1, and another with reduced nb and optimum number of delay
parameters K. 
Based on the developed structure of the ARX model presented in equation 5.8, in which we
take the previous existing output y, it is important that the model cover all existing dynamic
variation of input which is most relevant for modeling of output. Thus, the choice of nb=24
seems to be most appropriated. 
On the other hand, there will be a risk of over fitting problem by applying nb=24, since it
results in a high number of model parameters. By the results presented in the previous
sections, it is shown that the number of nb can be reduced with less significant loss of
predictability by applying a set of optimum delay parameters K and LV. It has been shown that
nb can be reduced to 2, and at the same time keep almost the same level of predictability.
However, the developed model with the reduced model order is a special case of the model
with nb=24 and depends much on the condition that data has been obtained from. 
Dynamic variation of the input variables has a significant effect on the general predictability of
the obtained model. Figure 5.23 and 5.24 show examples of variation of two important inputs
used in modeling of RVP during one week of operation. Examining the variation of the inputs
along the whole period of the calibration and validation shows that there are significant low
frequency changes in the characteristics of the variation in the different periods, presumably
based on the changes in the operation points related to the different seasons. Thus, applying
nb=2 may not be optimal, and there will be risk of loosing the general predictability
characteristic.
The conclusion is the model with nb=24 is the basic recommendable model, and the reduced
model is a special case of the basic model, which only can predict low frequency changes in
inputs.
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Figure 5.23 : RVP model, one week data for reformate flow rate.
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Figure 5.24 : RVP model, one week data for liquid gas flow rate.
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5.3.3 RON Model 

Research Octane Number RON is an important quality variable and has a tremendous profit
effect on the economy of the refinery. It is quite possible to use MTBE in order to compensate
for low octane quality in some gasoline products. However, this solution is expensive due to
high price of the MTBE. Moreover, there is a maximum limit on the oxygenate contents in
gasoline products due to environmental regulation and restrictions in different countries in
Europe. These are two main reasons that make using oxygenate not a feasible solution for
compensating RON quality. 
The purpose of large investment on catalytic reformer and isomerization units is justified by
achieving high octane number of gasoline products. By this it is possible to meet the market
demands on octane quality and at the same time produce more environment friendly products.
This is the strong motivation for control of RON quality in catalytic reformer in order to meet
the demands for production specifications and economy. However, the close-loop control of
RON has caused a difficulty in input-output modeling and prediction of RON quality, as it is
discussed in chapter 3.

5.3.3.1 Inputs and Output

The following variables are chosen as the input variables in the RON model. These are the
variables expected to be most influential on the output RON.

1 Mole H2/ Mole C in recycle gas
2 % H2 purity in recycle gas    
3 Reactor 1  outlet temperature
4 Reactor 2 outlet temperature
5 Reactor 3 outlet temperature
6 Reformer Feed flow rate
7 Reformate flow rate

The total amount of input data is 5600, and 4334 in the calibration and validation data sets  
respectively. These data sets correspond to 9 months of operation data in calibration and 6
months operation data in validation. Notice that the data corresponding to the periods of
process shutdown and outliers has been omitted. Regarding the output RON, there are only
232 and 164 laboratory measurement available in respectively for calibration and validation
periods. 

5.3.3.2 Model Structure

The control strategy of the reformer unit is based on close-loop control of RON quality due to
the great importance of octane number on production economy. The control action has
effectively resulted in small variation in output RON, as it is shown in table 5.8. The average,
standard deviation, maximum, and minimum values for RON and the reactors outlet
temperature are shown in table 5.8. It can be seen that the variation of RON and the
temperatures are small due to the small values of the standard deviations. Notice that the data
in table 5.8 are calculated based on the calibration data set that covers 9 months of operation. 
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It has been found that the type of model structure used in the case of RVP model is not
suitable and effective for prediction of RON. As it is shown in chapter 4, there is more
variation in RVP than in RON. 

Calibration Reactor Outlet Temperarture

RON R1 R2 R3

Average 99.97 430.92 471.10 500.33

Std. Deviation 0.37 4.21 4.62 3.54

Maximum 101.60 442.45 482.62 507.32

Minimum 98.60 421.67 460.40 489.89

Table 5.8 : Calibration data set, RON and reactor outlet temperatures

To overcome the problem of missing output value, linear interpolation is preferred between
the existing RON values, which is consequently based on the assumption that the variation of
RON from one day to another is small enough to permit a rough estimation of RON between
two subsequent existing RON measurement by interpolation. Since interpolation is applied in
order to estimate the missing RON output, an equal number of observations in both input and
output data set is thus obtained. 

The model structure is based on an ARX model of the general type:

A(q)y(t) = B(q)u(t) + e(t)

in which the parameters are estimated by a PLS regression. The number of A-parameter, and
B-parameters, are determined by model order, and we will have the same number of na, and
nb.  
It is very important to emphasize that the interpolation is performed only in calibration data
set. In the validation, we let the model apply its own predicted output in order to predict the
next output.  

5.3.3.3 Calibration

As it is described in the case of RVP model, a set of suitable delay parameters, optimal model
order and number of LV parameter need to be determined. These parameters has been found
by numerous recursive simulations. 
The following delay parameters has been found for the input variables:

K = [16  16  18  18  18  4  7 ]

There is no delay for output RON.

Table 5.9 shows the values of RMSSV obtained for the different ARX orders and LV, in
which the model order is changed from 1 to 20 in order to search for all possible effect of
variables up to t-24, i.e. the previous measured RON. The maximum number of LV is a
function of model order.
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ARX
Order

Min.
RMSSEV

X-Block Y-Block LV

1 0.896 12.78 83.46 1

2 0.111 97.26 99.29 4

3 0.104 97.91 99.48 4

4 0.116 99.11 99.58 4

5 0.042 99.02 99.60 14

6 0.040 99.28 99.61 14

7 0.053 97.39 99.42 13

8 0.053 98.07 99.47 16

9 0.052 97.83 99.45 16

10 0.055 97.59 99.44 16

11 0.056 95.78 99.11 12

12 0.057 98.12 99.54 21

13 0.050 97.98 99.53 21

14 0.048 97.87 99.51 21

15 0.050 97.92 99.52 22

16 0.054 97.83 99.51 22

17 0.054 97.71 99.51 22

18 0.055 97.72 99.54 23

19 0.050 97.61 99.53 23

20 0.050 97.50 99.52 23

Table 5.9 : RON model, min. RMSSEV for different value of ARX order and LV.

Validation Calibration

RMSSEV 0.104 RMSSEC 0.054

RMSEAVGV 0.453 RMSEAVGC 0.365

RMSEZROV 0.683 RMSEZROC 0.553

Table 5.10 : RMSSE, average-model, and zero-model in validation and calibration

Table 5.10 shows the obtained RMSSE in calibration and validation along with the values of
RMSSE for the average-model and the zero-model respectively. It can be seen in table 5.9 that
already by a third order ARX model, the value of RMSSEV reaches a first local minimum at is
0.104 and a comparison with the reference models in table 5.10 shows this value can be
accepted.
It is important to notice again that these RMSSEV values are calculated based on that the
model apply its own predicted output in order to predict the next output.
Based on the these results, it is concluded that a third order model with LV=4 can be an
appropriate candidate for the accepted model considering the discussion about fewer model
parameters in order to avoid overfitting. 
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Hence, the model structure of ARX order=3 , and LV = 4 is chosen. That means we will get 3
a-parameters, and 21 b-parameters corresponding to 7 input variables.
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Figure 5.25: RON model, prediction error in calibration.
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Figure 5.26: RON model, open loop simulation in calibration.

The prediction error in calibration is shown in figure 5.25. Notice that the obtained RMSSE in
calibration is 0.054. The calibration data consists of 5600 input-output data, in which only 232
of them are measured RON by laboratory and the rest is estimated by linear interpolation. In
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figure 5.25, only the error corresponding to existing measured RON is shown, and the error
corresponding to interpolated data is omitted.
Figure 5.26 shows the so called open-loop simulation of the model in calibration, in which the
new predicted value is used instead of the measurement for prediction of the next output
value. The open loop simulation indicate that the calibration is satisfactory.
Figure 5.27 shows a histogram plot of error in calibration, which exhibits an approximate zero
mean error.
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Figure 5.27: RON model, histogram plot for prediction error in calibration.

5.3.3.4 Validation

The validation is performed applying a completely distinct set of data. As mentioned before
the input data in validation set consists of 4334 number of data covering 6 months of
operation. In this period, after omitting the outliers, there are only 164 laboratory
measurements of output RON remained. Omitting the outlier has been discussed in chapter 4
and the missing data in input variables are due to operation shutdown.
Recall the discussion in RVP model, we have defined two different reference models in order
to assess the value of prediction error. These are defined as average-model and zero-model. 
Table 5.10 shows the values of these two reference models along with RMSSEV in both
calibration and validation. The model is thus accepted since the RMSSEV in validation is less
than the two reference models. 
Figure 5.28 shows the prediction error in validation. This figure, along with the corresponding
histogram plot in figure 5.29 are used for the assessment of the obtained prediction error.
Figure 5.29 shows a histogram plot of prediction error which exhibit a zero mean error. 

It is interesting to study the model performance in validation by applying the new predicted
RON value for calculation of the next output. As known, this simulation is called as open-loop
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simulation, in which it shows the predictability of the model during a period of operation
without having the actual output measurement. Then, we can compare the model-predicted
output with the existing RON measurement. This is shown in figure 5.30. Notice that we have
no interpolation in validation output. It can be seen that the model is capable of capturing the
essential part of the output variation. 
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Figure 5.28: RON model, prediction error in validation.
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Figure 5.29: RON model, histogram plot for prediction error in validation.
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Figure 5.30: RON model, Open Loop Simulation in validation.

It is more easier to show the agreement between predicted RON by the model and the
measured RON in figure 5.31. 
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Figure 5.31: RON predicted versus RON measured in validation.
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5.3.4 Benzene  Model

The ARX model for prediction of aromatic (benzene) contents of the reformate product in
catalytic reformer is presented in the following sections.

5.3.4.1 Inputs and Output

The following variables are chosen as the input variables in the benzene model. Selection of
the variables has been discussed in chapter 4. 

1 Mole H2/ Mole C in recycle gas
2 % H2 purity in recycle gas    
3 Reactor 1  outlet temperature
4 Reactor 2 outlet temperature
5 Reactor 3 outlet temperature
6 Reformate Feed flow rate
7 C-401 Reformate flow rate
8 C-401 Liquid gas flow rate
9 C-401 Reflux flow rate
10 C-401 Reboiler temp.
11 C-203 Reflux flow rate
12 C-203 HVN flow rate
13 C-203 LVN flow rate
14 C-652 HVBN flow rate
15 C-201 Naphtha side stream temperature (Pressure Corrected)
16 C-601 Naphtha side stream temperature (Pressure Corrected)
17 C-203 Bottom temperature (Pressure Corrected)
18 C-652 Bottom temperature (Pressure Corrected)

The total amount of input data is 5627, and 4240 in the calibration and validation data sets
respectively, which correspond to 9 months of operation data in calibration and 6 months
operation data in validation. Notice that the data corresponding to the periods of process
shutdown and outliers has been omitted. Regarding the output variable, there are only 144 and
33 laboratory measurement available in respectively for calibration and validation periods. 

5.3.4.2 Model Structure

The model structure in this case is similar to the structure in the case of RVP model. 
Based on the discussion in section 5.2 and equation 5.8, effect of y(t-24) for output is taken in
the model along with the inputs. Hence, number of A-parameter na will be one and number of
B-parameters nb are determined along with number of LV by a series of recursive simulation
of the model. The criterion in determination of nb and LV is RMSSEV as described earlier in
the case of RVP model.
This procedure is performed in the calibration of the model and described in the following
sub-section.
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5.3.4.3 Calibration

As it is described in the case of both RON and RVP models, a set of suitable delay parameters,
optimal model order and number of LV parameter need to be determined. These parameters
has been found by numerous recursive simulations. 
The following delay parameters has been found for the input variables:

K = [2  2  3  3  3  2  1  4  2  1  4  7  7  7  17  17  6  10]

Number of suitable nb and LV are found by a separate series of model simulation examining
nb from 1 to 25 and LV from 1 to an arbitrary value 33. The maximum limit of LV can be
chosen according to the discussion in section 5.3.2.3.2 of this chapter.
The result is shown in figure 5.32 in which the obtained RMSSEV is shown as a function of
nb and LV. Table 5.11 shows RMSSEV for the first 20 nb. As it can be seen, a local minimum
for the RMSSEV is obtained at nb=2, and LV=10, and another local minimum exist at nb=19,
and LV=12. Recall the discussion about approving a model with fewer parameters, the model
with nb=2, and LV=10 would be a good candidate. Figure 5.33 shows RMSSEV as a function
of LV for nb=2.

ARX
Order

Min.
RMSSEV

X-Block Y-Block LV

1 0.2289 93.19 92.32 11

2 0.2287 87.60 92.27 10

3 0.2320 87.34 92.24 10

4 0.2337 88.19 92.25 10

5 0.2341 88.52 92.32 10

6 0.2336 87.36 92.46 10

7 0.2289 86.12 92.58 10

8 0.2286 88.11 92.49 10

9 0.2298 87.99 92.45 10

10 0.2320 90.12 92.76 11

11 0.2308 93.69 93.67 14

12 0.2304 93.42 93.75 14

13 0.2328 93.10 93.85 14

14 0.2320 89.08 92.80 11

15 0.2362 91.16 93.60 13

16 0.2311 89.95 93.06 12

17 0.2244 89.58 93.07 12

18 0.2188 89.21 93.06 12

19 0.2171 88.82 93.16 12

20 0.2219 88.41 93.34 12

Table 5.11 :  Minimum RMSSEV for different value of ARX order and LV.
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Validation Calibration

RMSSEV 0.229 RMSSEC 0.091

RMSEAVGV 0.358 RMSEAVGC 0.327

RMSEZROV 0.288 RMSEZROC 0.137

Table 5.12 : RMSSE, average-model, and zero-model in validation and calibration

Table 5.12 shows the values of the RMSSE obtained for the average and zero models. The
obtained RMSSEV for nb=2 and LV=10 is compared with the reference models and it can be
seen that the obtained model can be acceptable.
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Figure 5.32: RMSSEV as a function of nb and LV.

Hence, we choose LV=10 and  nb=2, which means that the number of B-parameters would be
36 in this model. Number of A-parameters would be one according the structure of the model
described previously.
In order to assess how well the calibration is performed, we begin with examining the plot of
the prediction error in calibration shown in figure 5.34, which indicate small error. 
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Figure 5.33: RMSSEV as a function of LV for nb=2.
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Figure 5.34: Prediction error in calibration.

Figure 5.35 shows the histogram plot of prediction error in calibration indicating that the
residuals can be considered approximately normal distributed with an approximate zero mean
error.
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Figure 5.35: Histogram plot of prediction error in calibration.

The obtain model is simulated using the calibration data set in which the model predicted
output is used in the ARX model, so called open-loop simulation, which is shown in figure
5.36. It can be seen that the open loop simulation is satisfactory.
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Figure 5.36: Open- loop model simulation in calibration.
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Figure 5.37: Prediction ability in calibration.

Figure 5.37 shows the result for simulation of the model in which the actual output
measurement is used for prediction of the next output. It is expected that the developed model
is capable to reproduce the calibration satisfactory. As it can be seen from figure 5.36 and
5.37, the model has captured the essential variation in the calibration.
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Figure 5.38: Benzene contents predicted versus measured in calibration.
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The result in figure 5.37. can be better seen in figure 5.38, which shows a plot of measured
output versus model predicted output.

5.3.4.4 Validation

The validation is performed applying a completely distinct set of data. The input data in
validation set consists of 4240 input-output covering 6 months operation. In this case, after
omitting the outliers and missing data, only 33 laboratory measurements of output remaines. 
The obtained RMSSEV is 0.229 which shown in table 5.12 along with the values of the two
reference models in both calibration and validation. The model is thus accepted since the
RMSSEV is less than the two reference models. 
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Figure 5.39: Prediction error in  validation.

-0.6 -0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

XBIN

B
IN

Error in Validation

Figure 5.40: Histogram plot of prediction error in  validation
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Figure 5.39 shows the prediction error in validation. It can be seen that there is one point that
produce a large error. The histogram plot of prediction error is shown in figure 5.40. Notice
that there are extremely few output measurements available in this case.

The plot for the open-loop simulation of the model is shown in figure 5.41. As known, the
open-loop simulation shows the predictability of the model during a period of operation
without having the actual output measurement. 
As it can be seen, the prediction by open-loop simulation produce a bias in the middle range of
validation set. However, examining the simulation of the model, when the actual
measurements are used, which can be seen in figure 5.42 and 5.43, indicate that model can be
acceptable.
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Figure 5.41: Open- loop model simulation in  validation.

One possible explanation for the poor performance of the model in open-loop simulation is
that there are only 144 output measurements available for calibration of the model for a period
of 9 months. Number of existing measurement for the period of nine months is expected to be
around 270 if the output is measured only once a day.
The other explanation could be that the choice of nb and LV is not perfectly suitable. Figure
5.32 and table 5.11 show another local minimum for RMSSEV at nb=19 and LV=12. This
choice would not be appropriate since the total model parameters would become 240 which is
more than the total input-output of 114. Hence, the option of nb=19 and LV=12 is rejected
due to the risk for overfitting. Better result in for this modeling can be investigated only when
more data is available.  
Figure 5.42 shows the result of the simulation when the actual measurements are used in
prediction of the next output. Figure 5.43 shows the predicted versus the measured benzene
contents in the validation. 
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From figure 5.42 and 5.43 can be seen that the developed model has captured the essential
variation in the data. However, more data is needed in order to improve the predictability of
the model.
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Figure 5.42: Prediction ability in validation.
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Figure 5.43: Benzene contents predicted versus measured in validation.
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5.4 Conclusion

In this chapter the structure, calibration, and validation of the multivariate predictive models
developed for quality prediction of reformate product from catalytic reformer I are presented.
The corresponding models for prediction of the qualities of reformate and isomerate products
of catalytic reformer II and isomerization unit can be found in appendix A and B respectively.
The multivariate models are developed for prediction of RON, RVP, and benzene contents of
the products. 

It is observed that the quality variables are dependent on the earlier values of them selves and
the inputs. This means that an input-output type dynamic modeling approach is a suitable
choice. ARX model is chosen as the model type used in model calibration, in which the
parameters are estimated by a PLS model. Applying PLS approach in parameter estimation of
ARX model has been useful in which the ability of prediction has increased. 

A solution to the problem of low sampling frequency for model output is proposed as follows.

In the case of RVP, and benzene models, a suitable structure of the ARX model is developed
in which the information of the pervious available outputs is imposed in the regression vector
of the ARX model. In RVP and benzene models, the data set are informative enough for
prediction of these qualities since they are not the target of feed-back control. 

The case of applying a full model, i.e. nb=24, for the ARX model has been investigated in
RVP modeling, since it is expected that the nb=24 will cover all the variation of the input, and
consequently will result in improving model performance. It is shown that the number of nb
can be reduced without significant loss of predictability by applying a set of optimal delay
parameters K and latent variables LV. However, the model with nb=24 is the basic model, and
the reduced model is a special case of the basic model, which only enable modeling of low
frequency variation in inputs. This conclusion will be thus valid also for other models
developed later in this work.

In the case of RON, a linear interpolation in output is performed to recover the output in
calibration data set, while output interpolation is avoided in validation. It has been found that
the input-output data set is little informative with respect to the prediction of the output RON
due to the effect of closed-loop control and the effect of little variability of the RON set point. 

Consequently, better results are obtained for prediction of RVP and benzene contents of the
products. 

Validation of the benzene model for catalytic reformer I show a poor performance in the
simulation in which the predicted output is used in the model for calculation of the next output
(open-loop simulation) while the normal simulation using measured output indicate
satisfactory performance. One explanation for the poor performance of the model in open-loop
simulation is that there are few output measurements available. There are only 144 output
measurements available during a period of 9 months for model calibration, while number of
existing measurements is expected to be around 270 if the output is measured only once a day.
Better results in prediction modeling can be investigated only when more quality
measurements are available.  
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Chapter 6

Optimization

6.1 Introduction

In this chapter a multi-period optimization model for optimization of gasoline blending is
presented. The optimization model assumes that the prediction models for the streams sent to
gasoline blending are available. These models are discussed in chapter 5. The objective is to
minimize the cost of operation for gasoline production such that the quality and quantity
demands are satisfied. The objective function is a cost function which represent the cost of
operation for production of blending components plus the inventory cost. This objective
function is minimized subject to a set of constraints which represent the demands for quality
and quantity of final gasoline products. The optimum solution will yield in quality and quantity
needed for blend components and with that the optimum value for decision variables. These
are also called Targets, which will be sent to the advanced control level for implementation.  
The optimization model assumes that the qualities of final gasoline product is a linear function
of the qualities of the streams sent to the blending unit.
A case study is considered as a scenario in production scheduling and the optimum solution
for this case is discussed.
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Figure 6.1: A schematic diagram of the gasoline blending unit and inventory tanks.
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6.2 Optimization Model

In this section the optimization model is presented. The model integrates the gasoline blending
and short term production planning for the gasoline blending. Short term implies that the
scheduling horizon will be approximately 7-10 days.

6.2.1 Nomenclature

6.2.1.1  Index Sets

The plant consists of a set of objects. These objects are defined by the flow diagram shown in
figure 6.1 . Abstractly, these objects are described by the sets:

 where I is the set of inventory tanks in the plant.i ∈ I
 where J is the set of outlet streams of inventory tanks.j ∈ J
 where N is the set of inlet streams to inventory tanks.n ∈ N
where O is the set of all other streams including input and output streams ofo ∈ O

mixing point and splitting points.
 where K is the set of quality characteristics considered.k ∈ K

 where L is the set of gasoline products produced.l ∈ L
 where M is the set of mixing points in the plant.m ∈ M

 where S is the set of splitting points in the plant.s ∈ S
 where T is the set of time points considered.t ∈ T
 where U is the set of catalytic reformers, and isomerization units in the plant..u ∈ U

The structure of the plant is defined by the connection of the objects defined by the above sets.
The interconnections are defined by the following subsets:

II(i) is the set of inlet streams to tank i ,  and . i ∈ I II(i) ∈ N
OI(i) is the set of outlet streams from tank i,  and . i ∈ I OI(i) ∈ J
IM(m) is the set of inlet streams to mixing point m,  and .  m ∈ M IM(m) ∈ O
OM(m) is the outlet streams from mixing point m,  and . m ∈ M OM(m) ∈ O
IS(s) is the inlet streams to split point s,  and . s ∈ S IS(s) ∈ O
OS(s) is the set of outlet streams to split point s,  and . s ∈ S OS(s) ∈ O
IU(u) is the set  of inlet streams to production unit u,  and  . u ∈ U IU(u) ∈ O
OU(u) is the set of outlet streams from production unit u, and .u ∈ U OU(u) ∈ O

6.2.1.2 Variables 

The variables in the model are:

Fjt flow rate (m3/hr) in stream j at time point t.
fjt volume (m3) in stream j during the period starting at time point t.
Gjt flow rate (m3/hr) in stream N at time point t.
gjt volume (m3) in stream n during the period starting at time point t.
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Hot flow rate (m3/hr) in stream O at time point t.
Vit volume (m3) in tank i at time point t.
Qikt  measure of quality k in tank i at time point t.
qjkt  measure of quality k in stream j during the period starting at time point t.
pnkt  measure of quality k in stream n during the period starting at time point t.
rokt  measure of quality k in stream o during the period starting at time point t
Wlkt  measure of quality k in product l at time point t.
VC  is the variable cost of products over a given time horizon.

6.2.1.3 Parameters

The parameters in the model are:

Dlt  is the demand (m3) for product l in the period starting at time point t.
cit is the cost ($/m3), i.e. market price, of the content in tank  i in the period starting at 
time point t.
bit  is the price ($/m3) of blend stock storage in tank i form time point  t  to time point t
+1. Basically this parameter should be a discount factor accounting for the working
capital tied up in inventory.

6.2.2 Tank Models

The models for tanks are based on total volume balance and quality characteristic balances, in
which the qualities are assumed to blend linearly. The dynamic equations in the optimization
model are discretized using Euler discretization. 
Furthermore, the tanks are assumed to be well stirred such that the quality of the effluent
stream from the tank is equal to the quality inside the tank. An upper and a lower bound for
each variable is also  included in the model.
The assumptions mentioned above is listed and summarized as follows:

1 Quality characteristics blend linearly.
2 The tanks are well mixed.
3 The quality characteristics of an effluent stream from a tank is equal to the quality

characteristics of the material in the tank.
4 Each tank has an upper and a lower volume capacity limit.

6.2.2.1 Balance Equations

The total volume balance around tank i is:

dVi(t)
dt

= Gn(t) − Fj(t) ∈ II(i), j ∈ OI(i) (6.1)

in which it is assumed that there is only one input, and one output stream for each tank. The
corresponding Euler approximation can be written as:

dVi(t)
dt

≈ Vi(t + ∆t) − Vi(t)
∆t = Gn(t) − Fj(t) n ∈ II(i), j ∈ OI(i) (6.2)
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The discrete time model for the total volume balance of tank  i  is consequently:

Vi,t+1 = Vit + gnt − f jt n ∈ II(i), j ∈ OI(i) (6.3)
Where:

Vit = Vi(t) (6.4)

gnt = ∆t Gn(t) (6.5)

f jt = ∆t Fj(t) (6.6)

Note that Fj(t) is a flow rate (m3 /h ) while fjt  is a volume (m3).
Similarly, the quality balance equation around each tank:

d
dt

(Q ik(t)Vi(t)) = pnk(t)Gn(t) − q jk(t)Fj(t) n ∈ II(i), j ∈ OI(i) (6.7)

is discretized as follows:

Q i,k,t+1Vi,t+1 = Q iktVit + pnktgnt − q jktf jt n ∈ II(i), j ∈ OI(i) (6.8)

where:
Q ikt = Q ik(t) (6.9)

q jkt = q jk(t) (6.10)

pnkt = pnk(t) (6.11)

6.2.2.2 Well stirred tank assumption

The assumption of well stirred tank means that the quality of the tank effluent is identical to
the quality of the material in the tank:

q jkt = Q ikt j ∈ OI(i) (6.12)

6.2.3 Mixing Point

The mixing point are modeled by a static total volume balance :

Hαt = Σ
β∈IM(m)

Hβt α ∈ OM(m) (6.13)

and static quality balances in which the qualities are assumed to blend linearly:

rαktHαt = Σ
β∈IM(m)

rβktHβt α ∈ OM(m) (6.14)
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6.2.4 Splitting Points

A total volume balance around each split point is :

Hαt = Σ
β∈OS(S)

Hβt α ∈ IS(s) (6.15)

The quality of each effluent stream from the splitter is identical to the quality of the inlet to the
splitter stream:

rαkt = rβkt α ∈ IS(s), β ∈ OS(s) (6.16)

6.2.5 Qualities of Isomerate, and Reformate Streams

The qualities of the products from catalytic reformers and isomerization units are calculated by
the chemometric models described in chapter 5. In optimization model they are expressed in a
general form of function Φ, as follows:

rαkt = Φkt(•) α ∈ OU(u) (6.17)

6.2.6 Blending Model

The qualities of the outlet stream of the gasoline blending unit, which is the final gasoline
product, are assumed to blend linearly as function of the qualities of the intermediate streams
sent to the gasoline blending. It is expressed mathematically as follows:

Wlkt =
Σ
j∈J

q jkt fjt

Σ
j∈J

fjt

(6.18)

The demand for each product is :

Σ
j∈J

f jt = D lt (6.19)

Combination of equation 6.12, 6.18, and 6.19 gives :

Wlkt D lt = Σ
j∈J

Q ikt f jt (6.20)

6.2.7 Restrictions 

The quality restrictions for each quality k of each product l is given by upper and lower
bounds:

Wlk
L ≤ Wlkt ≤ Wlk

U (6.21)

Combination of equation 6.12, 6.18, 6.19, and 6.21 gives :

Wlk
L D lt ≤ Σ

j∈J
Q ikt f jt ≤ Wlk

U D lt (6.22)
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It is further assumed that there are upper and lower restrictions on the volume of a given blend
component used in the final gasoline product.

f jt
L ≤

fjt

Σ
j∈J

fjt

≤ f jt
U (6.23)

which can be rearranged to the following equation:

D lt f jt
L ≤ f jt ≤ D lt f jt

U (6.24)

6.2.8 Bounds on Variables

A lower and an upper bound on the quality, and material in each tank is added to the model by
the bounds:

Vi
L ≤ Vit ≤ Vi

U (6.25)

Q i
L ≤ Q it ≤ Q i

U (6.26)

Wi
L ≤ Wit ≤ Wi

U (6.27)

Lower and Upper bounds on the streams is as follows:

 G j
L ≤ G jt ≤ G j

U j ∈ N (6.28)

H j
L ≤ H jt ≤ H j

U j ∈ O (6.29)

To avoid too drastic changes in operation conditions it could be relevant to put limits on the
change of the flows from one period to the next:

∆Fj
L ≤ Fj,t+1 − Fjt ≤ ∆Fj

U (6.30)

∆Gn
L ≤ Gn,t+1 − Gnt ≤ ∆Gn

U (6.31)

∆Ho
L ≤ Ho,t+1 − Hot ≤ ∆Ho

U (6.32)
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6.2.9 Objective Function

It is assumed that the corporate strategy is to run the refinery at full capacity. Therefore the
objective is to produce minimum cost product in such quantities that the demand is satisfied.
Consequently the objective function can be stated as follows:

VC = Σ
t∈T

Σ
i∈I

Σ
j∈J

c i f jt + Σ
t∈T

Σ
i∈I

b itVit (6.33)

The first term in the objective function accounts for the value of the blend components put
into to the final gasoline products. This term implicitly accounts for the processing cost and
price of raw material used to produce the blend components. In this formulation it is assumed
that the processing cost  is independent of the processing conditions and only depends on the
throughput. Independence of production conditions and cost is an assumption which is open
for discussion. In reality there will obviously be some relation between the processing
conditions and the costs of the blend components. This relation can be incorporated by
considering a discrete set of processing and relating the cost coefficients at these discrete
processing conditions only. If the cost coefficients, i.e. ci are regarded functions of the
processing conditions the decomposition of the problem presented in the next subsection of
this chapter will not be possible.
The second term accounts for the working capital tied up in carrying an inventory. Basically it
represent the interest rate paid to finance working capital used for carrying the inventory. It is
assumed the coefficients in this term, i.e. bi is constant during the period of optimization, since
the time horizon of the optimization problem in this formulation is 7-10 days applied for short
time planning and scheduling.
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6.2.10 Total Optimization Model

The optimization model is expressed as follows:

min


 Σ

t∈T
Σ
i∈I

Σ
j∈J

c i f jt + Σ
t∈T

Σ
i∈I

b itVit


 (6.34)

s.t. Σ
j∈J

f jt = D lt (6.35)

Wlkt D lt − Σ
j∈J

Q ikt f jt = 0 (6.36)

Vi,t+1 − Vit − gnt + f jt = 0 n ∈ II(i), j ∈ OI(i) (6.37)

Q i,k,t+1Vi,t+1 − Q iktVit − pnktgnt + Q iktf jt = 0 n ∈ II(i), j ∈ OI(i) (6.38)

Hαt − Σ
β∈IM(m)

Hβt = 0 α ∈ OM(m) (6.39)

rαktHαt − Σ
β∈IM(m)

rβktHβt = 0 α ∈ OM(m) (6.40)

Hαt − Σ
β∈OS(S)

Hβt = 0 α ∈ IS(s) (6.41)

rαkt − rβkt = 0 α ∈ IS(s), β ∈ OS(s) (6.42)

rαkt = Φkt(•) α ∈ OU(u) (6.43)

Wlk
L D lt ≤ Σ

j∈J
Q ikt f jt ≤ Wlk

U D lt (6.44)

D lt f jt
L ≤ f jt ≤ D lt f jt

U (6.45)

Vi
L ≤ Vit ≤ Vi

U (6.46)

Q i
L ≤ Q it ≤ Q i

U (6.47)

Wi
L ≤ Wit ≤ Wi

U (6.48)

p i
L ≤ p it ≤ p i

U (6.49)

G j
L ≤ G jt ≤ G j

U j ∈ N (6.50)

H j
L ≤ H jt ≤ H j

U j ∈ O (6.51)

∆f j
L ≤ f j,t+1 − f jt ≤ ∆f j

U (6.52)

∆Gn
L ≤ Gn,t+1 − Gnt ≤ ∆Gn

U (6.53)
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∆Ho
L ≤ Ho,t+1 − Hot ≤ ∆Ho

U (6.54)

This problem is a nonlinear dynamic optimization problem. The multiperiod gasoline blending
problem includes gasoline blending unit, the blend component tanks, flow rate and qualities of
the streams to the blending tanks. The optimal solution to this problem specifies the flow rate
and qualities of streams sent to the final gasoline product tank during each time period, the
qualities of blend components inside each tank, the qualities of the intermediate products sent
to blend component tanks. 
The optimum solution for the qualities and flow rate of the streams sent to each blend
component tank will be the targets for the advanced control level.   

Another possibility to facilitate the mathematical tractability of the optimization problem
would be to relax the NLP by linearization of the quality balances. The linearization is based
upon the new variables as presented in the following equations:

v ikt = Q iktVit (6.55)

ynkt = pnkt gnt (6.56)

x ikt = Q iktf it (6.57)

zβkt = rβkt Hβt (6.58)

which are to be used in equations 6.36, 6.38, 6.40, 6.41, and 6.44. 
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6.3 Decomposition

The assumption that the blend component cost is independent of the processing conditions
implies that the optimization model can be decomposed into sub-problems. One sub-problem
is a gasoline blending problem and the other sub-problem is a production planning problem.
The gasoline blending problem includes gasoline blending unit including the component and
final product tanks, and the objective is to produce final products assuming that the quality
and the amount of the blend components are known. The quality variables of the blend
components are calculated by using the developed process chemometrics models in this work.
The optimal solution to this problem specifies the volume of each component used for the final
product, and the qualities of the final gasoline product during each time period.
The production planning problem includes calculation of the qualities and volume in tanks, the
qualities and flow rate of the streams in the remaining part of the plant. For production
planning it is assumed that the optimal amount of consumed volume of the blend component
tanks is known and provided by the gasoline blending optimization. Hence, the production
planning problem solves the quality and material balances in the plant to obtain the targets for
the advanced control level. 
The basis for this decomposition is that the inlet flows to the component tanks are continuos
stream of the products from splitters, catalytic reformers, and isomerization units. However,
the contents of component tanks are used only when the gasoline blending is running, and
hence the outlet flow of the blend tanks are zero between the batches of the blending.

In summary the production planning problem solves the material balances of the plant and
provides the optimal inlet flow, volume and qualities of the blend component tanks. The
gasoline blending optimization determine the optimal volume of the different blend component
used for production of the desired final product.   
The decomposition presented here gives a global optimal solution provided that the optimal
solution to the gasoline blending problem makes the production planning problem feasible

6.3.1 Gasoline Blending

The gasoline blending part of the problem covers the plant form the blend component tanks to
the final products, i.e. the downstream section of the gasoline plant. In this formulation it is
assumed that volume and the quality variables of the component tanks are known. The
qualities are calculated by the chemometrics models during the last period of filling up the
tanks. The flow rate of the streams to the component tanks are measured and hence the
volumes are easily calculated.

 min


Σ

t∈T
Σ
i∈I

Σ
j∈J

c i f jt + Σ
t∈T

Σ
i∈I

b itVit


 (6.59)

s.t. Σ
j∈J

f jt = D lt (6.60)

Vi,t+1 − Vit − gnt + f jt = 0 n ∈ II(i), j ∈ OI(i) (6.61)

Wlk
L D lt ≤ Σ

j∈J
Q ikt f jt ≤ Wlk

U D lt (6.62)
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Q i,k,t+1Vi,t+1 − Q iktVit − pnktgnt + Q iktf jt = 0 n ∈ II(i), j ∈ OI(i) (6.63)

D lt f jt
L ≤ f jt ≤ D lt f jt

U (6.64)

Vi
L ≤ Vit ≤ Vi

U (6.65)

Q i
L ≤ Q it ≤ Q i

U (6.66)

Wi
L ≤ Wit ≤ Wi

U (6.67)

i
L ≤ p it ≤ p i

U (6.68)

g j
L ≤ g jt ≤ g j

U j ∈ N (6.69)

∆f j
L ≤ f j,t+1 − f jt ≤ ∆f j

U (6.70)

Consequently, the gasoline blending problem is a dynamic optimization problem, since
equation 6.61, and 6.63 account for the dynamic term in this formulation. It is further assumed
that the corporate strategy is to run the refinery at full capacity, and hence an estimate of the
inlet streams Git will be provided at each time period. 

6.3.2 Intermediate Production Planning

The production planning problem consists of the remaining equations i.e. the tanks which are
not used in gasoline blending, isomerization unit, catalytic reformers, splitters, mixing and
splitting points.
This problem is considerably smaller than the original problem. And should be solvable at least
locally.
Another and perhaps more realistic model for the production planning would be to include
cost of different operation points in the catalytic reformers and isomerization unit as well as
the splitters. This seems necessary as the main objective of the model is to prevent the
give-away which means the quality of the products are better than the desired specifications
for that product.

6.3.3 Discussion

The weakness of the model formulation above is that, it is assumed that the prices of the blend
components are independent of the processing conditions. We should have the prices for
reformate and isomerate as a function of octane characteristic or perhaps other qualities.
Logically there should be higher prices for higher qualities. This is not the case with  the
current model. It is not easy to define and determine the relationship between price and
quality. However, this restriction can be partly removed by partitioning the characteristics in
certain discrete intervals and introducing binary variables indicating which cost region applies.
In practice we define different type of products based on certain qualities and determine the
prices based on their qualities.

Chapter 6 Optimization

148



6.4 Scheduling

In order to test the optimization model for gasoline blending, a case study is considered
described in the following. The name of the production units, products, and tanks refers to the
description of the process in chapter 2. The flow diagram is shown in figure 6.1. 
The assumptions are described in the next subsection and a schedule for gasoline production is
considered by the scenario described in the following. It should be emphasized that the
information of tank capacity, flow rate, and qualities are fictitious and they just serve as an
example for testing the model.

6.4.1 Assumptions

6.4.1.1 Term

In this test a period of 9 days, i.e. 216 hours, will be considered, which starts from day number
one at 00:00 o'clock and end with day number 10 at 00:00 o'clock.
The discretization time interval is 4 hours. This means we get the optimum values every 4
hours.

6.4.1.2 Tank Capacity

Let's just assume that we are working with the following capacities. Table 6.1 and 6.2 show
the maximum capacity of the blending component tanks and final gasoline product tanks
respectively.  

Blend Component Tank no. Volume ( m3)

MTBE TK-20 1400

Butane TK-28+29 800

Import Naphtha TK-06 16000

LVN TK-09 5000

IC5 TK-30+31 1600

Isomerate TK-23 5000

Isomerate TK-42 5500

Reformate II TK-81 15000

Reformate I+II TK-40 6500

Reformate I TK-35 5000

LVBN TK-22 1500

Total 63300

Table 6.1 : Capacity of Gasoline Blending Component Tanks

It is assumed that a volume of about 5% of maximum tank capacity is the minimum limit for
the inventory tanks. However, the butane gas tanks; i.e. TK 28 and 29, are exception. 
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This will give 60135 m3 maximum volume of all blending components which can be used for
blending. It is also assumed that there are orders for seven different type of products as
suggested in table 6.2, and the total capacity of this final product tanks is 76200 m3 .

Tank no. Volume (m3) Final Gasoline Products 

TK-04 2600 D92

TK-34 7500 D95

TK-05 2600 D98

TK-82 15000 S95

TK-33 7500 S98

TK-83 15000 G91 

TK-75 26000 G95

Total 76200

Table 6.2 : Capacity of Final Gasoline Product Tanks

6.4.1.3 Gasoline Blending Input and Output Flow Rate

It is further assumed that the output flow rate of gasoline blending system is 600 m3/hr. Table
6.3 shows the assumed upper and lower limits for feed flow rate of different components to
the blending component tanks.

Flow Rate m3/hr

Blend Component Minimum Maximum

LVN 30 100

IC5 4 10

Isomerate 40 70

Reformate 4400 60 85

Reformate 400 30 50

LVBN 4 10

Total 168 325

Table 6.3 : Upper and lower limit for feed  to blend component tanks
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6.4.1.4 Price Index

The component prices used in calculation of the objective function is shown in table 6.4. These
prices are taken from different issue of Oil & Gas Journal. 

Blend Component $/ m3

MTBE 255.10

Butane 108.5

Import Naphtha 168.1

LVN 143.4

IC5 171.4

Isomerate 114.3

Isomerate 114.3

Reformate II 140.2

Reformate I+II 140.2

Reformate I 133.9

LVBN 153.5

Table 6.4: Blend component prices

6.4.2 Gasoline Blending Production Plan

It is further assumed that the blend component tanks are about 50% full at the beginning of the
blending period in this scenario. It is thus assumed to be 30000 m3 total volume of all blending
components available at the start of blending period. A minimum total feed flow rate of 168
m3/hr to the blending tanks will give 36288 m3 for the whole period of 216 hours. Hence, the
total volume of all blend stock at the end of the time period would be 66288 m3.  
Consequently, taking the capacity of the final product tanks under the consideration, it would
be possible to plan for a total volume of 64800 m3 of seven final products as suggested in table
6.5. The quality specification of the seven products is assumed to be like the suggested values
in table 6.6. 
A production plan for the gasoline blending is suggested as shown in table 6.7.

Final Gasoline Product m3/hr Tank no.

D92 4800 TK-04

D95 15000 TK-34

D98 9600 TK-05

S95 10800 TK-82

S98 6000 TK-33

G91 10800 TK-83

G95 7800 TK-75

Total 64800

Table 6.5 : Assumed capacity of final product tanks
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RON min. RVP
kPa

BENZEN
E max.
vol-%

MTBE
max.

vol-%

D92 92 60-95 2.00 10.00

D95 95

D98 98

S95 95 65-95 3.00 11.00

S98 98 65-95

G91 91 60-90 5.00 15.00

G95 95

Table 6.6 : Assumed quality specifications for final products

Order
No.

Product Date Time Start Time Stop Product
Tank No.

Volume
(m3)

1 D92 Day 1 00:00 04:00 4 2400

2 D95 Day 1 08:00 16:00 34 4800

3 D98 Day 2 04:00 08:00 5 2400

4 S95 Day 3 00:00 09:00 82 5400

5 S98 Day 3 16:00 21:00 33 3000

6 G91 Day 4 00:00 09:00 83 5400

7 D92 Day 4 20:00 24:00 4 2400

8 G95 Day 5 00:00 05:00 75 3000

9 D98 Day 5 16:00 20:00 5 2400

10 D95 Day 6 08:00 16:00 34 4800

11 G91 Day 7 00:00 09:00 83 5400

12 S98 Day 7 16:00 21:00 33 3000

13 S95 Day 8 00:00 09:00 82 5400

14 D98 Day 8 19:00 23:00 5 2400

15 D95 Day 9 00:00 09:00 34 5400

16 D98 Day 9 16:00 20:00 5 2400

17 G95 Day 10 15:00 23:00 75 4800

TOTAL 64800

Table 6.7 : Orders and production plan
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6.4.3 Results

The value of the objective function is M$ 8.4 for production of 64800 m3 different gasoline
products. This will give an average cost of $ 0.13 per litter produced gasoline. The multiple
blending results for the 17 orders are presented in tables in appendix C. An example of the
result is presented in table 6.8 which shows the results of gasoline blending for order number
9. 
The first two rows in the table is the volume and the qualities of the final product D98. These
are in good agreement with the demands. The rest of the table 6.8 shows the blending
components volume used in the blend and their actual qualities. Notice that for MTBE,
Butane, Import Naphtha, and IC5, the qualities are almost constant. Furthermore, the qualities
of LVN, LVBN, reformates and isomerate are calculated value, based on the tank model. 

Final Product Volume
m3

RON Benzene
vol%

RVP
kpa

D98 2400 98 2 95

Component Time
Period

Volume
m3

MTBE 28 0 0 0 0

Butane 28 290,65 93 0 460

Import 28 0 0 0 0

LVN 28 0 0 0 0

IC5 28 0 0 0 0

Isomerate (42) 28 332,63 89 1 70

Isomerate (23) 28 0 0 0 0

Reformate II 28 893,47 101 5 35

Reformate I+II 28 0 0 0 0

Reformate I 28 883,25 100 0 45

LVBN 28 0 0 0 0

Table 6.8 :Qualities and the volume of the final product and the blend components

The results presented in appendix C exhibit generally good agreement with the demands, and
is an indication for a feasible and local optimum solution. 
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6.5 Discussion

An optimization model for operation of the gasoline processing area of the refinery has been
developed. The model concerns production of the blend components and gasoline blending
over multiple periods. The model consist basically of material balances, quality requirements,
and upper and lower bounds on the variables.
The model is decomposed into two sub-problems, one covering the production of the blend
components and the other covering the final gasoline product. 

The main assumption is that the gasoline qualities blend linearly. This assumption is based on
the results obtained in this work in chapter 3 in which a neural network model is developed for
prediction of the qualities of the final gasoline products. The result for this modeling indicates
that linear approaches can be applied with a reasonable accuracy. Furthermore it is assumed
that the reliable models for prediction of the qualities of isomerate and reformate products are
available. It is further assumed that the processing cost is independent of the processing
conditions and only depends on the throughput.

Although the data used in this scenario is fictitious, but the general evaluation of the multiple
blending model is that the solution is a feasible, local optimum solution, and there is good
agreement with the specifications and demands of the products. The value of the objective
function in this scenario is M$ 8.4 for production of 64800 m3 different gasoline products
which gives an average value for the variable cost of $ 0.13 per litter produced gasoline, in
which a comparison with 1992 prices (Gary, 1994) shows 15% revenue per litter gasoline.
Furthermore, the obtained optimum values of the flow rate and qualities of the reformate and
isomerate products at the end of the blending period are used as the suggesting target for
operation of these production units.  

The main weakness of the model is that the prices of the blend components are independent of
the processing conditions. Further development of the optimization model should include
determination of the price of the blend components as a function of qualities. This is also a
challenging job, which make the model more complex. 
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Chapter 7

Conclusions

7.1 Introduction

The process of gasoline blending is based on in-line blending of blendstocks, i.e. while
continuous feed to the component blend tanks are introduced. In this situation applying the
bias-updated regression model for on-line prediction of blend component qualities would not
be adequate since the qualities of the blend stocks will change due to the upstream process
variation. The existing LP plus bias-updating formulation may not handle such time-varying
feedstock qualities in order to find the optimal solution for the blending problem. Thus,
improved and reliable prediction of the qualities in the blendstock tanks are needed based on
the variation of the upstream process as an important basis for optimization of the gasoline
blending process.
The main purpose of this work has been to develop data-based dynamic models in order to
predict the qualities of the blend components and supply the optimization system with the
previous, present and predicted future values of the qualities. The developed models are then
used in a multiperiod nonlinear optimization problem for the gasoline blending.
The models are mainly developed for prediction of Research Octane Number (RON), Reid
Vapor Pressure (RVP), concentration of aromatic compounds, e.g. benzene, in the
blendstocks.
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The optimization is concentrated around the gasoline blending unit of the refinery, and the
objective is to determine the targets for the advanced control and conventional process control
system by minimizing a cost function subject to a set of process and quality constraints in such
a way that the needed quantities of the different final gasoline products can be produced
on-time, with the desired specifications.  The objective function represent the cost of operation
for production of blending components plus the inventory cost. The objective function is
minimized subject to a set of constraints which represent the demands for quality and quantity
of final gasoline products, provided the prediction of the qualities of the blend components are
available.

In the following the conclusions for the modeling and optimization of the gasoline blending
process is presented.

7.2 Modeling

7.2.1 Conclusion

Artificial Neural Networks (ANNs) models are developed for prediction of qualities of final
gasoline products using the data from intermediate gasoline blend component tanks. These
models are developed in order to explore nonlinear effects in the blending process. 
The results for the nonlinear approach for prediction of the qualities for the final gasoline
products indicate that linear approaches can be applied with a reasonable accuracy. 
ANNs models exhibit good performance of prediction ability in the case of static nonlinear
modeling. However, when the system exhibit dynamic behavior, static ANN models will not
work. The solution to be investigated in this work is to use a dynamic or time series models. 

Principal Component Analysis (PCA) is performed in order to assess the representability of the
data, discover any collinearity in the selected inputs, detection of distinct clusters of data due
to plant operation. 
The results from PCA analysis have shown that there are systematic variations in data, and
hence existence of different operation points in catalytic reformer and isomerization units. The
interesting observation is that the systematic variations are related mainly to the desired quality
of RON and benzene contents rather than RVP. The RVP specification for final gasoline
product is different for summer and winter period, but there is no season change for
specification of neither RON nor for benzene content. Consequently, for prediction of RON
and benzene contents of the isomerate and reformate products it is not necessary to separate
the modeling into two regions of summer and winter operation. Regarding RVP quality of
isomerate and reformate, there are reasons to believe that one model will be appropriate to
cover variation of RVP in both summer and winter period since the operation of reforming and
isomerization processes are mainly to maintain the desired RON and benzene content of
reformate and isomerate respectively. 
A set of suitable input variables is grouped in each modeling case in order to secure a feasible
model structure. The main excitation is benzene content which is a set point. Hence this
excitation signal will be sufficient to ensure identifiability of the benzene loop. Further analysis
is necessary for the whole plant section investigated.
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Multivariate predictive models, applying methods in process chemometrics, are developed for
quality prediction of isomerate and reformate products in gasoline processing area. 
It has been observed that the quality variables are dependent on the previous value of
themselves and the input variables. This means that a dynamic, time-series modeling approach
is a suitable choice in this application. 
The applied model in this work is ARX (Auto Regressive with Exogenous input) type, in
which Partial Least Squares Regression (PLS) method is used for parameter estimation.
Applying PLS parameter estimation of ARX model has increased the strength of the
predictability by taking advantage of the ability of PLS to extract the useful information from
collinear, noisy, input data which is relevant for modeling the output prediction.
Nonlinear PLS approaches has also been examined in order to explore and model the nonlinear
relationship between input and output. The approaches include Neural Net PLS (NNPLS) and
Polynomial PLS. In this work no significant nonlinear relationship has been observed for
relationship between scores in inputs and output.

For the output variables, there are few hourly samples available. The qualities are measured
only once per day, due to economical consideration and time consuming laboratory analyses.
This low sampling frequency for model output has given rise to a challenging problem in this
work. The solution to this problem is based on the one of the following two situations. 
If the output variation is slowly moving over one day to the next day, as it is in the case of
RON, a linear interpolation of the output is performed to recover the model output in
calibration. However, it is avoided to perform output interpolation in validation. 
In the opposite case, in which there is a considerable variation in the output signal, indicating a
possible faster dynamic response, such as the case of prediction of RVP and benzene contents,
it would not be a good solution to replace the missing output by interpolation. The proposed
solution here is that a suitable structure for the ARX model is chosen in which the hourly
sampled input variables are used together with the previous existing output measurement,
normally measured every 24 hours, in order to model the prediction of output at time t. This
solution is integrated in the regression matrix of the ARX structure, in which the regression
for output is over 24 hours whereas the inputs are available every hour.

Another problem is concerned with the cross spectrum between input and the driving noise
realized by output feedback. The control strategy of the reformer and isomerization units is
based on feed-back control of RON quality due to the great importance of octane number on
production economy. This has effectively caused that the obtained input-output data set is
only little informative with respect to prediction of the output RON due to the effect of an
apparently well tuned closed-loop control.

The models are validated using cross validation. Since the model has time-series dynamic
characteristics, it is important to secure a calibration and validation set containing time
sequence of subsequent data. Thus, the validation is performed applying a completely distinct
set of data, and it is attempted to cover both winter and summer operation both in the
validation and calibration data sets.    
Even if the selected data in calibration cover almost 9-10 months operation and the validation
period is about 4 months, it must be emphasized that the developed models have a moderate
general characteristics in which the models are valid only for the operation regions that they
are calibrated for, and hence, implementation of the models for other operations points will
need further calibration. The limited characteristics of the models are due to the effect of
closed-loop control and low sample frequency of the output. However, under the existing
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circumstances, the results exhibit acceptable prediction ability and performance of the ARX
models in time-series regression. 

7.2.2 Future Work

By applying the techniques developed in this work attacking the problem of low sampling
frequency, there will be no need for providing a massive amount of quality measurements.
Having in mind that a massive amount of quality measurement would not be economically
feasible. However, an investment in a reasonable higher sampling rate is recommended for a
limited period of time. This can be for instance a sampling rate of two or more laboratory
analysis per day for a period of few weeks covering both winter and summer operation modes.
Regarding elimination of the effect of feedback, a carefully planed experimental design should
be performed. There are several methods that can be applied in a closed-loop control in order
to get informative (excited) input-output data set (Nikolaou 1998). An idea in this field can be
introducing an extra input to the regulator which is responsible for adding a controlled extra
disturbance to the system.
Another direction in predictive quality modeling should be to combine the models for one
production unit, and develop Multi Input Multi Output (MIMO) models. This will improve the
strength of the models effectively since there is cross correlation between the inputs and the
outputs used in all models in each production unit. 
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7.3 Optimization 

7.3.1 Conclusion

An optimization model for operation of the gasoline processing area of the refinery has been
developed. The model concerns production of the blend components mainly in catalytic
reformers and isomerization unit, and gasoline blending over multiple periods. 
It is assumed that the corporate strategy is to run the refinery at full capacity. Therefore the
objective is to produce minimum cost product in such quantities that the demands are satisfied.

The objective function includes the value of the blend components used for the final gasoline
products, which implicitly accounts for the processing cost and price of raw material used to
produce the blend components. It is thus assumed that the processing cost  is independent of
the processing conditions and only depends on the throughput. A second term in objective
function accounts for the working capital tied up in carrying an inventory. It is assumed that
the interest rate is constant during the period of optimization, since the time horizon of the
optimization problem in this formulation is 7-10 days applied for short time planning and
scheduling.

A heuristic decomposition of the model has been performed and two sub-problems are
obtained. One covering the production of the blend components and the other covering
gasoline blending. 

The multiple period gasoline blending model covers the gasoline blending unit including the
blendstocks and final product tanks. It is assumed that the gasoline qualities blend linearly and
the models for prediction of the qualities for isomerate and reformate blendstocks are
available. The assumption of gasoline linear blending is based on the results of an analysis
performed in this work by a nonlinear approach for prediction of the qualities for the final
gasoline products indicating that linear approaches can be applied with a reasonable accuracy. 

The optimization problem is based on available accurate prediction of the qualities in the
streams sent to blendstock tanks reflecting the variation of mainly the reforming and
isomerization process.

A case study is considered and production of different types of final gasoline is scheduled in a
complete scenario for a multiple period of blending for a period of 10 days. A feasible local
optimum solution is obtained and the resulting values of optimum variables in this case study
indicate that  there is good agreement with the specifications and demands of the final gasoline
products.
A value of the objective function is obtain for this scenario which gives an average value for
the variable cost of $ 0.13 per liter produced gasoline, in which a comparison with 1992 prices
(Gary, 1994) shows 15% revenue per liter gasoline.

The obtained optimum values of the flow rate and qualities of the reformate and isomerate
products at the end of the blending period are used for suggesting an  operation target of these
production units.  
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7.3.2 Future Work

The multiple period optimization model in this work is developed for the refinery blending
process, which is used for the short term planning and scheduling. The future development of
this model should be in the direction of including a longer time horizon for an
intermediate-range planning and scheduling for the gasoline processing area, in which the
targets for flow rate and qualities of the reformate and isomerate products can be determined.
This is important for reduction of give-away in which the optimum solution can be found for a
larger time horizon and targets can be used for more appropriate planning for the operation of
the respective units.
Further development of the optimization model should also include determination of the price
of the blend components as a function of qualities. This is also a challenging job, which may
add more nonlinear characteristics to the model, and with that making the model more
complex. 

Real-time application the multiple period gasoline blending optimization model should be one
of the steps in future work, since in-line blending and prediction of the blendstock qualities has
the potential to provide a competitive benefit for the refinery.
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Appendix A

Models for Catalytic
Reformer II

1 Introduction

The developed models for prediction of RON, RVP, and benzene contents of reformate
product from catalytic reformer II are presented in this appendix. The different steps in model
development are essentially similar to the procedure applied for the models described in
chapter 5.
It has been found that the output signal exhibit great correlation to the past values of input and
output signals. The method used for development of the models is Auto-Regressive with
Exogenous input (ARX) in which Partial Least Squares Regression (PLS) method is used for
its parameter estimation. 
A description of the plant can be found in chapter 2. The input variables used for the models
are described in chapter 4, along with a Principal Component Analysis (PCA), and a
description of data treatment. 
It is expensive to have on-line quality measurements for the reformate product in order to have
the same sampling frequency as the other process variables. The only existing measurement is
laboratory analyses which are available only once per day for each quality, i.e. sample rate of
24 hours.  
In the following sections, there will be more focus on model structure, calibration, validation,
and performance of the models. 
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2 RVP Model

In this section the model for prediction of Reid Vapor Pressure (RVP) for reformate product
from catalytic reformer II will be presented.

2.1 Inputs and Output

The following input variables are used in the RVP model. 

1 Reactor 1 outlet temperature
2 Reactor 2 outlet temperature
3 Reactor 3 outlet temperature
4 Mole H2/ Mole C in recycle gas
5 % H2 purity in recycle gas  
6 Reformer Feed flow rate
7 C-4401 Feed temperature
8 C-4401 Reboiler temperature
9 C-4401 Reformate product flow rate
10 C-4401 Reflux flow rate
11 C-4401 Feed flow rate
12 C-4703 Reflux flow rate
13 C-4703 LVN flow rate
14 C-4703 Reboiler Steam flow rate 
15 C-201 Naphtha side stream temperature (Pressure Corrected)
16 C-4201 Naphtha side stream temperature (Pressure Corrected)
17 C-4703 Bottom temperature (Pressure Corrected)

The output is RVP measured by laboratory, and thus the model will be a Multi Input Single
Output (MISO) model.
The calibration data set is chosen from a period of approximately 9 months operation. The
total number of input data in calibration is 7516. The validation data cover approximately 6
months operation in which the total number of observation of input data is 2532. As described
in chapter 4, the data corresponding to the periods of process shutdown and outliers has been
omitted. Regarding the output RVP, there are only 305 and 93 laboratory measurements
available for calibration and validation periods respectively.

2.2 Model Structure

The model structure is based on an ARX model in which the parameters θ are estimated by a
PLS model. The structure of the ARX model is based on a form of regression vector in which
the hourly sampled input variables are used together with the previous existing output, which
is normally measured at time t-24 hour, in order to model the prediction of output at time t.
As described in chapter 5, this solution is integrated in the regression matrix of the ARX
structure, in which the delay time for output is inherently 24 hours. Thus, prediction of the
next output can be calculated using equation A.1, which is derived based on equation 5.8 in
chapter 5.

y(t) = a1y(t − 24) + B1U(t − K − 1) + .... + BnbU(t − K − nb) (A.1)
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in which   is the predicted output, U is a vector of input variables, and K is a vector ofy(t)
delay parameters for inputs.
Hence, there will be only one A-parameter, i.e. na=1, and number of B-parameters nb will be
as many as it is necessary to get an acceptable low prediction error, compared to the defined
reference models described later.
In parameter estimation a PLS model is used. A suitable number of principal components or
Latent Variable LV need to be found. Thus, two sets of parameters in model development, i.e.
nb and number of LV, has to be determined. This task is handled by developing a recursive
routine in Matlab, in which the Root Mean Sum Squares Error in Validation (RMSSEV) is
used as the criterion for optimum number of nb and LV. RMSSEV is defined as the following.

RMSSEV =
Σ
i=1

n

(y i − y i)2

n (A.2)

where  is the model predicted output, yi is the output measurement, which is only RVP iny i

this case, and n is the total number of y. 
The results for these simulations are described in the next subsection.

2.3 Calibration

As discussed in chapter 5, and expressed in equation A.1, three parameters have to be
determined. These are optimum number of ARX order i.e. nb, number of LV, and delay
parameter for each variable. 
In this work, the delay parameters are determined by recursive simulations, in which the search
for delay parameters is limited by some qualified estimate according to process knowledge and
physical restrictions, and then let the model find the best delay parameters found for minimum
RMSSEV. 
The following delay parameters has been found for the input variables in this model:

K = [3  4  4  2  2  1  3  1  1  1  3  11  5  11  1  18  6]

The search for optimum number of ARX order for input variables, i.e. nb, and number of LV
is carried out by a series of separate recursive simulations, in which number of nb and LV are
changed from 1 to 25 for nb, and from 1 to 35 for number of latent variables (LV). The choice
for maximum number of LV is based on the following considerations.
Number of LV is a function of number of variables, and ARX order, as shown in equation
A.3.

Max. LV = na ⋅ ny + nb ⋅ nu (A.3)

where ny is the number of output, and nu is the number inputs variables.
In this case na = 1, ny = 1, and nu =17. For nb=2, there will be 35 maximum number for LV. 
Selecting more LV is disadvantageous, in which it will add more noise to the structure part.
Moreover, total number of model parameters will increase by choosing more LV, which is not
desirable, due to the risk of overfitting. These issues are discussed in chapter 3
For these reasons, maximum number of 35 LV has been chosen in this case for all nb larger
than 2.
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Figure A.1 shows the calculated RMSSEV as a function of nb and LV, for nb from 2 to 25
and LV from 1 to 35. 
It can be seen that minimum RMSSEV can be found for LV= 4. In table A.2, the minimum
RMSSEV and number of LV at the minimum are shown for nb from 1 to 20. The results for
nb larger than 20 are skipped since the value of RMSSEV increase for the rest of the nb. It can
be seen that the minimum RMSSEV is found for nb=2 with LV = 4. Furthermore, there is a
region of nb=15 and nb=16 that RMSSEV has another local minimum, which is not a good
model candidate due to the large model parameters. 
Based on evaluation of the model performance in validation the case with nb=2 and LV=4 is
chosen as the best model in this case.
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Figure A.1 : RVP Model, RMSSEV as a function of nb and LV.

The obtained RMSSEV for nb=2 is compared with the reference models, i.e. the
average-model RMSEAVGV and the zero-model RMSEZROV, as it is shown in table A.1.
The reference models are described in chapter 3, section 3.6 and has been used in description
of the models for catalytic reformer I in chapter 5.

Validation Calibration

RMSSEV 2.12 RMSSEC 2.66

RMSEAVGV 3.46 RMSEAVGC 3.75

RMSEZROV 3.11 RMSEZROC 3.84

Table A.1 : RVP model, RMSSE, average-model, and zero-model in validation and
calibration.
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As it can be seen in table A.1 the value of RMSSEV and RMSSEC, which are the obtained
Root Mean Sum Squares Error in model validation and calibration respectively, are less than
RMSSE for average-model and zero-model both in validation and calibration.

nb Min. RMSSEV X-Block Y-Block LV

1 2.188 76.69 48.31 4

2 2.125 78.01 49.71 4

3 2.137 78.22 49.36 4

4 2.165 78.28 49.37 4

5 2.187 78.03 49.46 4

6 2.211 77.95 49.10 4

7 2.229 77.81 48.77 4

8 2.231 77.56 48.69 4

9 2.241 77.32 48.76 4

10 2.240 77.07 48.62 4

11 2.231 76.85 48.46 4

12 2.225 75.62 48.51 4

13 2.214 75.08 48.52 4

14 2.220 74.99 48.53 4

15 2.217 74.02 48.55 4

16 2.216 74.07 48.47 4

17 2.220 74.04 48.39 4

18 2.229 74.07 48.37 4

19 2.234 74.13 48.18 4

20 2.244 74.19 48.04 4

Table A.2 : RVP model, Minimum RMSSEV for different nb. 

The plot for RMSSEV as a function of LV for nb=2 is shown in figure A.2, which shows
clearly that the local minimum appears at LV=4.
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Figure A.2 : RVP Model, RMSSEV as a function of LV for nb =2.

0 50 100 150 200 250 300 350
-15

-10

-5

0

5

10

15
Error in Calibration

Figure A.3 : RVP Model, prediction error in calibration.

Following the procedure described in chapter 5, the next step is model calibration. The
prediction error in calibration for this model is shown in figure A.3. Notice that the obtained
RMSSE in calibration is 2.66 kP RVP. Figure A.4 is also used for the assessment of
calibration. It can be seen that the histogram of error in calibration shown in figure A.4 exhibit
an approximate zero mean error. 
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Figure A.4 : RVP Model, histogram plot of prediction error in calibration

Performance of the model in calibration can be evaluated by simulation of the model using
calibration data. The simulation is performed using the obtained parameters. As described in
chapter 5, an open-loop simulation can be used for assessment of model calibration. In this
simulation the model predicted output at time t is used in the model instead of output
measurement in order to predict the output value at time t+1. The result for this simulation is
shown in figure A.5. The open loop simulation will show the predictability of the model during
a period of operation without having the actual output measurement.
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Figure A.5: RVP Model, Open Loop Simulation in calibration
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Figure A.6: RVP Model, prediction ability in calibration

Figure A.6 shows the result for simulation of the model in which the actual output
measurement is used for prediction of the next output. This simulation is performed in order to
assess the calibration of the model. It is expected that the developed model is capable to
reproduce the calibration satisfactory.
As it can be seen from figure A.6 and A.5, the model has captured the essential variation of
RVP. The result in figure A.6 can be better expressed in figure A.7. Figure A.7 shows
measured RVP at laboratory versus model predicted RVP in calibration. It can be seen that
although the model has captured the essential variation but it has difficulty to capture the high
frequency variation of RVP.
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Figure A.7 : Measured RVP vs. model predicted RVP in calibration.

Selection the best nb and LV is based on performance of the obtained model in validation. The
important issue is to capture the maximum effect of input variables on prediction of output and
obtain a model with minimum prediction error. The issues in validation of the selected model
is discussed in the following subsection.

2.4 Validation

As mentioned earlier in section 2.1, the validation data set is chosen from a period of
approximately 6 months operation in which the total number of observation of input data is
2532. The data corresponding to the periods of process shutdown and outliers has been
omitted, and thereby there are only 93 laboratory measurements of output RVP available for
the validation period.
As discussed in the calibration section, a suitable model with fewer model parameters is
chosen among a set of model candidate. The selected model has the following parameters. 
The order of the ARX model is:  na = 1, and  nb = 2. Number of latent variable in PLS
regression LV is equal to 4. The following delay parameters has been found for each input
variables: 

K = [3  4  4  2  2  1  3  1  1  1  3  11  5  11  1  18  6] 

The RMSSE in validation, the average-model RMSEAVGV and the zero-model RMSEZROV
are shown in table A.1. It can be seen that the RMSSEV is less than average- and zero-model,
indicating that the model has captured the essential variation both in input and output.

The prediction error and a histogram plot of error in the validation are shown in figure A.8
and A.9. As it can be seen the error is less than in calibration, however a small bias exists.  
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Notice that the error here is the difference between model output and RVP measured at the
laboratory, and the error value is not calculated based on autoscaled data, but it has the real
unit, i.e. kPa.
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Figure A.8: RVP Model, prediction error in validation.
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Figure A.9: RVP Model, histogram plot of prediction error in validation.

Another way to evaluate the model performance is an open-loop simulation of the model.
Open-loop simulation is performed by letting the new predicted value of the output be used
instead of measurement for prediction of the next output value. Open-loop simulation will tell
us how well the model will predict the output values during a period of operation without
having the actual output measurement. 
It is interesting to see the open-loop simulation of the obtained RVP model using validation
data set, which is shown in figure A.10.
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Figure A.10: RVP Model, Open Loop Simulation in validation

As we can see the model has actually captured the essential variation and follow the variation
of RVP op and dawn, indicating acceptable performance.
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Figure A.11 : RVP Model, prediction ability in validation
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Figure A.12: RVP model predicted versus RVP measured in validation

Figure A.11 shows the result of the simulation when the actual measurements are used. It is
obvious from figure A.11 and A.12 that these two simulations are similar. This similarity is an
indication that the calibration has captured the essential variation in the input data. Figure
A.12 shows RVP predicted versus RVP measured in validation. 

Parameter Coef.for
(t-1)

Coef. for
(t-2)

Sign Description

A 0.1961 0.0000 + Previous RVP

B8 -0.1546 -0.1717 - C-4401 Reboiler temp.

B10 -0.1789 -0.2200 - C-4401 Reflux flow rate

B12 -0.0219 -0.0165 - C-4703 Reflux flow rate

Table A.3 : The largest parameters in RVP model.

Table A.3 shows a list of the parameter values of those variables that have the largest effect on
the RVP. The same discussion as in chapter 5 is valid here for interpretation of the effect of
different input variables.
There is only one A-parameter, which is the effect of the last measured RVP. The largest
effects of input variables come from variables number B8 (stabilizer C-4401 reboiler
temperature) and B10 (stabilizer C-4401 reflux flow rate) both with negative effects. This
negative effects are correct since an increment in both reboiler temperature and reflux flow
rate will decrease RVP as a result of removing more light hydrocarbon components from the
bottom product (the reformate product). 
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Variable number B12 is the reflux flow rate in the naphtha splitter, in which its main objective
is to split naphtha into LVN and HVN. Increment in the reflux flow rate of the splitter means
more light components toward LVN and more heavy component to HVN, and by that a
negative effect on RVP.
The rest of the variables is considered to have less effect on RVP.
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3 RON Model

3.1 Introduction

In this section the model for prediction of Research Octane Number RON for reformate
product from catalytic reformer II will be presented.

3.2 Inputs and Output

It has been found that the following variables have the most effect on output RON.

1 Reactor 1 outlet temperature 
2 Reactor 2 outlet temperature
3 Reactor 3 outlet temperature
4 Mole H2/mole C in recycle gas
5 % H2 purity in recycle gas
6 Reformer feed flow rate

The total number of input data is 7515, and 2527 in calibration and validation data set
respectively. These number of data set corresponds to 11 months operation data in calibration
and 4 months operation data in validation. Notice that the data corresponding to the periods of
process shutdown and outliers has been omitted. Regarding the output RON, there are only
331 and 100 laboratory measurements available in the calibration and validation periods
respectively. 

3.3 Model Structure

The RON quality is the main control variable in the catalytic reformer. Effective feedback
control, based on manipulating the temperature of the inlet streams to the reactors, has caused
small variation in the RON quality, as it is shown in table A.4. Notice that this is the
calibration data set that cover 11 months of operation. 
It has been found that the type of model structure used in the case of RVP model is not
suitable for prediction of RON. As it is shown in chapter 4, there is more variation in the RVP.
This is particularly due to the control strategy in the reformer unit, which is based on effective
control of RON quality.

Calibration Reactor Outlet Temperature

RON R1 R2 R3

Average 101.00 391.80 446.91 472.33

Std. Deviation 0.25 3.28 5.36 4.98

Maximum 101.80 398.77 458.23 482.95

Minimum 100.00 380.81 432.86 459.88

Table A.4 : Calibration data set, RON and reactor outlet temperatures
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As it is discussed in chapter 5, linear interpolation is performed in order to estimate the
missing RON values. This is consequently based on the assumption that the variation of RON
from one day to another is small enough to permit a rough estimation of RON between two
subsequent existing RON measurement.  
Since we are applying interpolation in order to estimate the missing RON output, we will have
an equal number of observations in both input and output data set. The number of
A-parameters, and B-parameters are then determined by model order, and we will have the
same number of na, and nb.  The model structure is based on an ARX model, in which PLS is
used for parameter estimation.
It is important to emphasize that the interpolation is performed only in calibration data set. In
the validation, we let the model apply its own predicted output, in order to predict the next
output.  

3.4 Calibration

As it is described earlier, we need to find a set of suitable delay parameters, optimum number
of model order and LV parameter. 
These parameters has been found by numerous recursive simulations. The following delay
parameters has been found for the input variables:

k = [20    20    19     6     6     5]

There is no delay for output RON.

Table A.5. shows the values of RMSSV obtained for the different ARX orders and LV, in
which the model order is changed from 1 to 25 in order to search for all possible effect of
variables up to t-24, i.e. the previous measured RON. 
It can be seen that a local minimum appear already by a second order ARX model and LV=3,
the value of RMSSEV is 0.045. Furthermore, the value of RMSSEV can not be much less
than 0.03 for all possible ARX orders and all LVs, and another local minimum appear at
nb=10, LV= 6, which gives RMSSEV= 0.032.
The progress of RMSSEV for different LV is shown in figures A.13 for the first ARX order,
and in figure A.14 for the 10th ARX order. Notice that in these figures only that part of the
diagram is shown that include the minimum. The rest of the plot is skipped because including
more LV produce large RMSSEV.

As discussed in chapter 5, it is preferable to choose a model structure with fewer parameters.
Hence, the model structure with nb=2, and LV=3 is chosen, since the difference between
RMSSEV in this case and the next local minimum is small.

It is important to notice again that these RMSSEV values is calculated based on that the
model apply its own predicted output in order to predict the next output. In other word these
are the values of RMSSEV in open-loop simulation of the model. 
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ARX Order Min. RMSSEV X-Block Y-Block LV

1 0.1950 99.28 98.68 5

2 0.0446 86.72 97.88 3

3 0.0444 86.62 96.97 3

4 0.0476 86.51 95.89 3

5 0.0434 98.76 98.78 7

6 0.0374 98.39 98.60 6

7 0.0318 96.28 98.42 5

8 0.0328 96.12 98.25 5

9 0.0324 97.39 98.14 6

10 0.0316 97.42 97.90 6

11 0.0318 97.27 97.66 6

12 0.0324 97.09 97.43 6

13 0.0335 96.88 97.18 6

14 0.0349 97.94 98.56 9

15 0.0355 97.84 98.49 9

16 0.0360 97.74 98.42 9

17 0.0362 97.63 98.35 9

18 0.0364 97.52 98.27 9

19 0.0371 97.40 98.20 9

20 0.0375 98.43 98.77 13

21 0.0375 98.34 98.76 13

22 0.0369 98.00 98.67 12

23 0.0363 97.90 98.66 12

24 0.0358 97.80 98.65 12

25 0.0354 97.70 98.64 12

Table A.5 :  Minimum RMSSEV for different value of ARX order and LV.
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Figure A.13: RON model, RMSSEV as a function of LV for nb=1.
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Figure A.14: RON model, RMSSEV as a function of LV for nb =10.

The prediction error for this model is shown in figure A.15. Notice that the size of the data set
in calibration is 7515 observations. However, number of actual measured RON by laboratory
is only 331. In figure A.15, only the error corresponding to existing measured RON is shown,
and the error corresponding to interpolated data is omitted. It can be seen that the prediction
error is small.
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Figure A.15: RON model, prediction error in calibration.
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Figure A.16: RON model, open loop simulation in calibration.

Figure A.16 shows the open-loop simulation of the model by using calibration data set.
Open-loop simulation is performed by letting the new predicted value of the output be used
instead of measurement for prediction of the next output value. It can be seen that the
prediction ability is satisfactory.
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Figure A.17: RON model, prediction in calibration.
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Figure A.18: Measured RON vs. model predicted RON in calibration.

Figure A.17 shows the result for simulation of the model in which the actual output
measurement is used for prediction of the next output. This simulation is performed in order to
assess the calibration of the model. It is expected that the developed model is capable to
reproduce the calibration satisfactory.
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As it can be seen from figure A.16 and A.17, the model has captured the essential variation of
RON. The result in figure A.17 can be better expressed in figure A.18, which shows measured
RON at laboratory versus model predicted RON in calibration. 

Figure A.19 shows the histogram plot of prediction error in calibration, which exhibits an
approximate zero mean error.  
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Figure A.19: RON model, histogram plot for prediction error in calibration.

3.5 Validation

The validation is performed applying a completely distinct set of data. As mentioned before
the input data in validation set consists of 2527 data set covering 4 months operation. In this
period, after omitting the outliers, there are only 100 laboratory measurements of output RON
is remained. 

The RMSSE in validation, the average-model RMSEAVGV and the zero-model RMSEZROV
are shown in table A.6. It can be seen that the RMSSEV is less than average- and zero-model,
indicating that the model has captured the essential variation both in input and output.

Validation Calibration

RMSSEV 0.0446 RMSSEC 0.0352

RMSEAVGV 0.1957 RMSEAVGC 0.2502

RMSEZROV 0.2834 RMSEZROC 0.3308

Table A.6: RMSSE, average-model, and zero-model in validation and calibration.
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The prediction error in the validation is shown in figure A.20. Notice again that in figure A.20,
only the error corresponding to existing 100 measured RON is shown. It can be seen that the
prediction error is small.
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Figure A.20: RON model, prediction error in validation.
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Figure A.21: RON model, open loop simulation in validation.

Figure A.21 shows the open-loop simulation in the validation, in which the predicted value of
the output is used to predict the next output value. It can be seen that the prediction ability is
satisfactory.
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The result in figure A.21 can be better expressed in figure A.22, which shows measured RON
at laboratory versus model predicted RON in validation. 
Figure A.23 shows the histogram plot of prediction error in validation, which exhibits an
approximate zero mean error.  
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Figure A.22: Measured RON vs. model predicted RON in validation.
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Figure A.23: RON model, histogram plot for prediction error in validation.
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4 Benzene Model

In this section the model for prediction of benzene (aromatics) contents of reformate product
from catalytic reformer II will be presented.

4.1 Inputs and Output

The following input variables are used in the benzene model. 

1 Reactor 1 outlet temperature
2 Reactor 2 outlet temperature
3 Reactor 3 outlet temperature
4 Mole H2/ Mole C in recycle gas
5 % H2 purity in recycle gas  
6 Reformer Feed flow rate
7 C-4401 Feed temperature
8 C-4401 Reboiler temperature
9 C-4401 Reformate product flow rate
10 C-4401 Reflux flow rate
11 C-4401 Feed flow rate
12 C-4703 Reflux flow rate
13 C-4703 LVN flow rate
14 C-4703 Reboiler Steam flow rate 
15 C-201 Naphtha side stream temperature (Pressure Corrected)
16 C-4201 Naphtha side stream temperature (Pressure Corrected)
17 C-4703 Bottom temperature (Pressure Corrected)

The output is benzene contents (wt%) measured by laboratory. The total number of input data
are 7516, and 2532 in calibration and validation data set respectively. These number of data
set corresponds to 11 months operation data in calibration and 4 months operation data in
validation. Notice that the data corresponding to the periods of process shutdown and outliers
has been omitted. Regarding the output benzene, there are only 328 and 103 laboratory
measurements available in the calibration and validation periods respectively.

4.2 Model Structure

The model structure in benzene model is similar to the structure of the model in RVP case. It
is based on an ARX model in which the parameters are estimated by the PLS regression
model. As it is discussed in the RVP model, and shown in equation A.1, the effect of previous
output y(t-24) is taken along with the hourly sampled input variables. As described in chapter
5, this solution is integrated in the regression matrix of the ARX structure, in which the delay
time for output is inherently 24 hours. 
Hence, there will be only one A-parameter, i.e. na=1, and number of B-parameters nb will be
as many as it is necessary to get an acceptable low prediction error. In parameter estimation a
PLS model is used. A suitable number of principal components or Latent Variable LV need to
be found. Number of LV, and nb are determined by a series of recursive simulations, in which
the Root Mean Sum Squares Error in Validation (RMSSEV) is used as the criterion for
optimum number of nb and LV. 
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4.3 Calibration

The following delay parameters has been found for the input variables:

K = [3  4  4  2  2  1  3  1  1  1  3  11  5  11  1  18  6]

Table A.7. shows the values of RMSSEV obtained for the different ARX orders, in which the
model order is changed from 1 to 25 in order to search for all possible effect of variables up to
time t-24. Figure A.24 shows a plot of the obtained RMSSEV for nb from 2 to 25, and LV
from 1 to 35. Figure A.25 shows the RMSSEV for nb=1.

ARX Order Min. RMSSEV X-Block Y-Block LV

1 0.127 67.21 86.96 2

2 0.132 67.08 86.14 2

3 0.135 66.98 85.69 2

4 0.138 66.86 85.37 2

5 0.139 66.72 85.08 2

6 0.141 66.58 84.79 2

7 0.127 97.70 92.33 13

8 0.109 96.16 91.86 11

9 0.104 95.89 91.96 11

10 0.111 95.69 92.06 11

11 0.134 95.42 92.04 11

12 0.147 65.01 83.10 2

13 0.146 95.22 92.49 12

14 0.139 94.93 92.54 12

15 0.129 94.50 92.60 12

16 0.131 94.10 92.66 12

17 0.145 93.87 92.74 12

18 0.154 64.06 81.55 2

19 0.156 64.03 81.30 2

20 0.157 64.01 81.07 2

21 0.159 63.99 80.85 2

22 0.162 63.98 80.63 2

23 0.164 63.96 80.41 2

24 0.166 63.94 80.20 2

25 0.168 63.92 79.98 2

Table A.7 : Minimum RMSSEV for different value of ARX order and LV.
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It can be seen that a local minimum appear already by first and second order ARX model and
LV=2. Furthermore, another local minimum appear at nb=9, LV= 11, which is also shown
separately in figure A.26.
As discussed in chapter 5, it is preferable to choose a model structure with fewer parameters.
Hence, the model structure with nb=2, and LV=2 is chosen, since the difference between
RMSSEV in this case and the next local minimum is small.
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Figure A.24: RMSSEV as a function of nb and LV.
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Figure A.25: RMSSEV as a function of LV for nb=1.
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Figure A.26: RMSSEV as a function of LV for nb=9.

The prediction error for this model is shown in figure A.27. Notice that the actual number of  
measured benzene contents by laboratory is only 328. In figure A.27 only the error
corresponding to existing measured output is shown. It can be seen that the prediction error is
small. Figure A.28 shows the histogram plot of prediction error in validation, which exhibits
an approximate zero mean error.
Figure A.29 shows the open-loop simulation in the calibration, in which the predicted value of
the output is used to predict the next output value. It can be seen that the prediction ability is
satisfactory.
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Figure A.27: Prediction error in calibration.
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Figure A.28: Histogram plot for prediction error in calibration.

Figure A.30 shows the result for simulation of the model in which the actual output
measurement is used for prediction of the next output. It is expected that the developed model
is capable to reproduce the calibration satisfactory. As it can be seen from figure A.29 and
A.30, the model has captured the essential variation of the output.
Figure A.30 shows the result for simulation of the model in which the actual output
measurement is used for prediction of the next output. It is expected that the developed model
is capable to reproduce the calibration satisfactory. As it can be seen from figure A.29 and
A.30, the model has captured the essential variation of the output.

Figure A.30 shows the result for simulation of the model in which the actual output
measurement is used for prediction of the next output. It is expected that the developed model
is capable to reproduce the calibration satisfactory. As it can be seen from figure A.29 and
A.30, the model has captured the essential variation of the output.
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Figure A.29: Open loop simulation in calibration.
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Figure A.30: Prediction in calibration.
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The result in figure A.30 can be better expressed in figure A.31, which shows measured versus
model predicted benzene contents in calibration. 
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Figure A.31: Measured vs. model predicted benzene contents in calibration.

4.4 Validation

The validation is performed applying a completely distinct set of data. As mentioned before
the input data in validation set consists of 2532 data set covering 4 months operation. In this
period, after omitting the outliers, there are only 103 laboratory measurements of output is
remained. 
The RMSSE in validation, the average-model RMSEAVGV and the zero-model RMSEZROV
are shown in table A.8. It can be seen that the RMSSEV is less than average- and zero-model,
indicating that the model has captured the essential variation both in input and output.

Validation Calibration

RMSSEV 0.132 RMSSEC 0.168

RMSEAVGV 0.431 RMSEAVGC 0.451

RMSEZROV 0.266 RMSEZROC 0.255

Table A.8: RMSSE, average-model, and zero-model in validation and calibration.

The prediction error in the validation is shown in figure A.32. Notice again that in figure A.32,
only the error corresponding to existing 103 measured output is shown. It can be seen that the
prediction error is small.
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Figure A.32: Prediction error in validation.

Figure A.33 shows the histogram plot of prediction error in validation, which exhibits an
approximate zero mean error. 
Figure A.34 shows the open-loop simulation in the validation, in which the predicted value of
the output is used to predict the next output value. It can be seen that the prediction ability is
satisfactory.
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Figure A.33: Histogram plot for prediction error in validation.

Figure A.35 shows the result of the simulation when the actual measurements are used. It can
be seen from figure A.34 and A.35 that the calibration has captured the essential variation in
the input. It can also be seen that there are two distinct region in the output values; one
around 1.4% and another around 2.1% benzene. The developed model is capable to cover
both region at the same time.  

Appendix A

194



0 20 40 60 80 100 120
1

1.5

2

2.5
Benzene, Validation, Open Loop Simulation

Sample

B
en

ze
ne

 S
im

ul
at

ed
(o

) a
nd

 B
en

ze
ne

 L
A

B
(*

)

Figure A.34: Open loop simulation in validation.
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Figure A.35: Prediction in validation.

The result in figure A.35 can be better expressed in figure A.36, which shows measured versus
model predicted benzene contents in validation. 
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Figure A.36: Measured benzene vs. model predicted benzene in validation.
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Appendix B

Models for Isomerization
Unit 

1 Introduction

The developed models for prediction of RON, and RVP for isomerate product from
isomerization unit are presented in this appendix. 

The different steps in model development are essentially similar to the procedure applied for
the models described in chapter 5, and appendix A. 

A description of the plant can be found in chapter 2. The input variables used for the models
are described in chapter 4, along with a Principal Component Analysis (PCA), and a
description of data treatment. 

In this appendix, there will be more focus on model structure, calibration, validation, and
performance of the models. The reader is encouraged to see chapter 5 for more detail.

Appendix B

197



2 RVP Model

In this section the model for prediction of Reid Vapor Pressure (RVP) for isomerate product
from isomerization unit will be presented.

2.1 Inputs and Output

The following input variables are used in the RVP model. 

1 Reactor Inlet temperature 0C
2 Reactor A outlet temperature 0C
3 Reactor B outlet temperature 0C
4 Liquid Hourly Space Velocity (LHSV) 1/hr  
5 H2 Consumption Sm3/hr
6 Deisopentanizer (DIP) tray 8 temperature 0C
7 DIP Bottom Flow Rate m3/hr
8 DIP Feed Flow Rate
9 DIP Reflux Flow Rate
10 CP4703 top temperature (Pressure Corrected)
11 C-4703 Reflux Flow rate
12 C-4703 Feed Flow Rate  

The output is RVP measured by laboratory. The data is chosen from a period of approximately
9 and 6 months operation for calibration and validation respectively. The total number of input
data in calibration and validation are 5697, and 3184 respectively. The data corresponding to
the periods of process shutdown and outliers has been omitted. Consequently, there are only
233 and 53 laboratory measurements of RVP available for calibration and validation periods
respectively.

2.2 Model Structure

The structure of the model is based on an ARX model in which the hourly sampled input
variables are used together with the previous existing output at time t-24 in order to predict
the output at time t. As described in chapter 5, this solution is integrated in the regression
matrix of the ARX structure, in which the delay time for output is inherently 24 hours.
Hence, there will be only one A-parameter, i.e. na=1, and number of B-parameters nb will be
as many as it is necessary to get an acceptable low prediction error, compared to the defined
reference models described in chapter 5.

In parameter estimation a PLS model is used. A suitable number of principal components or
Latent Variable LV need to be found. Number of B-parameters nb and number latent variable
LV are determined by a series of recursive simulation of the ARX model, in which minimum
of the Root Mean Sum Squares Error in Validation (RMSSEV) is used as the criterion for
optimum number of nb and LV. 
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2.3 Calibration

Another parameter needs to be determined. That is the delay parameters involved with each
input variables. The delay parameters are also determined by numerous recursive simulations.
The following has been found for the input variables.

K = [6  5  10  7  7  5  5  11  15  9  9  16]

Table B.1 shows the values of RMSSV obtained for the different nb and LV, in which the
model order is changed from 1 to 20 in order to search for all possible effect of variables up to
t-24, i.e. the previous measured RVP. The maximum number of LV is chosen to be 25 in this
case.
It can be seen that there is only one local minimum that appear already by a second order ARX
model and LV=4. It can also be seen in figure B.1, which shows a plot of RMSSEV versus
both LV and nb, and in figure B.2, which shows RMSSEV as a function of LV for nb=2.
Hence, there is only one solution, and the model structure with nb=2, and LV=4 is chosen. 

nb Min. RMSSEV X-Block Y-Block LV

1 1.043 78.56 82.97 4

2 1.036 78.07 82.87 4

3 1.085 78.42 82.84 4

4 1.086 78.68 82.45 4

5 1.099 78.76 82.10 4

6 1.140 78.71 81.87 4

7 1.190 83.88 82.65 5

8 1.201 82.11 82.90 5

9 1.211 81.22 82.96 5

10 1.222 80.95 83.07 5

11 1.225 80.66 82.95 5

12 1.211 79.73 82.79 5

13 1.207 78.50 82.68 5

14 1.215 78.54 82.74 5

15 1.221 78.64 82.71 5

16 1.209 78.70 82.64 5

17 1.200 78.73 82.63 5

18 1.198 78.83 82.51 5

19 1.199 78.83 82.54 5

20 1.218 78.8395 82.606 5

Table B.1 : RVP model, Minimum RMSSEV for different nb, and LV. 
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Figure B.1 : RVP Model, RMSSEV as a function of nb and LV.
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Figure B.2 : RVP Model, RMSSEV as a function of LV for nb =2.
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The prediction error for this model is shown in figure B.3. Notice that the number of available
RVP measurements are only 233. Figure B.4 shows a histogram plot of prediction error in
calibration, which exhibit an approximate zero mean error. 
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Figure B.3 : RVP Model, prediction error in calibration.
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Figure B.4 : RVP Model, histogram plot of prediction error in calibration

Figure B.5 shows the open-loop simulation of the model by using calibration data set.
Open-loop simulation is performed by letting the new predicted value of the output be used
instead of measurement for prediction of the next output value. Figure B.6 shows the result
for simulation of the model in which the actual output measurement is used for prediction of
the next output. As it can be seen from figure B.5 and B.6, the model has captured the
essential variation of RVP. Figure B.7 shows measured RVP at laboratory versus model
predicted RVP in calibration.
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Figure B.5: RVP Model, open loop simulation in calibration
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Figure B.6: RVP Model, prediction ability in calibration
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Figure B.7 : Measured RVP vs. model predicted RVP in calibration.

Selection of the best nb and LV is based on performance of the obtained model in validation.
The important issue is to capture the maximum effect of input variables on prediction of
output and obtain a model with minimum prediction error. The issues in validation of the
selected model is discussed in the following subsection.

2.4 Validation

The validation is performed applying a completely distinct set of data. As mentioned before
the input data in validation set consists of 3184 data set covering 6 months operation. In this
period, after omitting the outliers, there are only 53 laboratory measurements of output RVP
is remained. 

Validation Calibration

RMSSEV 1.036 RMSSEC 1.452

RMSEAVGV 1.920 RMSEAVGC 3.510

RMSEZROV 1.708 RMSEZROC 2.025

Table B.2: RMSSE, average-model, and zero-model in validation and calibration.

The RMSSE in validation, the average-model RMSEAVGV and the zero-model RMSEZROV
are shown in table B.2. It can be seen that the RMSSEV is less than average- and zero-model,
indicating that the model has captured the essential variation both in input and output.

The prediction error in validation is shown in figure B.8. Figure B.9 shows a histogram plot of
prediction error in validation.
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Figure B.8: RVP Model, prediction error in validation.

-3 -2 -1 0 1 2 3 4
0

1

2

3

4

5

6

XBIN

B
IN

Error in Validation

Figure B.9: RVP Model, histogram plot of prediction error in validation.

Appendix B

204



0 10 20 30 40 50 60
66

67

68

69

70

71

72

73

74
RVP LAB, Validation, Open Loop Simulation

Sample

R
V

P
 S

im
ul

at
ed

(o
) a

nd
 R

V
P

 L
A

B
(*

)

Figure B.10: RVP Model, Open Loop Simulation in validation

Figure B.10 shows the open-loop simulation in the validation, in which the predicted value of
the output is used to predict the next output value. Open-loop simulation shows the
predictability of the model during a period of operation without having the actual output
measurement. 
Figure B.11 shows the result of the simulation when the actual measurements are used. The
result in figure B.11 can be better expressed in figure B.12, which shows measured versus
model predicted RVP in validation.

As we can see the model has captured the essential variation in the data and the prediction
ability is satisfactory.
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Figure B.11 : RVP Model, prediction ability in calibration
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Figure B.12: RVP Model, prediction ability in calibration
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3 RON Model

3.1 Introduction

In this section the model for prediction of Research Octane Number (RON) for isomerate
product from isomerization unit will be presented.

3.2 Inputs an Output

The following input variables are used in the RON model.

1 Reactor Inlet temperature 0C
2 Reactor A outlet temperature 0C
3 Reactor B outlet temperature 0C
4 Liquid Hourly Space Velocity (LHSV) 1/hr  
5 H2 Consumption Sm3/hr
6 Deisopentanizer (DIP) tray 8 temperature 0C
7 DIP Bottom Flow Rate m3/hr
8 DIP Feed Flow Rate
9 DIP Reflux Flow Rate
10 CP4703 top temperature (Pressure Corrected)
11 C-4703 Reflux Flow rate
12 C-4703 Feed Flow Rate  

The total number of input data are 5699, and 4266 in calibration and validation data set
respectively. These number of data set corresponds to 9 months operation data in calibration
and 6 months operation data in validation. Notice that the data corresponding to the periods of
process shutdown and outliers has been omitted. Regarding the output RON, there are only
238 and 100 laboratory measurements available in calibration and validation periods
respectively. 

3.3 Model Structure

Effective feedback control, based on manipulating the temperature of the reactors, has caused
small variation in the RON quality, as it is shown in table B.3. Notice that this is the
calibration data set that cover 9 months of operation. 
It has been found that the type of model structure used in the case of RVP model is not
suitable for prediction of RON. As it is shown in chapter 4, there is more variation in the RVP.
This is particularly due to the control strategy in this unit, which is based on effective control
of RON quality.

As it is discussed in chapter 5, linear interpolation is performed in order to estimate the
missing RON values, which is consequently based on the assumption that the variation of
RON from one day to another is small enough to permit a rough estimation of RON between
two subsequent existing RON measurement.  
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Since we are applying interpolation in order to estimate the missing RON output, we will have
an equal number of observations in both input and output data set. The number of
A-parameters, and B-parameters are then determined by model order, and we will have the
same number of na, and nb.  The model structure is based on an ARX model, in which PLS is
used for parameter estimation.

Calibration Temperature

RON Reactor Inlet Reactor A Outlet Reactor B Outlet

Average 87.29 142.96 189.10 159.80

Std. Deviation 0.47 2.21 2.28 2.52

Maximum 88.60 147.30 193.81 164.20

Minimum 85.70 100.27 132.52 112.18

Table B.3 : RON and reactor outlet temperatures in calibration data set.

It is important to emphasize that the interpolation is performed only in calibration data set. In
the validation, we let the model apply its own predicted output, in order to predict the next
output. 

3.4 Calibration

Optimum number of model order nb, Latent Variable LV, and a set of suitable delay
parameters k has been found by numerous recursive simulations.
The following delay parameters has been found for the input variables:

 k = [ 5     4     4     7     6     2     3    10     9     9    10    11 ]

There is no delay for output RON.

Table B.4 shows the values of RMSSV obtained for the different nb and LV, in which the
model order is changed from 1 to 25 and LV is changed from 1 to 25. 

It can be seen that there is only one local minimum that appear already by a second order ARX
model and LV=5. It can also be seen in figure B.13, which shows a plot of RMSSEV versus
both LV and nb, and in figure B.14, which shows RMSSEV as a function of LV for nb=2.

It can be seen that the value of RMSSEV is less in the case of nb=1. However, the case with
nb=2 is preferable since the captured variance in both inputs (X-block) and output (Y-block)
are higher.

Hence, the model structure with nb=2, and LV=5 is chosen. 
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ARX Order Min. RMSSEV X-Block Y-Block LV

1 0.239 77.53 67.55 3

2 0.244 83.57 70.52 5

3 0.260 75.56 67.33 3

4 0.269 75.65 66.96 3

5 0.274 75.44 66.55 3

6 0.280 88.96 72.34 7

7 0.287 88.64 73.23 7

8 0.294 87.99 73.77 7

9 0.294 87.24 74.64 7

10 0.295 86.93 74.81 7

11 0.290 86.60 75.31 7

12 0.297 86.27 75.60 7

13 0.303 85.20 75.79 7

14 0.303 83.16 75.64 7

15 0.319 83.07 76.23 7

16 0.310 82.96 76.23 7

17 0.308 82.85 76.27 7

18 0.304 82.82 76.13 7

19 0.308 82.86 75.98 7

20 0.315 82.84 75.96 7

Table B.4 : RON model, min. RMSSEV for different value of ARX order and LV.
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Figure B.13 : RMSSEV as a function of nb and LV.
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Figure B.14: RON model, RMSSEV as a function of LV for nb=2.
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Figure B.15: RON model, prediction error in calibration.
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Figure B.16: RON model, histogram plot for prediction error in calibration.

The prediction error for this model is shown in figure B.15. The number of available RON
measurements are only 238. Figure B.16 shows a histogram plot of prediction error in
calibration, which exhibit an approximate zero mean error. 
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Figure B.17: RON model, open loop simulation in calibration.
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Figure B.18 Measured versus predicted RON in calibration.

Figure B.17 shows the open-loop simulation of the model by using calibration data set.
Open-loop simulation is performed by letting the new predicted value of the output be used
instead of measurement for prediction of the next output value. Figure B.18 shows measured
versus model predicted RON in calibration.
As it can be seen from figure B.17 and B.18, the model has captured the essential variation in
the data. 

3.5 Validation

The validation is performed applying a completely distinct set of data. As mentioned before
the input data in validation set consists of 4266 data set covering 6 months operation. In this
period, after omitting the outliers, there are only 100 laboratory measurements of output RON
is remained. 

Validation Calibration

RMSSEV 0.244 RMSSEC 0.255

RMSEAVGV 0.324 RMSEAVGC 0.470

RMSEZROV 0.340 RMSEZROC 0.370

Table B.5 : RMSSE, average-model, and zero-model in validation and calibration.

The RMSSE in validation, the average-model RMSEAVGV and the zero-model RMSEZROV
are shown in table B.5. It can be seen that the RMSSEV is less than average- and zero-model,
indicating that the model has captured the essential variation both in input and output.
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The prediction error in validation is shown in figure B.19. Figure B.20 shows a histogram plot
of prediction error in validation.
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Figure B.19: RON model, prediction error in validation.
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Figure B.20: RON model, histogram plot for prediction error in validation.

Figure B.21 shows the open-loop simulation in the validation, in which the predicted value of
the output is used to predict the next output value. Open-loop simulation shows the
predictability of the model during a period of operation without having the actual output
measurement. 
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Figure B.21: RON model, open loop simulation in validation.
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Figure B.22: Measured versus predicted RON in validation.

The result in figure B.21 can be better expressed in figure B.22, which shows measured versus
model predicted RON in validation.
As we can see the model has captured the essential variation in the data and the prediction
ability is satisfactory.

Appendix B

214



    Appendix C

Multiple Period Blending
Results

Appendix C

215



1 Product Order Number 1
Order Number 1: D92

Final Product Volume RON Benzene RVP

D92 2400 92 1.49 95

Components Time
Period

Volume
m3

MTBE 0 0 0 0 0

Butane 0 237.93 93 0 460

Import 0 0 0 0 0

LVN 0 428.57 72.81 0 77

IC5 0 16 89 0 150

Isomerate (42) 0 280 89 1 70

Isomerate (23) 0 280 89 1 70

Reformate II 0 601.50 100.57 5 35

Reformate I+II 0 340 101 0 35

Reformate I 0 200 100 0 45

LVBN 0 16 86 0 125

Qualities and the volume of the final product and the blend components
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2 Product Order Number 2
Order Number 2:  D95

Final Product Volume RON Benzene RVP

D95 4800 95 0,61 95

Component Time
Period

Volumn
m3

MTBE 2 0 0 0 0

MTBE 3 0 0 0 0

Butane 2 263,94 93 0 460

Butane 3 239,59 93 0 460

Import 2 0 0 0 0

Import 3 0 0 0 0

LVN 2 240 75 0 77

LVN 3 13,08 75 0 77

IC5 2 32 89 0 150

IC5 3 16 89 0 150

Isomerate (42) 2 453,88 89 1 70

Isomerate (42) 3 228,05 89 1 70

Isomerate (23) 2 0 0 0 0

Isomerate (23) 3 676,04 89 1 70

Reformate II 2 680 101 2.32 35

Reformate II 3 340 101 0 35

Reformate I+II 2 512,3 101 0 35

Reformate I+II 3 457,11 101 0 35

Reformate I 2 217,87 100 0 45

Reformate I 3 382,13 100 0 45

LVBN 2 0 0 0 0

LVBN 3 48 86 0 125
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3 Product Order Number 3
Order Number 3: D98

Final Product Volume RON Benzene RVP

D98 2400 98 0,16 95

Component Time
Period

Volumn
m3

MTBE 7 0 0 0 0

Butane 7 306,22 93 0 460

Import 7 0 0 0 0

LVN 7 0 0 0 0

IC5 7 0 0 0 0

Isomerate (42) 7 0 0 0 0

Isomerate (23) 7 395,85 89 1 70

Reformate II 7 0 0 0 0

Reformate I+II 7 1697,93 101 0 35

Reformate I 7 0 0 0 0

LVBN 7 0 0 0 0
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4 Product Order Number 4
Order Number 4: S95

Final Product Volume RON Benzene RVP

S95 5400 95 0 95

Component Time Period Volume (m3)

MTBE 12 0 0 0 0

MTBE 13 0 0 0 0

MTBE 14 0 0 0 0

Butane 12 193,03 93 0 460

Butane 13 175,01 93 0 460

Butane 14 153,87 93 0 460

Import 12 0 0 0 0

Import 13 0 0 0 0

Import 14 0 0 0 0

LVN 12 301,82 75 0 77

LVN 13 11,99 75 0 77

LVN 14 239,48 75 0 77

IC5 12 0 0 0 0

IC5 13 0 0 0 0

IC5 14 176 89 0 150

Isomerate (42) 12 0 0 0 0

Isomerate (42) 13 0 0 0 0

Isomerate (42) 14 0 0 0 0

Isomerate (23) 12 9,38 89 0 70

Isomerate (23) 13 679,57 89 0 70

Isomerate (23) 14 0 0 0 0

Reformate II 12 0 0 0 0

Reformate II 13 0 0 0 0

Reformate II 14 0 0 0 0

Reformate I+II 12 0 0 0 0

Reformate I+II 13 0 0 0 0

Reformate I+II 14 0 0 0 0

Reformate I 12 1295,76 100 0 45

Reformate I 13 933,44 100 0 45

Reformate I 14 1230,65 100 0 45

LVBN 12 0 0 0 0

LVBN 13 0 0 0 0

LVBN 14 0 0 0 0
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5 Product Order Number 5
Order Number 5: S98

Final Product Volume RON Benzene RVP

S98 3000 98 1,58 95

Component Time
Period

Volumn
m3

MTBE 16 0 0 0 0

MTBE 17 0 0 0 0

Butane 16 191,39 93 0 460

Butane 17 191,39 93 0 460

Import 16 0 0 0 0

Import 17 0 0 0 0

LVN 16 0 0 0 0

LVN 17 0 0 0 0

IC5 16 0 0 0 0

IC5 17 0 0 0 0

Isomerate (42) 16 0 0 0 0

Isomerate (42) 17 0 0 0 0

Isomerate (23) 16 247,41 89 1 70

Isomerate (23) 17 247,41 89 1 70

Reformate II 16 0 0 0 0

Reformate II 17 0 0 0 0

Reformate I+II 16 1061,2 101 4.01 35

Reformate I+II 17 1061,2 101 0 35

Reformate I 16 0 0 0 0

Reformate I 17 0 0 0 0

LVBN 16 0 0 0 0

LVBN 17 0 0 0 0
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6 Product Order Number 6
Order Number 6: G91

Final Product Volume RON Benzene RVP

G91 5400 91 0,25 90

Component Time Period Volume (m3)

MTBE 18 0 0 0 0

MTBE 19 0 0 0 0

MTBE 20 0 0 0 0

Butane 18 134,13 93 0 460

Butane 19 159,07 93 0 460

Butane 20 134,13 93 0 460

Import 18 0 0 0 0

Import 19 0 0 0 0

Import 20 0 0 0 0

LVN 18 376,7 75 0 77

LVN 19 514,13 75 0 77

LVN 20 376,7 75 0 77

IC5 18 0 0 0 0

IC5 19 0 0 0 0

IC5 20 0 0 0 0

Isomerate (42) 18 0 0 0 0

Isomerate (42) 19 280 89 1 70

Isomerate (42) 20 531,23 89 1 70

Isomerate (23) 18 531,23 89 1 70

Isomerate (23) 19 0 0 0 0

Isomerate (23) 20 0 0 0 0

Reformate II 18 0 0 0 0

Reformate II 19 0 0 0 0

Reformate II 20 0 0 0 0

Reformate I+II 18 0 0 0 0

Reformate I+II 19 846,8 101 0 35

Reformate I+II 20 0 0 0 0

Reformate I 18 757,93 100 0 45

Reformate I 19 0 0 0 0

Reformate I 20 757,93 100 0 45

LVBN 18 0 0 0 0

LVBN 19 0 0 0 0

LVBN 20 0 0 0 0
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7 Product Order Number 7
Order Number 7: D92

Final Product Volume RON Benzene RVP

D92 2400 92 0,3 95

Component Time
Period

Volumn
m3

MTBE 23 0 0 0 0

Butane 23 215,7 93 0 460

Import 23 0 0 0 0

LVN 23 389,59 75 0 77

IC5 23 0 0 0 0

Isomerate (42) 23 89,57 89 1 70

Isomerate (23) 23 633,82 89 1 70

Reformate II 23 0 0 0 0

Reformate I+II 23 6,79 101 0 35

Reformate I 23 1064,54 100 0 45

LVBN 23 0 0 0 0
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8 Product Order Number 8
Order Number 8 : G95

Final Product Volume RON Benzene RVP

G95 3000 95 0,27 90

Component Time
Period

Volumn
m3

MTBE 24 0 0 0 0

MTBE 25 0 0 0 0

Butane 24 142,28 93 0 460

Butane 25 131,72 93 0 460

Import 24 0 0 0 0

Import 25 0 0 0 0

LVN 24 26,56 75 0 77

LVN 25 23,33 75 0 77

IC5 24 0 0 0 0

IC5 25 51,63 89 0 150

Isomerate (42) 24 348,97 89 0 70

Isomerate (42) 25 560 89 1 70

Isomerate (23) 24 248,63 89 1 70

Isomerate (23) 25 0 0 0 0

Reformate II 24 0 0 0 0

Reformate II 25 0 0 0 0

Reformate I+II 24 733,56 101 0 35

Reformate I+II 25 733,32 101 0 35

Reformate I 24 0 0 0 0

Reformate I 25 0 0 0 0

LVBN 24 0 0 0 0

LVBN 25 0 0 0 0
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9 Product Order Number 9
Order Number 9 : D98

Final Product Volume RON Benzene RVP

D98 2400 98 2 95

Component Time
Period

Volumn
m3

MTBE 28 0 0 0 0

Butane 28 290,65 93 0 460

Import 28 0 0 0 0

LVN 28 0 0 0 0

IC5 28 0 0 0 0

Isomerate (42) 28 332,63 89 1 70

Isomerate (23) 28 0 0 0 0

Reformate II 28 893,47 101 5 35

Reformate I+II 28 0 0 0 0

Reformate I 28 883,25 100 0 45

LVBN 28 0 0 0 0
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10 Product Order Number 10
Order Number 10 : D95

Final product Volume RON Benzene RVP

D95 4800 95 1,18 95

Component Time
Period

Volume
m3

MTBE 32 0 0 0 0

MTBE 33 0 0 0 0

Butane 32 258,18 93 0 460

Butane 33 233,13 93 0 460

Import 32 0 0 0 0

Import 33 0 0 0 0

LVN 32 50,34 75 0 77

LVN 33 26,91 75 0 77

IC5 32 0 0 0 0

IC5 33 115,87 89 0 150

Isomerate (42) 32 156,4 89 1 70

Isomerate (42) 33 870,4 89 1 70

Isomerate (23) 32 762,41 89 0.37 70

Isomerate (23) 33 0 0 0 0

Reformate II 32 0 0 0 0

Reformate II 33 1076,71 101 0 35

Reformate I+II 32 1172,67 101 3.72 35

Reformate I+II 33 76,98 101 0 35

Reformate I 32 0 0 0 0

Reformate I 33 0 0 0 0

LVBN 32 0 0 0 0

LVBN 33 0 0 0 0
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11 Product Order Number 11
Order Number 11 : G91

Final Product Volume RON Benzene RVP

G91 5400 91 0,21 90

Component Time Period Volume (m3)

MTBE 36 0 0 0 0

MTBE 37 0 0 0 0

MTBE 38 0 0 0 0

Butane 36 134,13 93 0 460

Butane 37 147,47 93 0 460

Butane 38 147,47 93 0 460

Import 36 0 0 0 0

Import 37 0 0 0 0

Import 38 0 0 0 0

LVN 36 376,7 75 0 77

LVN 37 376,39 75 0 77

LVN 38 376,39 75 0 77

IC5 36 0 0 0 0

IC5 37 0 0 0 0

IC5 38 0 0 0 0

Isomerate (42) 36 0 0 0 0

Isomerate (42) 37 586,17 89 1 70

Isomerate (42) 38 0 0 0 0

Isomerate (23) 36 531,23 89 1 70

Isomerate (23) 37 0 0 0 0

Isomerate (23) 38 586,17 89 0 70

Reformate II 36 0 0 0 0

Reformate II 37 689,97 101 0 35

Reformate II 38 689,97 101 0 35

Reformate I+II 36 0 0 0 0

Reformate I+II 37 0 0 0 0

Reformate I+II 38 0 0 0 0

Reformate I 36 757,93 100 0 45

Reformate I 37 0 0 0 0

Reformate I 38 0 0 0 0

LVBN 36 0 0 0 0

LVBN 37 0 0 0 0

LVBN 38 0 0 0 0
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12 Product Order Number 12
Order Number 12 : S98

Final Product Volume RON Benzene RVP

S98 3000 98 0,44 95

Component Time
Period

Volume
m3

MTBE 40 0 0 0 0

MTBE 41 0 0 0 0

Butane 40 191,39 93 0 460

Butane 41 191,39 93 0 460

Import 40 0 0 0 0

Import 41 0 0 0 0

LVN 40 0 0 0 0

LVN 41 0 0 0 0

IC5 40 0 0 0 0

IC5 41 0 0 0 0

Isomerate (42) 40 39,45 89 0 70

Isomerate (42) 41 156,4 89 1 70

Isomerate (23) 40 207,96 89 1 70

Isomerate (23) 41 91 89 1 70

Reformate II 40 172,57 101 5 35

Reformate II 41 0 0 0 0

Reformate I+II 40 888,63 101 0 35

Reformate I+II 41 1061,2 101 0 35

Reformate I 40 0 0 0 0

Reformate I 41 0 0 0 0

LVBN 40 0 0 0 0

LVBN 41 0 0 0 0
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13 Product Order Number 13
Order Number 13 : S95

Final Product Volume RON Benzene RVP

S95 5400 95 1,65 95

Component Time Period Volume (m3)

MTBE 42 0 0 0 0

MTBE 43 0 0 0 0

MTBE 44 0 0 0 0

Butane 42 174,05 93 0 460

Butane 43 191,43 93 0 460

Butane 44 191,43 93 0 460

Import 42 0 0 0 0

Import 43 0 0 0 0

Import 44 0 0 0 0

LVN 42 28,47 75 0 77

LVN 43 11,61 75 0 77

LVN 44 11,61 75 0 77

IC5 42 0 0 0 0

IC5 43 0 0 0 0

IC5 44 0 0 0 0

Isomerate (42) 42 280 89 1 70

Isomerate (42) 43 747,22 89 1 70

Isomerate (42) 44 747,22 89 1 70

Isomerate (23) 42 341,88 89 1 70

Isomerate (23) 43 0 0 0 0

Isomerate (23) 44 0 0 0 0

Reformate II 42 0 0 0 0

Reformate II 43 849,74 101 5 35

Reformate II 44 513,52 101 5 35

Reformate I+II 42 0 0 0 0

Reformate I+II 43 0 0 0 0

Reformate I+II 44 336,21 101 0 35

Reformate I 42 959,23 100 0 45

Reformate I 43 0 0 0 0

Reformate I 44 0 0 0 0

LVBN 42 16,37 86 0 125

LVBN 43 0 0 0 0

LVBN 44 0 0 0 0
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14 Product Order Number 14
Order Number 14 : D98

Final Product Volume RON Benzene RVP

D98 2400 98 2 95

Component Time
Period

Volumn
m3

MTBE 47 0 0 0 0

Butane 47 306,22 93 0 460

Import 47 0 0 0 0

LVN 47 0 0 0 0

IC5 47 0 0 0 0

Isomerate (42) 47 0 0 0 0

Isomerate (23) 47 395,85 89 0 70

Reformate II 47 1697,93 101 2.83 35

Reformate I+II 47 0 0 0 0

Reformate I 47 0 0 0 0

LVBN 47 0 0 0 0
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15 Product Order Number 15
Order Number 15 : D95

Final Product Volume RON Benzene RVP

D95 5400 95 2 95

Component Time Period Volume (m3)

MTBE 48 0 0 0 0

MTBE 49 0 0 0 0

MTBE 50 0 0 0 0

Butane 48 185,2 93 0 460

Butane 49 191,43 93 0 460

Butane 50 182,12 93 0 460

Import 48 0 0 0 0

Import 49 0 0 0 0

Import 50 0 0 0 0

LVN 48 0 0 0 0

LVN 49 11,61 75 0 77

LVN 50 110,77 75 0 77

IC5 48 0 0 0 0

IC5 49 0 0 0 0

IC5 50 32 89 0 150

Isomerate (42) 48 719,49 89 0.57 70

Isomerate (42) 49 747,22 89 0 70

Isomerate (42) 50 453,2 89 0 70

Isomerate (23) 48 0 0 0 0

Isomerate (23) 49 0 0 0 0

Isomerate (23) 50 0 0 0 0

Reformate II 48 0 0 0 0

Reformate II 49 849,74 101 4.24 35

Reformate II 50 0 0 0 0

Reformate I+II 48 849,67 101 3.76 35

Reformate I+II 49 0 0 0 0

Reformate I+II 50 381,35 101 5 35

Reformate I 48 0 0 0 0

Reformate I 49 0 0 0 0

Reformate I 50 640,56 100 2.64 45

LVBN 48 45,63 86 0 125

LVBN 49 0 0 0 0

LVBN 50 0 0 0 0

Appendix C

230



16 Product Order Number 16
Order Number 16 : D98

Final Product Volume RON Benzene RVP

D98 2400 98 2 95

Component Time
Period

Volumn
m3

MTBE 52 0 0 0 0

Butane 52 246,6 93 0 460

Import 52 0 0 0 0

LVN 52 0 0 0 0

IC5 52 80 89 0 150

Isomerate (42) 52 58,8 89 1 70

Isomerate (23) 52 0 0 0 0

Reformate II 52 0 0 0 0

Reformate I+II 52 245,01 101 0 35

Reformate I 52 1641,59 100 2.89 45

LVBN 52 128 86 0 125
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17 Product Order Number 17
Order Number 17 : G95

Final Product Volume RON Benzene RVP

G95 4800 95 1,14 90

Component Time Period Volume (m3)

MTBE 57 0 0 0 0

MTBE 58 0 0 0 0

MTBE 59 0 0 0 0

Butane 57 133,2 93 0 460

Butane 58 138,04 93 0 460

Butane 59 139,11 93 0 460

Import 57 0 0 0 0

Import 58 0 0 0 0

Import 59 0 0 0 0

LVN 57 76,61 75 0 77

LVN 58 51,32 75 0 77

LVN 59 120 75 0 77

IC5 57 32 89 0 150

IC5 58 0 0 0 0

IC5 59 16 89 0 150

Isomerate (42) 57 280 89 1 70

Isomerate (42) 58 366,38 89 1 70

Isomerate (42) 59 193,62 89 1 70

Isomerate (23) 57 156,4 89 0 70

Isomerate (23) 58 156,4 89 0 70

Isomerate (23) 59 156,4 89 0 70

Reformate II 57 0 0 0 0

Reformate II 58 0 0 0 0

Reformate II 59 0 0 0 0

Reformate I+II 57 0 0 0 0

Reformate I+II 58 0 0 0 0

Reformate I+II 59 0 0 0 0

Reformate I 57 921,79 100 5 45

Reformate I 58 887,85 100 0 45

Reformate I 59 974,87 100 0 45

LVBN 57 0 0 0 0

LVBN 58 0 0 0 0

LVBN 59 0 0 0 0
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