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Abstract

When prosecuting crimes, the main question to answer is often who had a motive and the possi-
bility to commit the crime. When investigating cyber crimes, the question of possibility is often hard
to answer, as in a networked system almost any location can be accessed from almost anywhere. The
most common tool to answer this question, analysis of log files, faces the problem that the amount
of logged data may be overwhelming. This problems gets even worse in the case of insider attacks,
where the attacker’s actions usually will be logged as permissible, standard actions—if they are logged
at all. Recent events have revealed intimate knowledge of surveillance and control systems on the
side of the attacker, making it often impossible to deduce the identity of an inside attacker from
logged data. In this work we present an approach that analyses the access control configuration to
identify the set of credentials needed to reach a certain location in a system. This knowledge allows
to identify a set of (inside) actors who have the possibility to commit an insider attack at that loca-
tion. This has immediate applications in analysing log files, but also non-technical applications such
as identifying possible suspects, or, beyond cyber crimes, picking the “best” actor for a certain task.
We also sketch an online analysis that identifies where an actor can be located based on observed
actions.

1. Introduction

At the very core of both businesses as well as society we nowadays find information systems
that pervade our daily life. They are essential at all levels of actions, from meaningless “surfing”
to decisions that potentially can influence the well-being of companies, economies, or even whole
populations.

Not only do these information systems support everyday life and day-to-day operations, in many
cases they enable them in the first place, and often indeed are among the most valuable assets
of individuals or organisations. Offering seamless access to computing resources and data from
virtually any location around the globe is one of the most outstanding features of these systems.
This flexibility makes them valuable in the first place, but at the same time is also the reason for
their major vulnerability—via the network, an entity’s data is accessible from almost everywhere,
often without the need of physical presence in the data’s perimeter.

This risk of data being accessible without proper legitimation, has led to a wide range of access
control mechanisms, which are supposed to restrict access to data. The standard approach to
securing data is to tighten access control measures. When these measures do not serve their purpose,
that is in case of a cyber crime, investigators often have to fall back on log file analysis to find out,
what has happened, and who may have been the attacker.

When prosecuting crimes, the main question to answer is often who had a motive and the possi-
bility to commit the crime. When investigating cyber crimes, the question of possibility is often hard
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Hallway l:lﬁ

Server / Printer User Office Janitor Workshop
Figure 1. The example system used to illustrate our approach. Besides the “real” building,
the computer network allows to access data virtually. The icons on the doors specify the
kind of access control applied, c.g., face recognition at the entrance, and a regular key to
the janitor’s workshop.

to answer, as in a networked system almost any location can be accessed from almost anywhere.
The aforementioned, most common tool to answer this question, analysis of log files, faces the prob-
lem that the amount of logged data may be overwhelming. If the attacker is an insider instead of
an outside attacker, analysing log files may turn out to be even harder, since the insider’s actions
usually will be logged as permissible, standard actions—if they are logged at all. Recent events have
revealed intimate knowledge of surveillance and control systems on the side of the attacker [1,8,15],
making it often impossible to deduce the identity of an attacker from logged data.

In previous work we have presented a system model that allows to model real-world organisations,
integrating both the virtual and the real domain, that is, e.g., buildings and networks [13]. Based
on this model, we have presented analyses of possible behaviour of actors in the system, e.g., which
data they can access, or which locations they can reach [13,14]. The latter analysis served the
purpose of tightening the access control system to hinder actors from reaching certain areas of the
modelled system, based on who the actor is, what he knows, and where he is (identity, keys, and
location). The same work also presented an “after the fact” analysis, which analysed the system
model and a log file together to identify who reached which locations in the system and accessed
which data.

In this work we present an approach that combines these two analyses. It analyses the system
model to collect the set of credentials that are needed to reach point A from point B, but without
taking the log file into account. This goes beyond typical cyber-crime analyses, and aims at combing
information about “the real world” with the virtual domain. We believe that this is important, also
because it allows to help the analysis with events observed during investigations, or to experiment
with assumed events to check their effect.

Since the knowledge computed by our analysis is present in the system model, the analysis can
be seen as slicing of the system. It takes two locations and for each possible path between these
computes the credentials needed to traverse it.

The analysis result allows to identify a set of (inside) actors who have the possibility to commit
an insider attack at that location. This in turn can be used to guide the analysis of logged actions,
allowing to focus the investigation.

Our analysis has also non-technical applications. In cyber crime investigations it can be used
to identify the set of suspects who should be investigated or monitored. Especially identity-based
access control rules allows to narrow down the set of suspects dramatically, depending how intrinsic
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Figure 2. The abstract model of the example system from Figure 1, with policy annotations.
The dashed boxes indicate the rooms from the original example. Each room is now replaced
by all the locations it contains, c.g., the user office has the cypher lock (CLysz), a location for
the office itself (USR), and the workstation (PC1). Circles identify these locations, and rect-
angles identify artifacts that the users cannot move to but only access from a neighbouring
location. The different kinds of connections between locations indicate the physical domain
(solid lines), the virtual domain (dashed), and access only (dotted). The policy annotations
refer to two actors, janitor J and user U, who, ¢.g., have different access rights to the user
office and the server room. Each access control specification consists of the required key,
identity, or location, and the permissible action. Actions are identified by their first letter, ¢.¢.,
m for move, i for input, etc. The overlined letters mark logged actions.

the identity-establishing factor is.

In the non-cyber crime area, our analysis has another, surprising by-product. Suppose that an
organisation needs to send somebody from one point in the system to another, for example to pick
something up. In this scenario our analysis determines the credentials required for this, and based
on these all users possessing the necessary credentials can be identified. Out of this set of users one
then can choose one randomly, or select the one who best fulfils a certain criterion, e.g., having the
least privileges, not being able to access a certain resource, etc.

This article is structured as follows. Before presenting the analysis, the rest of this sections
introduces the example system used. This is followed by the presentation of the analysis in Section 3,
and its application in Section 4. After discussing related work in Section 5, we conclude the paper
in Section 6 and discuss future work.
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1.1. Example

The analysis presented in this article works on any kind of system representing the structure
of an organisation, consisting of both the physical locations as well as computer networks. As
discussed in [13], any other similar structure could be added just as easily if needed for the sake of
analysis, e.g., the sewage system.

The floor plan of the example from [13,14] is shown in Figure 1, the abstract model, which will
be introduced in Section 2, is shown in Figure 2. The example consists of a simple building with a
number of rooms connected by a hallway, and a computer network that connects two of the rooms.

In the example system we consider two actors, a general user U and a janitor J. For both of
them access is restricted to some locations in the system. For example, each of the rooms has either
a cipher lock or a regular lock, and access to the former is logged. Additionally, entrance to the
whole system is restricted and logged, too.

2. System Model

In this section we present the system model used and the analysis we apply to it. The system
model, based on a process calculus, provides the semantics of the analysis. The analyses, presented
in the next section, are graph-based. The first one, given two locations in the system, traverses
all possible paths between these locations and collects the set of credentials needed to traverse this
path. The second analysis uses the results of another graph-based analysis, and allows to predict
online at which locations an actor can be located.

The system model is based on previous work [13]. We only give a short overview here and
refer to [13] for the details. The abstraction is based on a system consisting of components. We
distinguish between location components, such as offices and computers, data components, such as
keys and actual data, and mobile components, such as processes and actors. Data can be associated
with (stored at) locations and actors, and it can be secured by, e.g., encryption, and locations can
be secured by access control mechanisms, e.g., cipher locks. To support movements of dynamic
components, locations can be connected by directed edges, which define freedoms of movements of
actors.

A system consists of the infrastructure, which in turn consists of locations and connections be-
tween them. As shown in Figure 1, the model can contain different domains, where actors can only
move in “their” domain, e.g., processes can only access the computer network. Actors model ev-
erything that can move between locations and can perform actions. These actions consist of input,
output, and moving, and in [13] are mapped to actions of acKlaim, a process calculus based on
Klaim [10].

An important property of the system model is that it can be extended with new components.
In [13] we present several of these extensions, such as logging, encryption and decryption of data, and
access control. The latter consist of annotations at locations that specify when access to the location
is allowed. These annotations are evaluated by a reference monitor in the operational semantics
before the corresponding action is performed, similar to [6,7,14]. This is based on capabilities that
actors can acquire, and restrictions that locations apply. Both restrictions and capabilities can
be used to restrain the mobility of actors, by requiring, e.g., a certain key to enter a location, or
allowing access only for certain actors, or from certain locations.

In the example system in Figure 1 we could interpret the face of the actors as capability to enter
the entrance of the building (based on face recognition), and the cipher keys as capabilities to enter
the server room and the user office. The associated checkers would implement the test whether an
actor with a given face is allowed to enter the building, or whether a cipher code matches the ones
stored in the lock.

In Figure 2 the boxes specify which actions are allowed at the location they are associated with.
As mentioned above we distinguish

e access based on identity, e.g., when entering the system at FRgyr,

e access based on location, e.g., access to PC2, and
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: extractCredentials(node n)
: /* return the credentials needed to move to node n */
: credentials = )
acl = access control list at n
for all restrictions (factor, actions) € acl do
for all actions a in actions do
if a is move then
if factor is an actor or a key then
credentials = credentials U {factor}
10: end if
11: end if
12: end for
13: end for

Figure 3. The function extractCredentials returns a set of credentials needed to enter the node
n. This can be either the identity of the actor or a key the actor needs to know.

© PP W

e access based on knowledge, e.g., access to CLgpy.

Note that in this work we are mainly interested in the move action, which allows actors to change
locations, and is used in access control to constrain movements in the underlying semantics.

The main property of our system model is that it is graph based, and therefor lends itself to
the application of simple, graph-based analyses. While the underlying process calculus and its
semantics can be used to analyse processes, which, e.g., could describe observed behaviour of an
actor. However, this is in general not of big interest when analysing log files or identifying potential
threats, as we do not know the actions that will be performed, and therefor doe not know which
process to analyse. This can be compared to analysing open systems, where our analysis results
need to hold for every possible process we permit into the system [7,11].

Another important property is that the model is modular, allowing to specify parts of the system
individually, and plugging them together whenever a bigger system is required. This allows, for
example, to combine models developed in different investigations.

3. Analysing Access Control Specifications

Having introduced our system model we are now ready to present the new analyses. In the
following we assume a system of interest given by a specification like the one defined informally
in the previous section, that is the system structure as a graph, and access control restrictions as
annotations on the nodes.

The analyses in this section aim at two different goals as described above. The first analysis
computes the set of credentials needed to traverse a certain path in the system model. As can be
expected this is realised as a fairly simple, graph-based traversal of the system model. The second
analysis is based on our previous work on log-equivalent locations. In contrast to the first analysis
and the work in [13], this is an online analysis, that allows to dynamically trace locations where
actors may be located.

3.1. Identifying required credentials

The goal of this analysis is to identify the credentials needed to move between two points in the
system. This knowledge can then be used to guide the analysis of a log file when trying to find out
who had possibility to commit an attack. When not considering log files, the same knowledge can
of course also be used to narrow down or extend the set of suspects.

As mentioned above, our system model supports different mechanisms to constrain access; iden-
tity, keys, and location. At each location access can be granted because one or several of these
mechanisms, and the analysis computes a sequence of locations and needed credentials to enter each
location. Since this knowledge is also present in the graph, the analysis can be seen as slicing of
the system graph. It takes two locations and for each possible acyclic path between these computes
the credentials needed to traverse it. Cycles can be ignored since the analysis only depends on the
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1: credentialsForPath(node from,node to)

2: /* return the credentials needed to move from node from to node to */
3: for all paths p = n1,...,ng with &k > 1, n1 = from, ny, = to, and i # j = n; # n; do
4: /* initialise IDs to contain all identities in the system */

5. IDs, = AllIDs

6:  result, = P*

7. for all nodes n; = na,...,ni do

8: resultn, = extractCredentials(n;) \ (AllIDs \ IDsp)

9: IDs,, = IDs, N resulty,

10: if result,, = 0 then

11: resultp; = L

12: continue

13: else

14: resultp,; = resultn, \U1<j<:i resulty,;

15: end if

16:  end for

17: end for

18: return the computed tuples result, and IDs,

Figure 4. The function credentialsForPath returns for each path between two nodes a tuple of
credentials needed to take that path. Whenever one or several identities are needed to enter
a node, this is recorded in the global set /Ds (see discussion in text). If the analysis at any
point encounters a node that can not be entered, the according element in the tuple is set
to L, and the next path is examined.

nodes reachable from another node based on knowledge the actor has, not how the actor reached
that point. Therefore, reaching the same location again will not change the analysis result.

The pseudo code for this analysis is shown in Figure 3 and Figure 4. The function extract-
Credentials is used to identify for a node which credentials are needed to gain access. While this
is fairly simple for our system model, this could involve arbitrarily complex functions. The same
approach could also be used to identify the credentials needed to access some data.

This function is used by credentialsForPath, which visits all nodes on a path and computes
a tuple with the same length as the path. For each node on the path the tuple contains the set
credentials needed to enter this node. For example, a position with the empty set identifies a node
that is not protected by access control, or that can be entered using only credentials already used
before. Besides these sets the tuples can also contain a special marker 1, identifying a node that
can not be entered at all.

The latter situation can occur when on the path credentials are needed that are specified as being
bound to a certain actor. For example, in a system requiring face recognition such as sketched
in Figure 1, the face could be supposed to be an inseparable part of an actors identity. On a path
a?Utm — prm UM an actor with identity J or U can enter the first node, but the next node
can only be entered by J, and the last one only by U. If the actor’s identity can not be separated
from the actor, then there is no actor who could move from a to b. The analysis result for this small
example would be the tuple ({J,U},{J}, 1).

In the analysis we use the global parameter IDs to track identities; initially it is set to contain all
identities in the analysed system, thus allowing easy tailoring of the analysis to different scenarios.
Throughout the analysis this set is updated by intersecting it with the credentials needed to access
the node analysed. As a result the set never gets bigger, as identities not able to enter the current
node are removed. Once a node is met that can only be entered based on identities that are not
part of the global set, the analysis stops.

The analysis just described, while being simple, allows to extract important knowledge from the
access control configuration of a system. The path-based, global view on requirements of credentials
make the overall control enforced more transparent than the local view at each location. One could
imagine an inverse approach, where the system designed specifies which users should be able to get
from where to where in the system (virtual or real), and an analysis similar to the one presented
here is used to compute the necessary access control restrictions at the system’s nodes. We leave
this for future work. An application of the analyses presented in this and the next section will be
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1: equivalent|()

2: /* perform (log-)equivalent actions */

3: changed = true

4: while changed do

5:  changed = false

6: for all actors n do

T for all locations [ that n might be located at do

8: for all locations [’ reachable from [ in one step do

9: simulate all actions that n can perform on I’ (without causing a log entry in case of LTRA)
10: for each action set changed if n at location [ learns a new data item
11: end for

12: end for

13:  end for

14: end while

Figure 5. For each actor in the system we check for all locations he can be located at whether
he can perform any actions. All these actions are assumed to have been performed. In the
case of the log trace reachability analysis, only actions that would not cause a log entry are
considered.

discussed in Section 4.

3.2. Online Prediction of Locations

While the analysis presented in the previous section is concerned with identifying the necessary
credentials for passing a path based on an offline examination of a system’s access control specifi-
cation, we now turn to an online analysis with a slightly different focus. In [13] we have presented
an analysis based on log-equivalent locations. That analysis takes a system specification and a log
file, and identifies for each logged action all locations where an actor possibly can be. The latter
identification is based on all locations that the actor can reach without causing a log entry.

A note on the notion of time used in our approach seems in order. We focus on modelling
structural aspects of action traces with various logging policies. We therefore use a abstract notion
of time that does not assume or rely on global synchronisation, but does guarantee a correct global
ordering of events. This abstract notion of time is inspired by the notion of “Lamport time” [9].
This design choice allows us to consider problems relating to time and synchronisation separately,
and independently of intrinsic structural problems. As noted by Lamport this global ordering is
an idealistic abstraction that cannot achieved in systems of distributed clocks. Either one needs to
order observed events manually, or one needs to take intervals of error into account. The former is
trivial, though not always possible, and we are currently working on the latter.

In this section we extend on that analysis, by using its result to formulate an online analysis.
While the former computes the sets of location where an actor might be, we now use that result to
construct a state machine that keeps track of actors based on their observed actions. Observable ac-
tions are a central concept when designing secure systems, as they define what we can observe about
our system. Similarly what we want to define influences which observables we need to implement.

3.2.1. Equivalent Locations and Actions

Before we present the online analysis we briefly recap the offline version that it is based on. As
mentioned above, this is based on equivalent locations and actions, which from the viewpoint of an
observer, in our case the analysis, can not be distinguished. Thus, if an actor can be in a location
£, then he might just as well be in any equivalent location, or might have performed any actions in
between. In the log-trace reachability analysis presented in [13], log-equivalency is needed to find
out what might have happened between two log entries.

The pseudo code in Figure 5 shows the realisation of log equivalency in the log-trace reachability
analysis. It simply visits all locations where a user might be, and computes the effect of every
unlogged action that the user is allowed to perform at that location. This computation is repeated
until no further changes to the graph occur. The implementation of regular equivalency is quite
similar, the only difference being that there is no restriction as to causing a log entry.
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Figure 6. The model of observable transitions in the system from Figure 2. Each time a
logged event is observed in the system, the automaton retraces the event, and based on the
current positions of actors updates who is where.

3.2.2. Constructing a Finite Representation

The analysis in [13] computes for a log file which actors might have caused the entries, and where
they can be located in the system. We now use this result to construct a finite automaton, that has
sets of locations as states, and pairs of actions and locations on the edges.

At runtime or “system observation time”, to be more precise, each actor is initially placed at
a starting location. Whenever an action is observed, the finite automaton is used to decide which
actor can be where and can have caused the action. This allows to identify threats in the system,
and to guide the expectation of other logging and surveillance systems.

For the example system from Figure 2 the automaton is shown in Figure 6.

3.2.3. The Online Analysis

Having constructed the automaton, the online analysis will be able to predict positions of actors
much better than the offline analysis described in [13]. The shortcoming of that analysis was that
due to its offline nature it needed to make many assumptions about where actors might be. The
online analysis, which we only sketch here, benefits from detailed knowledge about the locations of
users.

For example, if a key is used somewhere in a system to get from A to B and then to C, then the
static analysis has to assume that any actor who possibly was at A might have caused this sequence
of events. On the other hand, if before the movement from B to C' is observed, an action of user
U is observed at B, then the online analysis can use this observation and identify U as the only
possible user at C'.

In the automaton as the one shown in Figure 6 we move all actors from node n to n’ if an
event e is observed at location [ (as described by the edge labels). Whenever the analysis is able
to identify precisely who caused an event, because the generated log event is based on an actor’s
identity, all user’s that have not caused the event are removed from that location. This is similar
to the narrowing performed in the offline analysis described in [13].

4. Application

The potential applications of our techniques are manifold, and go beyond digital forensics. In
this area our analyses are similar to how investigators in “real-world” cases work. However, our
techniques can go beyond these approaches. First, they can be used to get a starting point for
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location | credentials

FRent J, U
HALL JU
CLgry cU, cJ
CLysr cU
SRV J.U
USR JU
PC1 U
PC2 U

Table 1. Credentials extracted for the nodes on the two example paths.

human investigations, by pre-computing reachable locations, accessible data, and other observations
of interest. Furthermore, since our model is modular, investigators can easily combine them when
either a connection between cases is identified, or at least might exist.

As a result of combining models, or in the case of modelling big and complex systems, the
generated model can become equally big and complex, resulting in long analysis times. A main
property of our approach is that, due to the underlying formal approach of static analysis [12],
it is possible to collapse parts of the system. The solution for the resulting system will be less
precise than for the whole system, but can be computed considerably faster. After the result for the
partially collapsed system has been reviewed, one then can identify interesting parts, de-collapse
them, and re-analyze to obtain a more detailed result.

In this section we first briefly present the application of the analysis described in Section 3.1
above to the example system. After that, we discuss the analysis of a more complex scenario
in Section 4.2. We currently lack a meaningful complex model to illustrate the computational
behaviour of our approach, but experiments with randomly generated graphs and policy annotations
are very promising.

4.1. Required Credentials

We assume we want to obtain some data from PC1 in the example system, and the actors are
located outside the system. The two possible paths are p; = Out — FRepy — HALL — CLgyy —
SRV — PC2 — PC1 and py = HALL — FR¢py — HALL — CLy, — PC1. Since we are only dealing with
two users, the set of all identities in the system is U, J.

Table 1 shows the credentials returned by the function extractCredentials for the different
nodes on the paths. In what follows we step through the analysis of these paths. Since the first
two locations are the same we obtain the same result for both paths, namely result; = resulto; =
{LUIN({JLUI\{J,U}) ={J,U} and IDs, = {J,U}, and the same for the next node resultis =
resultog = {J,U}\ {J,U}\{J,U}) ={J,U} and IDs, = {J,U}.

From here on the paths diverge. For the first path we obtain result;s = {cU,cJ} {J,U} {J,U}) =
cU,¢J and IDs, = {J,U} and for SRV we get the same result resultiy = {J,U} and IDs, = {J,U}.
Finally, when accessing the location PC2, only the actor U is allowed to perform the action. This
results in resultis = {U} \ ({J,U} \ {J,U}) = {U} and IDs, = {U}. The same results hold for the
final step, when accessing PC1. For the resulting tuple this means that most positions are empty:
({J.U},0,{cU,cJ},0,0,0) and IDs, = {U}.

The second path diverges to the cypher lock for the user office, resulting in resultzs = {cU} \
{J,UI\{J,U}) ={cU} and IDs, = {J,U}. For the next location we obtain result,s = {J,U} and
IDs;, remains unchanged. Finally, when accessing the location PC2, the same computation as for the
first path results in resultys = {U} and IDs, = {U}. Consequently, the returned tuple for this path
is the same as for the same path, as is the set of identities: ({J,U},0,{cU},0,0) and IDs, = {U}.

4.1.1. Identifying Suspects

While the current version of the example is rather unspectacular, it illustrates the analysis’
purpose, namely to identify actors who can have caused a certain damage. Since only the user is
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able to access PC1, it is clear who will be the culprit if a damage on that machine is found. On the
other hand if something happens along the way, then the analysis also allows to identify all actors
who possibly have been there.

4.1.2. Selecting Actors

Also the point of selecting actors can be illustrated with the example. While again it is fairly
obvious that only U can access the location PC1 based on that location’s access control specification,
it also should be obvious that in more complex system such a decision will not always be so easy.

4.2. Analysing Complex Scenarios

Now we assume a more complex scenario in which we illustrate our method’s modularity. Alice,
Bob, and Charlie work in a company, and at some point confidential information of the company
is leaked to a competitor. Omnce the leakage is detected, the server on which the document in
question was stored is identified, and using the required credentials analysis shown in Section 4.1
the investigator finds out that all three actors had the necessary credentials to reach a location from
which they could access the server. While the log entries show that Alice and Bob had entered
the company area from which they could access the server, only Alice had permission to access the
document. Consequently, she is suspected to have leaked its content.

Assume that in another investigation it is found that according to log files on a workstation Alice
has logged into that machine; however, according to the results of the required credentials analysis
he is not able to reach the room where the computer is located; the only employee able to do so is
Charlie. This obviously indicates that Charlie is in possession of Alice’s credentials.

Adding this knowledge as a fact to the analysis in the first case, we obtain the new result that
Charlie or Alice might have leaked the document. Incidentally the investigator on the first case
overhears that Alice has been stopped for speeding, and it turns out that this happened on the
day the leaked document was accessed, and in a such a distance from the company, that Alice
only could have been back at the company after the file got accessed. In our model this could be
realised by adding a new location representing the stopping of Alice, and so many edges between the
entrance to the company and the new location that they represent the time it takes to get back to
the company. ! This is similar to the process described above, where collapsed parts of the system
(the node representing the “outside” world) are un-collapsed. Now an analysis of the log files as
described in [13] will show that only Bob and Charlie where in the areal in question.

This last result has established that Alice cannot have been accessing the document. Together
with the second result it can be shown that Charlie not only had the necessary credentials to
masquerade as Alice, but also was in the area where the file was stored.

5. Related Work

This section gives a brief overview on related work and orthogonal approaches.

In the area of modelling, our approach is very similar to the Architecture Analysis & Design
Language (AADL) [4], a modeling language that supports early and repeated analyses of a system’s
architecture with respect to performance-critical properties through an extendable notation, a tool
framework, and precisely defined semantics. AADL is a quite powerful modelling language, with
the goal of enabling modelling of complex electrical systems. As such it contains many mechanisms
that go way beyond our abstract model. On the other hand, since our model is fairly simple and
allows for straightforward modelling of communication systems, it should be embeddable into the
AADL model. We are currently exploring this option, which would allow to use the quite natural
support of process calculi for modelling, and then translate the model to an AADL model.

In the area of computer and network security, attack graphs [16] and privilege graphs [3,5] are
a widely used approach to model sets of actions that increase an adversaries capabilities. The

Tt should be noted that in our current semantics all edges require constant time 1 to be passed. To
model longer periods of time, several edges with dummy locations must be added.
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graph can focus on whether a certain set of initial capabilities can eventually lead to some critical
capability—this is very similar to actors obtaining new keys (or data items) in our analysis. However,
there is a big difference; in attack graphs the edges are actions leading towards a goal (the attacker
gains new capabilities) are away from it (the system administrator is able to disable some of the
attackers capabilities). This requires to identify all potentially dangerous actions up-front; if an
attacker is somehow able to obtain a key or knowledge about the system, this must be modelled in
the attack graph. In contrast, we concentrate on the structure of the underlying system (edges),
and analyse for data acquired by users. Combining these two techniques should allow for modelling
distributed systems where users can obtain keys and knowledge in the non-virtual domains, thus
acquiring new capabilities.

6. Conclusion and Future Work

Networked and interconnected information systems are at the very heart of our society. Not only
do these information systems support everyday life and day-to-day operations, in many cases they
enable them in the first place, and often indeed are among the most valuable assets of individuals
or organisations. Offering seamless access to computing resources and data from virtually any
location around the globe is one of the most outstanding features of these systems. This flexibility
makes them valuable in the first place, but at the same time is also the reason for their major
vulnerability—rvia the network, an entity’s data is accessible from almost everywhere, often without
the need of physical presence in the data’s perimeter.

In this article we extend our previous work on analysing access control specifications of systems
to guide and support forensics and investigation of cyber crimes. With the above mentioned systems
getting more and more complex it also gets increasingly hard to see through the mesh of restrictions
and permissions.

This is because the risk of data being accessible without proper legitimation, has led to a wide
range of access control mechanisms, which are supposed to restrict access to data. The standard
approach to securing data is to tighten access control measures. When these measures do not serve
their purpose, that is in case of a cyber crime, investigators often have to fall back on log file analysis
to find out, what has happened, and who may have been the attacker.

The analyses described in this article serve two purposes. First, they allow to gain a better
understanding of capabilities of actors in a system. One obvious application is to identify which
actors can have reached which locations in the system; using the system model sketched here and
developed in [13], not only the physical but also virtual domains can be modelled. This of course is
essential for analysing and preventing threats in networked systems, but also in the important area
of pervasive networks.

As discussed above this analysis also has surprising by-products. Once one can analyse systems
for reachability based on access control and actor’s capabilities and keys, one can use the same
approach to identify actors then are suited to perform a certain task. This selection can again be
based on several criteria, depending on what the specific concerns are. These can range from “just
get the job done”, in which case we only want to pick somebody with sufficient rights to access all
necessary locations; more restrictive would be requirements that aim at minimising the number of
locations that can be accessed unnecessarily, or that disallow access to certain resources “along the
way”. The first analysis also allows to find actors that can only follow a specific way from all those
that could be chosen—and there certainly are many more applications.

The second analysis also takes the access control specification into account, but it does so in two
phases. First, the system is analysed offline to construct an automaton that retraces movements of
actors based on observed events. These events can come from the logging and surveillance system,
or they can come from various source as described, e.g., in [2]. This automaton can then be used to
observe logged actions, and thus allowing at any given time to predict which actors are located at
which locations. This has obvious applications in surveillance, but also in preventing attacks, and
in guiding forensics and investigations after attacks.

In this work we present an approach that combines these two analyses. It analyses the system
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model to collect the set of credentials that are needed to reach point A from point B, but without
taking the log file into account.

We are currently working on extensions of the analyses described here. It would be interesting to
map the reachability analysis “backwards”, that is to use it to generate access control specifications
from required paths in the system. Another extension is the abstract domain in the first analysis
presented—instead of restricting the tuples only based on identities one should also take the keys
available to users into account, restricting these in similar ways as the identities.

On a system level we are investigating the mapping of our process-calculus based model into
AADL, and to combine it with techniques like attack graphs and privilege graphs.
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