
Creating a documentation system to support the development and
maintenance of product configuration systems

ANDERS HAUG1, ANDERS DEGN2, BJARNE POULSEN2, LARS HVAM1

1 Department of Industrial Engineering and Management
2 Department of Informatics and Mathematical Modelling

Technical University of Denmark
1 Building 425, 2800 Kgs. Lyngby
2 Building 322, 2800 Kgs. Lyngby

DENMARK
1 {ahaug, lhv}@ipl.dtu.dk www.productmodels.org

2 bjp@imm.dtu.dk

Abstract: A product configuration system (PCS) can be defined as a product-oriented expert system that allows
users to specify a product while restricting how different elements and properties may be combined. The use of
configuration technology has in several cases led to improvements of product specification processes, such as
shorter lead times, reductions of resources needed, and fewer errors.
 A procedure for building product configuration systems from the Centre for Product Modelling at the
Technical University of Denmark has been applied in projects for more than ten years. The CPM-procedure
includes three main modelling techniques to support the development and maintenance of PCSs. However, no
software, which supports all three techniques in an integrated fashion, currently exists. This means that when
developing PCSs based on the CPM-procedure there is no automatic integration between the created models,
wherefore some information has to be transferred between models manually. CPM has, therefore, for some
years worked on creating a basis for developing a documentation system that supports the development and
maintenance of PCSs. Research focusing on the requirements for a documentation system has been produced,
and more recently detailed definitions of the included modelling techniques have emerged. This paper describes
how these definitions have been converted into a software prototype and what have been learned from the
evaluation of the prototype.

Keywords: Product configuration, Knowledge engineering, Documentation of product models, Class diagrams,
Product variant master, CRC-cards

1 Introduction
The use of configuration systems has for a number
of years been a successful application of artificial
intelligence techniques [1]. A product configuration
system (PCS) can be defined as a product-oriented
expert system, which by applying knowledge of a
domain, lets the user specify a product under
restriction of valid combinations of product
components and properties. In many cases, the
application of configuration technology has led to a
range of improvements, such as reductions in lead
times, number of errors, and use of resources in the
specification of products [2, 3, 4, 5, 6].
 The representation of domain knowledge is often
one of the greatest tasks in a PCS project [7, 8, 9].
In a PCS project knowledge is often represented in
two distinctive kinds of models, namely analysis
and design models. The models that describe the
knowledge of a domain (in this context product

knowledge) without considering implementation
aspects are called analysis models (or domain
models and conceptual models). When creating
analysis models, besides describing the knowledge
of a domain, also a need for defining new
knowledge can exist, as when a PCS project is
started, sometimes the included product families do
not have a suitable architecture to form a basis for
the creation of a generic product knowledge model.
The creation of analysis models can therefore
require great involvement of the relevant domain
experts of a company. Based on the analysis models,
design models can be created in order to facilitate
the implementation of the domain knowledge in the
PCS. Design models can be seen as formalised and
possibly further detailed versions of analysis models
that take implantation issues into consideration. This
means that the requirements for the analysis and the
design language are different, in that the analysis

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13727981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

language has to be adequately simple in order to be
understood by the domain experts involved, while
the design language has to be adequately rich and
formalised in order to make accurate descriptions of
what is to be implemented.
 In many cases where manufacturers of
customised industrial products apply configuration
technology, the knowledge base of the PCS consists
of thousands of classes, attributes, constraints, and
methods. When a product changes, the knowledge
base of a PCS has to be updated in order for the PCS
to support the company processes. As the modelling
environment of a PCS seldom provides an
adequately comprehensible overview for the domain
experts to understand the current model that is to be
changed, these kinds of updates often require
external documentation. Unless the models created
as a basis for the development of the PCS have been
maintained, these have to be updated or new models
created.
 The mentioned aspects present a demand for a
coherent documentation system that supports the
applied modelling techniques in order to avoid tasks
such as: manual transfers of information between
models, reconstruction of models, and ensuring
consistency across models.
 Based on an often applied procedure for the
development of PCSs from the Centre for Product
Modelling (CPM) at the Technical University of
Denmark, research on how to create a
documentation system has been carried out.
However, so far this research has not resulted in
systems that include all the three main modelling
techniques of the CPM-procedure. This paper
describes the creation and evaluation of the first
prototype capable of supporting these three
techniques in an integrated manner.
 The rest of this paper is structured as follows:
Firstly, in section 2, the mentioned procedure for the
development of PCSs is outlined with a focus on its
techniques for the creation of analysis and design
models. Next, in section 3, research concerning a
documentation system to support the development
and maintenance of PCSs is resumed. In section 4 a
prototype developed on the basis of the research
carried out is described. Section 5 describes the
evaluation of the prototype. The paper ends with a
conclusion in section 6.

2 The CPM procedure
To carry out a PCS project is often a great task, both
in relation to the change of business processes and
in relation to the creation of the PCS itself. To
support these tasks, in 1994 Hvam [10] presented a

procedure for the development and maintenance of
PCSs. This procedure has since continuously been
updated at CPM, as experience with the procedure
has been obtained. The CPM-procedure or part of
the procedure has been applied in a number or cases
in Danish industry [2, 3]. The CPM-procedure in its
current form consists of seven phases to support the
course of a PCS project: 1 Process analysis, 2
Product analysis, 3 Object-oriented analysis, 4
Object-oriented design, 5 Programming, 6
Implementation, and 7 Maintenance.
 The CPM-procedure prescribes the use of three
major techniques for the creation of analysis and
design models, where product variant masters
(PVM) are prescribed for the creation of analysis
models, class diagrams for the creation of design
models, and CRC-cards (Class, Responsibility and
Collaboration) for making detailed descriptions of
the classes in PVMs and class diagrams. However,
in some cases PVMs provide an adequate basis for
implementation of the product knowledge into a
PCS, which, obviously, means that class diagram
models do not need to be elaborated [3].

2.1 PVMs
A PVM is a diagram that is applied for describing
generic product models. A PVM consists of two
sections that describe part-of structure and kind-of
structure of a product model. These two structures,
in object-oriented terms, roughly correspond to
aggregation and generalisation respectively. Class
descriptions, attributes, and constraints can be stated
below the classes in a PVM. In figure 1 the latest
definition from CPM of the notation formalism of a
PVM is shown.

Fig.1. The most recent definition of the PVM

formalism [3] from [11]

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 123

PVM models are intended to be discussed and
refined in repeated sessions of knowledge engineers
and domain experts until the descriptions of the
product assortment are adequately extensive and
detailed. The experience with the use of PVMs in
configuration projects is that PVMs can be a strong
tool for discussing and defining the product
assortment [2]. As no software distinctly aimed at
the creation of PVMs exists, PVMs are normally
elaborated by the use of programs such as MS Excel
or MS Visio.

2.2 Class diagrams
The Unified Modelling Language (UML) is a
modelling language with a formal syntax that is
defined by the Object Management Group (OMG).
UML 2.0 defines thirteen types of diagrams, where
one of these is the class diagram [12]. Class
diagrams are used for describing the objects in a
system together with the various kinds of static
relationships among them [13]. Compared to PVMs,
class diagrams are far more widespread in use and
have a much broader range of application. The
notation for the class element and the most common
relationship types are shown in figure 2, where a
navigability arrow can be used to show the direction
of association, aggregation, and composition
relationships. For more detailed descriptions of class
diagrams, see [12, 13].

Fig.2. Commonly applied class diagram elements

The CPM procedure prescribes the use of a sub-
selection of the relationship types of class diagrams,
including generalisation, aggregation, and

association [3]. The argument of the CPM-
procedure for including both PVMs and class
diagrams, which basically are two ways of
illustrating the same thing, is that PVMs seem to be
more easily understood by domain experts with
limited modelling prerequisites, while class
diagrams provide a much richer and more formal
language, which makes these better suited for the
creation of design models [3].

2.3 CRC-cards
The CPM-procedure proposes the use of CRC-cards
for holding detailed descriptions of classes in PVMs
and class diagrams in order to enhance the clarity of
such models. For this purpose, CPM has provided a
definition of special CRC-cards to be used in PCS
projects. While the original CRC-cards by Beck and
Cunningham [14] only include the class name
together with two columns for responsibilities and
collaborators, the CRC-cards of CPM have been
extended with fields for stating: author, date,
superparts, subparts, superclasses, subclasses,
attributes, and more [2, 3].

3 Towards a documentation system
As mentioned, the CPM-procedure prescribes the
use of PVMs, class diagrams, and CRC-cards during
the development and maintenance of PCSs. As there
is no software available, which supports all three
techniques in an integrated fashion, different kinds
of software are applied. This implies a need for
manual transfers of information between PVMs,
class diagrams and CRC-cards, which are time
consuming and hold risks of errors. Documentation
of the knowledge base of PCSs is therefore an
aspect of product configuration that has been subject
to some investigations.
 The experience with product configuration in
twelve Danish companies was investigated in a
research project in 2003 and 2004 [15]. The
investigations showed that the documentation task
was often the first to be given a lower priority or
even cut out of the project. It was also pointed out
that a lack of documentation of the PCS knowledge
base can have very negative consequences, as some
companies were unable to further develop their
PCSs. Another effect of the lack of documentation
was a negative impact on the daily communication
between people involved in product development
and PCS development respectively.
 As models grow in extent and complexity, the
effort required for the creation of documentation

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 124

increases. It is the general impression of Hvam et al.
[16] that many companies settle for less
comprehensive documentation than what is actually
needed in order to be able to further develop a PCS.
They further argue that this to some extend could be
avoided by the presence of a documentation system
that supports the maintenance of PCS
documentation, which would relieve the companies
from the time-consuming task of ensuring consistent
product models.

3.1 Requirements for the system
As a response to the apparent need for more
advanced software for the documentation of the
knowledge base of PCSs, research on this topic has
been carried out. Based on a survey of five standard
configuration systems and the experience gained
from several Danish configuration projects, Hvam
and Malis [17] define the requirements for a
documentation system: easy to maintain, facilitates
the modelling techniques of the CPM-procedure
(PVMs, class diagrams, and CRC-cards), has central
storage of data, supports network distribution of
data, supports multiple user access, integrates the
modelling techniques, includes version control, and
allows integration with PCSs. Furthermore, they
describe the development of a prototype, created in
Lotus Notes. This prototype has since been further
developed and is today applied by the companies
GEA Niro A/S and American Power Conversion
A/S (APC). Although the use of the Lotus Notes
based documentation system has shown that there
are significant benefits from applying such a tool for
the maintenance of PCSs [2], much is still to be
wanted. From a modelling point of view the
documentation system fails to offer support for the
elaboration of class diagrams and PVMs, but only
includes CRC-cards and a hierarchical list of classes
that does not show attributes, constraints, and kind-
of structure/generalisation. Consequently, both the
mentioned companies, who use the Lotus Notes
application, apply other software for the creation of
PVMs when making big changes or additions to
their existing models.
 Based on [17] and interviews with four Danish
manufacturing companies who apply configuration
systems, Hvam et al. [16] propose an extended list
of requirements for a documentation system to
support the development and maintenance of PCSs.
This includes: a coherent product model, version
control, access control, change notification, user-
friendliness, web-based access, integration to other
software systems, possibility of informal rule
expressions, hyperlinks to internal and external files,

flexibility, configuration system integration, the use
of English as language, and an inexpensive solution.
Furthermore, a high level description of a possible
architecture of such a documentation system is
presented in [16].

3.2 Why has the system not been created?
Having established that seemingly there is a need
for a documentation system to support the
development and maintenance of PCSs, and
research that deals with defining such a system has
been produced, it could seem strange that a
complete documentation system does not exist at
present. Based on the experience (of the first author)
from studies of several configuration projects, the
following possible explanations are offered:
 1) While the creation of a documentation system
to support the development and maintenance of
PCSs seems to require a significant deal of software
development, it is presently unclear how many
potential customers there will be. It seems that the
companies who show the greatest interest are the
ones who have a great need for external
documentation of the knowledge base of the PCS.
These can typically be characterised by having
extensive and complex PCS knowledge bases and
having to describe product knowledge that is
possessed by others than the ones implementing the
knowledge in the PCS. However, the number of
these kinds of companies in Danish industry is
limited. But if a relatively inexpensive
documentation system emerged, companies with
less need for external documentation of their PCSs
may show greater interest.
 2) The companies who apply PCSs apply
different modelling techniques when documenting
their PCSs. Even those who base their development
on the CPM-procedure make individual adaptations.
Therefore, creating a system that is adequately
flexible to support the different kinds of uses could
turn out to be very difficult.
 3) Although research concerning the creation of a
documentation system [16, 17] specifies which
modelling techniques should be included, this
research does not in a detailed manner deal with
topics like: user interface design, detailed
definitions of the included modelling techniques,
and how to handle interrelated models. An
important part of the basis for developing a
documentation system to support the development
and maintenance of PCSs has therefore been
missing until recently [18].

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 125

3.3 Definition of a documentation system
Addressing the need for adequately flexible and
software prepared notation formalisms of PVMs,
class diagrams, and CRC-cards in order to include
these in a documentation system, Haug and Hvam
[18] present such a definition. This includes three
main views, namely a CRC-card view, a PVM view,
and a class diagram view. In the documentation
system it should be possible to switch between these
views dependant on what level of detail and what
kind of information the users are interested in. The
three views are shown in figure 3.

Fig.3. The three main views in the documentation

system (adapted from [18])

Yet another step towards the creation of a
documentation system that supports the CPM-
procedure was taken by Haug and Hvam [19], who,
based on the current definitions by CPM [3], present
a revised definition of the CRC-card layout, which

takes into account future software supported
elaboration of the CRC-cards. The new layout
includes several new fields, e.g. for documenting
additional relationship types and for organising
information about attributes, constraints, and
methods. Another extension of the CRC-card layout
concerns the inclusion of fields for managing
change requests and versions.

4 The creation of a prototype
Besides supporting the elaboration of PVMs, class
diagrams and CRC-cards in an integrated fashion,
the documentation system should include
functionalities similar to the ones of product data
management (PDM) systems in order to support the
development and maintenance of PCSs in a
satisfactory manner. While PDM-related
functionalities have been included in numerous
software systems, a system which supports and
integrates PVMs, class diagrams, and CRC-cards
does not exist. Creating a prototype to evaluate this
kind of modelling environment was therefore a
natural starting point. Based on the definitions in
[18, 19], a prototype including the three main views
was created. Besides evaluating the defined
modelling techniques, another main point was to
find a solution principle for handling the model
elements which are represented differently or only
present in some of the three views.
 It was chosen to create the prototype using MS
C# .Net, as the Microsoft .Net platform supports
Windows software development and because it was
considered to ease object-oriented development,
offer a development environment that is easy to use,
and have good debugging functionality.
 As mentioned, an important argument for the
creation of a documentation system is to avoid the
manual transfers of information between PVMs,
class diagrams, and CRC-cards. The three
techniques, however, do not only include the same
information, but also have individual information,
e.g. is the Sketch/Picture field of the CRC-card view
not included in the class diagram view. One
possibility is to create a solution where information
is transferred between the three kinds of
representations when making changes. This,
however, would result in a need for high memory,
and redundancy in the stored data. To avoid this, the
prototype has only one data model for all three
diagrams, which means that the three kinds of
representations are different views of the same data.
This for instance means that when changing a part
of a class diagram model this information would
automatically be changed in the corresponding PVM

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 126

model and CRC-cards if these include this specific
type of information. The data model of the
prototype is depictured in figure 4, where the
attributes and methods are not shown due to lack of
space.

Fig. 4. The common data model

While the three views of the prototype are bound to
the data model, the data-model on the other hand, is
not bound to any of the views. It would, therefore,
be possible to add, change and remove views of the
prototype without adding or deleting classes in the
data model.
 In its current form the prototype displays the
same user-defined classes and relationships in the
PVM view and the class diagram view. However, in
a further developed version of the documentation
tool it should be possible to associate visual content
of the data model to particular views. This would
among other things be useful in contexts where the
PVM view is used for creating an analysis model,
and where the class diagram view is used for
creating the corresponding design model. For
instance, an analysis model could include classes
that are not going to be implemented, for which
reason these should not be part of the design model.
The other way around, the design model could
include implementation-oriented classes that are
irrelevant in the analysis model, which, therefore,
should not be shown in the PVM view.
 CRC-cards can be accessed from any of the three
views; in the CRC-card view by clicking on a class
in the hierarchical list, and in the PVM view and
class diagram view by double-clicking on a class. In
figure 5 the CRC-card view of the prototype is
shown. The CRC-card view consists of a

hierarchical list together with a chosen CRC-card. In
the hierarchical list, aggregation and inheritance are
shown by different symbols, a white node if it is an
aggregation class and a black node if it is a
specialisation class.

Fig.5. CRC-card view (part of the window)

In the hierarchical list of the CRC-card view classes
can be moved, copied or linked by using the
standard MS Windows functionalities of drag-and-
drop and context menus. Moving a class from one
place to another in the hierarchical list means a
change in the class' relationships with other classes.
This kind of change is automatically updated in the
relationship-fields of relevant CRC-cards and on the
matching PVM and class diagram. When copying a
class, an identical copy is created, which can be
pasted anywhere in a given model. A copied class
represents a new class in a model, for which reason
it must be given a new and unique name. Changes
done to the original class or the copied class does,
therefore, not affect the opposite. A class may also
be linked to another class. Thereby the same class
appears several times in a model. Using linked
classes means changes to the class at one place in
the product model automatically affect the linked
classes. This can be useful when a model includes
components that are parts of different assemblies,
and where these should hold the same information at

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 127

every place they appear in the model. For instance,
if a class Screw appears several times in a model,
and new screw-dimensions must be introduced, this

only has to be done once.
 In figure 6 and figure 7 the PVM view and the class
diagram view is shown.

Fig.6. PVM view

Fig.7. Class diagram view

The elements of the class diagram are created
automatically when defining a model in either the
CRC-card view or the PVM view. However, placing
the classes must be done manually by the user,
while the system remembers this the next time the

class diagram view is accessed. To increase the user
friendliness of the system, a future version should
include placement rules for the class diagram view.
 In the class diagram view classes can be moved
by dragging them to any desired place in the

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 128

diagram. It is also possible to move several classes
at the same time by dragging a box around them.
Resizing of classes can be done by dragging the
corner points, which are shown when the cursor
moves over a class. Like in the PVM view, classes
can be created by right-clicking on a class and
selecting to insert a new class with a chosen
relationship type.
 The prototype is capable of saving a created
model to a file, as well as printing out the diagrams
and CRC-cards of the different views.
 The prototype was developed from February to
May 2006, and approximately 200 hours were spent
designing the software architecture and
programming the prototype.

5 Evaluation of the prototype
To evaluate the prototype, two kinds of
investigations were carried out. Firstly, data from an
ongoing configuration project was put into the
prototype to investigate possible limitations of the
modelling environment of the prototype. Secondly,
the prototype was presented to two companies in
order to compare the prototype with their current
documentation software and to get other kinds of
feedbacks.

5.1 Testing the prototype
The PCS-project, which provided the product model
that was put into the prototype, concerns the
creation of a PCS to support the creation of tender
documents, manufacturing drawings, bill of
materials etc. in projects concerning balconies for
existing buildings. While the project is ongoing, the
company wishes to remain anonymous. The product
knowledge in the ongoing project was represented
in PVMs that had been created on the basis of the
notation shown in figure 1, but with some minor
extensions.
 As regards the CRC-card view, the experiment
showed a need for better possibilities for typing in
comments, wherefore more such fields should be
included in a final documentation system. In the
models from the ongoing project many of the
constraints were represented in table form. As the
prototype at its current stage only supports the
writing of textual expressions, the constraints
represented in tables had to be transformed. To
avoid this, the final documentation should support
the use of tables.
 The PVM view allowed putting in the model
information from the ongoing PCS-project.

However, in the PVM models from the ongoing
PCS project, constraints and comments were not
placed below classes as defined in the prototype, but
were instead placed in boxes near classes. Although
the ones, who are going to use the system, properly
could be forced to place this kind of information
below classes, it seems reasonable to allow the use
of boxes in a final documentation system.
 The class diagram view was also capable of
holding the information from the PVM models from
the current case. However, in a final documentation
system it should be possible to: turn off some of the
contents of a model, insert boxes for comments or
constraints, and apply more types of class diagram
relationships, as defined in [18].

5.2 Presenting the prototype to users
The prototype was presented to two Danish
manufacturing companies, who both have several
years of experience with the use of PCSs. The two
companies were chosen due to the extensiveness
and complexity of their PCSs, as this often implies a
need for the creation of external documentation in
order to overview the implemented product
knowledge.
 The first company the prototype was presented to
was GEA Niro A/S. Niro is part of the GEA group
and is an international engineering company that has
a leading market position within the area of design
and supply of spray drying plants. Niro primarily
use their PCS to support the elaboration of tenders
and, as mentioned, apply a Lotus Notes solution for
documenting the knowledge that is implemented in
the PCS. Sometimes PVMs, drawn in MS Visio, are
used for knowledge acquisition. This use both
includes the creation of new PVM models and the
recreation of models based on the information in the
documentation system, when this needs to be
changed. Therefore, both manual transfers of
information from PVMs to the documentation
system and the other way around occur. Further
descriptions of the PCS-project at Niro can be found
in [2].
 After having seen the prototype, Niro expressed
that the use of a further developed version of the
prototype most likely could produce several benefits
compared to their existing solution. The primary
benefit would be the possibility of showing model
information in PVMs and class diagrams, which
would save Niro time, compared to having to
elaborate PVMs manually based on the information
in their documentation system. Another benefit
would be the possibility of easily creating graphical
models, which was considered to be an aspect that

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 129

could improve the communication with domain
experts. On the other hand, Niro requested that the
final documentation system would include a range
of PDM-related functionalities, such as being able to
screen off users with limited modelling prerequisites
from some functionalities and information during
certain stages of a project. Another important
request was that the system should support the use
of tables for describing constraints.
 The second company to which the prototype was
presented was F.L. Smith (FLS). FLS is part of the
Danish FLS Industries, and is an engineering and
industrial company with an leading market position
within the area of development and manufacturing
of cement plants. FLS apply a PCS for the creation
of budget quotations. FLS document their PCS by
using MS Visio, Word, and Access. Compared to
Niro, the documentation of the PCS of FLS is only
used by the knowledge engineers/system
developers. Further descriptions of the PCS-project
at FLS can be found in [2, 20].
 Having been presented to the prototype, FLS
expressed that they might be interested in a similar
solution, as this would be likely to enhance the
overview of the implemented knowledge and make
their PCS easier to further develop compared to the
use of their existing methods. Of additional
requirements, FLS expressed that they would like to
have import/expert functionality so that the
documentation system could be interfaced to their
PCS, e.g. to allow that class structures and attributes
from the documentation system are imported into a
PCS, and rules in a PCS are imported into the
documentation system.

6 Conclusion
The issue of documentation in PCS-projects is a
topic that has been investigated in recent years. This
research indicates a need for a documentation
system that can provide easily understandable
descriptions of what should be or is implemented in
a PCS. In this paper the creation and evaluation of a
documentation system prototype were described.
 A procedure for the development and
maintenance of PCSs, which includes three main
modelling techniques, has been applied in several
cases in Danish industry. However, no software
currently exists that supports these techniques in an
integrated fashion, which means that manual
transfers of information between models are
required. Research concerning functional
requirements for such a documentation system has
been carried out, and recently two papers, which in
a detailed manner define the modelling techniques

to be included, have been published. Based on these
papers, a prototype was created. The aim of the
prototype was to evaluate the definitions of the
modelling environment, and not PDM-related
functionalities. This choice was taken based on the
fact that no software includes this kind of modelling
environment as opposed to PDM-related
functionalities, which are included in numerous
software systems. The prototype was created by
using C# .Net, and approximately 200 hours were
spent on design of software architecture and
programming.
 The prototype was evaluated by putting a PVM
model from an ongoing PCS-project into the
prototype and by presenting it to two companies.
The experiment of putting a PVM model from an
ongoing PCS-project into the prototype showed that
the prototype was capable of holding most of the
information of this model. However, there were
needs for: better possibilities of stating comments in
the CRC-cards, support of constraints being
formulated in tables, and it being possible to place
boxes for comments and constraints next to classes
of PVMs and class diagrams. The presentations of
the prototype to the two companies indicated that
the use of the prototype compared to the use of
existing software in many ways could improve the
quality of their documentation and save resources in
the creation process. On the other hand, more PDM-
related functionalities would be required in order to
be a real alternative, just as the possibility of
import/export to/from a PCS is an important request.
 The development of the prototype indicates that
the creation of the modelling environment of a
documentation system is a task that can be done
within reasonable time limits. The evaluation of the
prototype indicates that a less complete system
might be adequate, as this could still be a far better
solution than existing technologies.
 The creation and evaluation of the prototype
have provided an important basis for the
development of a complete documentation system,
since many of the created solutions would be
reusable, and because of the feedback the prototype
has produced. The prototype developed is therefore,
an important step in the direction of creating a final
documentation system. If this system meets its
expectations, this could have a great impact on the
way in which the development and maintenance of
PCSs are approached and contribute to higher
success rates of such projects.

References:
[1] T. Soininen, J. Tiihonen, T. Männistö, and R.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 130

 Sulonen, Towards a general ontology of
 configuration, AI EDAM-Artificial
 Intelligence for Engineering Design Analysis
 and Manufacturing, Vol.12, No.4, 1998, pp.
 357-372.
[2] L. Hvam, A Multi-perspective approach for
 the design of Product Configuration Systems
 - An evaluation of industry applications,
 Proceedings of PETO Conference, Lyngby,
 Denmark, Department of Manufacturing
 Engineering and Management, Technical
 University of Denmark, 2004.
[3] L. Hvam, N.H. Mortensen, and J. Riis,
 Produktkonfigurering (Preliminary edition,
 first edition is to appear in 2006), [Product
 configuration], Copenhagen, Denmark: Nyt
 Teknisk Forlag, 2006.
[4] J. Riis, Fremgangsmåde for opbygning,
 implementering og vedligeholdelse af
 produktmodeller - med fokus på
 konfigureringssystemer, [Procedure for
 building, implementing and maintaining
 product models - with focus on configuration
 systems], PhD thesis, Department of
 Manufacturing Engineering and Management,
 Technical University of Denmark, 2003.
[5] C. Forza & F. Salvador, Managing for variety
 in the order acquisition and fulfilment
 process: The contribution of product
 configuration systems, International Journal
 of Production Economics, Vol.76, No.1, pp.
 87-98, 2002.
[6] C. Forza, A. Trentin, and F. Salvador, Product
 Information Management for Mass
 Customization: the Case of Kitting,
 Proceedings of MCPC2005, 18-21 Sept. in
 Hong Kong, 2005.
[7] D. Sabin and R. Weigel, Product
 Configuration Frameworks - A survey,
 IEEE Intelligent Systems & Their
 Applications, Vol.13, No.4, pp. 42-49, 1998.
[8] B. Hansen, J. Riis, and L. Hvam,
 Specification process reengineering: concepts
 and experiences from Danish industry,
 Proceedings of the 10th ISPE international
 Conference on Concurrent Engineering:
 Research and Applications, Madeira,
 Portugal, July 26-30, 2003.
[9] K. Edwards, and K. Ladeby, Framework for
 Assessing Configuration Readiness,
 Proceedings of the 3rd Interdisciplinary
 World Congress on Mass Customization and
 Personalization (MCPC2005), Hong Kong,
 Sept. 18-21, 2005.
[10] L. Hvam, Application of product modelling –

 seen from a work preparation viewpoint
 (Trans.), PhD thesis, Lyngby, Denmark,
 Department of Industrial Management and
 Engineering, Technical University of
 Denmark, 1994.
[11] U. Harlou, Developing product families based
 on architectures: Contribution to a theory of
 product families, Unpublished dissertation,
 Lyngby, Denmark, Department of Mechanical
 Engineering, Technical University of
 Denmark, 2005.
[12] OMG, Unified Modeling Language:
 Superstructure (Version 2.0: Formal/05-
 07-04), www.uml.org, 2005.
[13] M. Fowler, UML Distilled (3rd edition),
 Boston, MA, Addison-Wesley, 2005.
[14] K. Beck, and W.A. Cunningham, A
 laboratory for teaching object-oriented
 thinking, SIGPLAN Notices, Vol.24, No.10,
 pp. 1-6, 1989.
[15] K. Edwards, L. Hvam, J.L. Pedersen, M.
 Møldrup, and N. Møller, Udvikling og
 implementering af konfigureringssystemer:
 Økonomi, Teknologi og Organisation,
 [Development and implementation of
 configuration systems: Economy, Technology
 and Organisation], Final report from research
 project, Department of Manufacturing
 Engineering and Management, Technical
 University of Denmark, 2005.
[16] L. Hvam, S. Pape, K.L. Jensen, K.L., and J.
 Riis, Development and maintenance of
 product configuration systems - Requirements
 for a documentation tool. International
 Journal of Industrial Engineering, Vol.12,
 No.1, pp. 79-88, 2005.
[17] L. Hvam, and M. Malis, A Knowledge Based
 Documentation Tool for Configuration
 Projects, Proceedings of World Congress on
 Mass Customization and Personalization,
 Hong Kong, Oct. 1-2, 2001.
[18] A. Haug, and L. Hvam, The modelling
 techniques of a documentation system that
 supports the development and maintenance of
 product configuration systems, Proceedings
 of IMCM'06, Hamburg, Germany, June 22-
 23, 2006.
[19] A. Haug, and L. Hvam, CRC-cards for the
 development and maintenance of product
 configuration systems, Proceedings of
 IMCM'06, Hamburg, Germany, June 22-23,
 2006.
[20] L. Hvam, Mass Customization for Process
 Plants, Proceedings of MCPC2005, Hong
 Kong, Sept. 18-21, 2005.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 131

